

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0288 of 23 September 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Upat Sleeve Anchor UHS, UHS-I

Mechanical fastener for use in concrete

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

25 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

ETA-17/0288 issued on 22 August 2017

European Technical Assessment ETA-17/0288

Page 2 of 25 | 23 September 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0288

Page 3 of 25 | 23 September 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Upat Sleeve Anchor UHS, UHS-I is an anchor made of galvanised steel (sizes with external diameter 10, 12, 15, 18, 24, 28 and 32, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) or stainless steel (sizes with external diameter 10, 12, 15, 18 and 24, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3 and C 4
Displacements (static and quasi-static loading)	See Annex C 10, C 11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 8, C 9, C 11
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5, C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

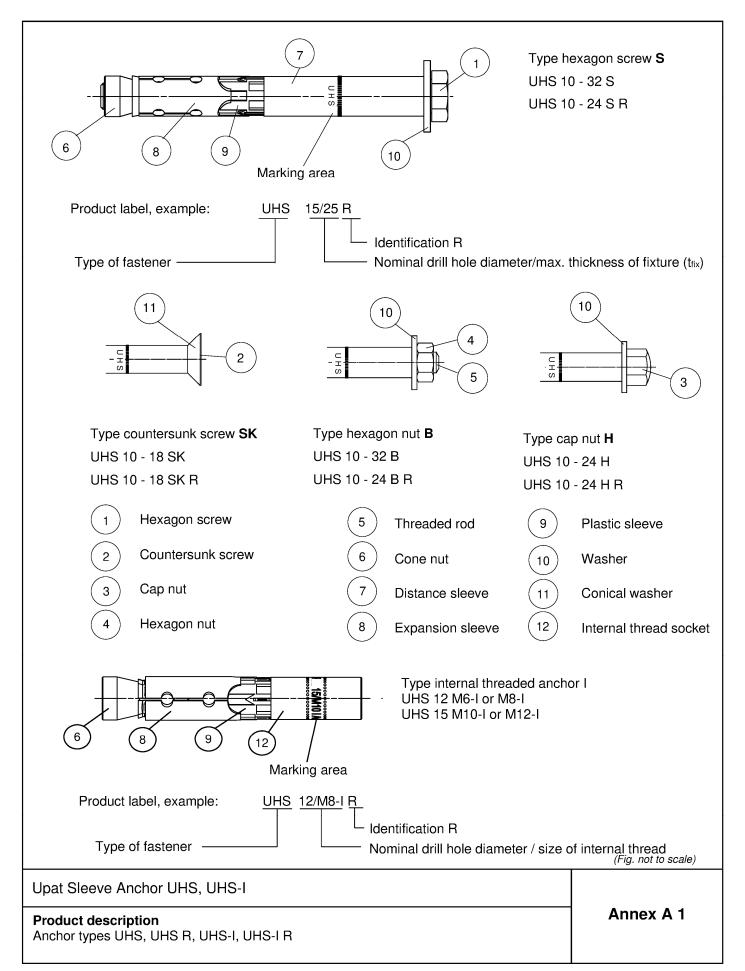
The system to be applied is: 1

European Technical Assessment ETA-17/0288

Page 4 of 25 | 23 September 2020

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 September 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider



Table A2.1: Dimensions [mm] UHS and UHS R

Anchor type		UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32	
Thread		М	6	8	10	12	16	16 20 24	
Diameter cone nut		dc	10	12	14,8	17,8	23,7	27,5	31,5
UHS-S, -B			10	13	17	19	24	30	36
	UHS-SK1)		4	5	6	8		3)	
Wrench size SW	UHS-H		13	17	17	19	24	3)	
	UHS-S R, -B R, -H R		10	13	17	19	24	3)
	UHS-SK R ¹⁾		4	5	6	8		3)	
t _{fix} UHS-S, -B, -H + UHS-S R, -	·B R, -H R	min	0	0	0	0	0	0	0
t _{fix} UHS-SK + UHS-SK R ²⁾ min		5	6	6	8	3)			
Length of screw / bolt	L_s , L_h , L_b (- t _{fix}) ≥	49	74	89	99	124	149	174
Length of countersunk screw	L _{sk} (- t	t _{fix}) ≥	54	79	95	107	3)		

¹⁾ Internal hexagon

(Fig. not to scale)

Upat Sleeve Anchor UHS, UHS-I	
Product description Anchor types and dimensions UHS, UHS R	Annex A 2

²⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is taken into account, see tables C3.1, C8.1 and C9.1

³⁾ Anchor type not part of assessment

Tal	Table A3.1: Material UHS and UHS R							
		Materi	al					
No.	Designation	UHS	UHS R					
		Steel	Stainless steel R					
	Steel grade	Zinc plated ≥ 5 μm, ISO 4042:2018	Acc. to EN 10088:2014					
1	Hexagon screw	Ct - 0.0. FN ICO 000 4:0040						
2	Countersunk screw	Steel class 8.8; EN ISO 898-1:2013	Class 80					
3	Cap nut	Ota al ala sa O	EN ISO 3506:2020					
4	Hexagon nut	Steel class 8						
5	Threaded rod	Steel $f_{uk} \ge 800 \text{ N/mm}^2$; $f_{yk} \ge 640 \text{ N/mm}^2$	Stainless steel EN 10088:2014 f _{uk} ≥ 800 N/mm²;f _{yk} ≥ 640 N/mm²					
6	Cone nut	Steel EN 10277:2018						
7	Distance sleeve	Steel EN 10305:2016	Stainless steel EN 10088:2014					
8	Expansion sleeve	Steel EN 10139:2020/ EN 10277:2018						
9	Plastic sleeve	ABS (pla	stic)					
10	Washer	Steel EN 10139:2020	Ctainless steel EN 40000:2044					
11	Conical washer	Steel EN 10277:2018	Stainless steel EN 10088:2014					

Upat Sleeve Anchor UHS, UHS-I	
Product description Materials UHS and UHS R	Annex A 3

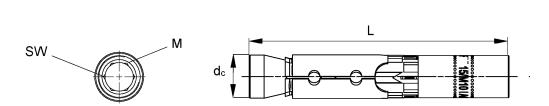


Table A4.1: Anchor Dimensions [mm] UHS-I and UHS-I R

Anchor type UHS-I, UHS-I R		UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I
Thread	М	6	8	10	12
Diameter cone nut	dc	12	12	14,8	14,8
Wrench size internal hexagon	SW	6	8	6	8
Anchor length	L	77,5	77,5	90	90

Table A4.2: Material UHS-I and UHS-I R

		Material				
No.	Designation	UHS-I	UHS-I R			
		Steel	Stainless steel R			
Steel grade		Zinc plated ≥ 5 μm, ISO 4042:2018	Acc. to EN 10088:2014			
6	Cone nut	Steel EN 10277:2018	Stainless steel EN 10088:2014			
8	Expansion sleeve	Steel EN 10139:2020 / EN 10277:2018	Stairliess steer LIN 10000.2014			
9	Plastic sleeve	ABS (S (plastic)			
12	Internal thread bolt	Steel EN 10277:2018 f _{uk} ≥ 750 N/mm², f _{yk} ≥ 600 N/mm²	$ \begin{array}{l} \text{Stainless steel EN 10088:2014} \\ f_{uk} \geq 750 \text{ N/mm}^2, \\ f_{yk} \geq 600 \text{ N/mm}^2 \end{array} $			
Requirements for fixing elements		Steel strength class 5.8, 6.8 or 8.8 EN ISO 898-1:2013	Steel strength class A50, A70 or A80 EN ISO 3506:2010 1.4362, 1.4401, 1.4404, 1.4571, 1.4529			

(Fig. not to scale)

Upat Sleeve Anchor UHS, UHS-I	
Product description Anchor types, dimensions and materials UHS-I, UHS I-R	Annex A 4

Page 9 of European Technical Assessment ETA-17/0288 of 23 September 2020

English translation prepared by DIBt

	Specifi	ications	of inter	nded us	e				
Anchorages subjec	et to:								
Size		10	12	15	18	24	28	32	
ur i B	UHS-S, -B	/							
High Performance Anchor	UHS-H, -S R, -B R, -H R			1				1)	
	UHS-SK, UHS-SK R		,	/			1)		
High Performance A	nchor UHS-I, UHS-I R	1)		/			1)		
Hammer drilling with standard drill bit	B-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8								
Hammer drilling with hollow drill bit with	Hammer drilling ✓								
automatic cleaning									
Static and quasi-stat									
Cracked and uncrac	ked concrete	✓							
Fire exposure									
	C1 UHS					/			
Å	C1 UHS R	2)			/			1)	
Seismic	C2 UHS] -			✓ ·				
performance category	C2 UHS R				,			1)	
	C1 UHS-I, UHS-I R C2 UHS-I, UHS-I R	1)	1) 2) 1)			1)			
	G2 0113-1, 0113-11\								

¹⁾ Anchor type not part of the assessment

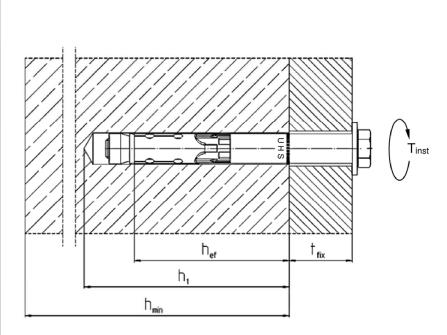
Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (UHS, UHS R, UHS-I, UHS-I R)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (UHS R, UHS-I R)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)


Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018

Upat Sleeve Anchor UHS, UHS-I	
Intended use Specifications	Annex B 1

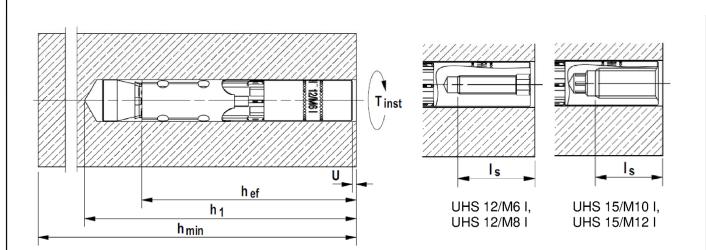
²⁾ No performance assessed

 $h_{ef} = ffective embedment depth$ $t_{fix} = ffective embedment depth$

 h_1 = Depth of drill hole to deepest point h_{min} = Minimum thickness of concrete member

 $T_{inst} = Required setting torque$

Table B2.1: Installation parameters UHS and UHS R


Anchor type UHS S, -SK, -B, -H and UHS S R, -SK R, -B R, -H R	UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Nominal drill hole diameter d ₀	10	12	15	18	24	28	32
Maximum diameter of drill bit d _{cut} ≤	10,45	12,50	15,50	18,50	24,55	28,55	32,70
Depth of drill hole to deepest $h_1 \ge [mn]$	^{1]} 55	80	90	105	125	155	180
Diameter of clearance hole $d_f \leq$	12	14	17	20	26	31	35
Diameter of counter sunk UHS SK	18	22	25	32	1)		
Depth of counter sunk, 90° UHS SK R	k, 90° UHS SK R [mm] 5,0 5,8		5,8	8,0	1		
UHS S		22,5	40		160	180	200
UHS B	10	17,5	38]	120	180	200
Required UHS H	10	22,5	5 40	80	90	1)	
torque UHS SK T _{inst} [Nn	ן[40			1)	
UHS S R, UHS B R UHS H R	15	0.5	40	40 400	160	1)
UHS SK R	10	25	40	100		1)	

¹⁾ Anchor type not part of assessment

(Fig. not to scale)

Upat Sleeve Anchor UHS, UHS-I	
Intended use Installation parameters UHS, UHS R	Annex B 2

hef = Effective embedment depth

 h_1 = Depth of drill hole to deepest point h_{min} = Minimum thickness of conrete member

T_{inst} = Required setting torque U = Required gap after torqueing

s = Screw-in depth

Table B3.1: Installation parameters UHS-I and UHS-I R

Anchor type UHS-I and UHS-I R				UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I		
Nominal drill hole diameter	d₀		_		12	15			
Maximum bit diameter	d _{cut} ≤			12	2,50	15,	50		
Depth of drill hole	h ₁	≥ [mm] 85			85	9:	5		
Diameter of clearance hole	df	<u> </u>	_	7	9	12	14		
Required gap after torquing1)	U		_		3 -	5			
Required setting torque ¹⁾	T_{inst}		[Nm]		15	25			
Minimum screw-in depth	ls	≥	- [mm]	11 + U	13 + U	10 + U	12 + U		
Maximum screw-in depth	Is	≤	- [mm]		20 + U				
Maximum torque on fixture in combination with screws and threaded rods strength class ≥ 5.8 resp. \geq A50	max	T_{fix}	[Nm]	3	8	15	20		

¹⁾ At least one of the requirements concerning the gap U or the required setting torque T_{inst} have to be fulfilled

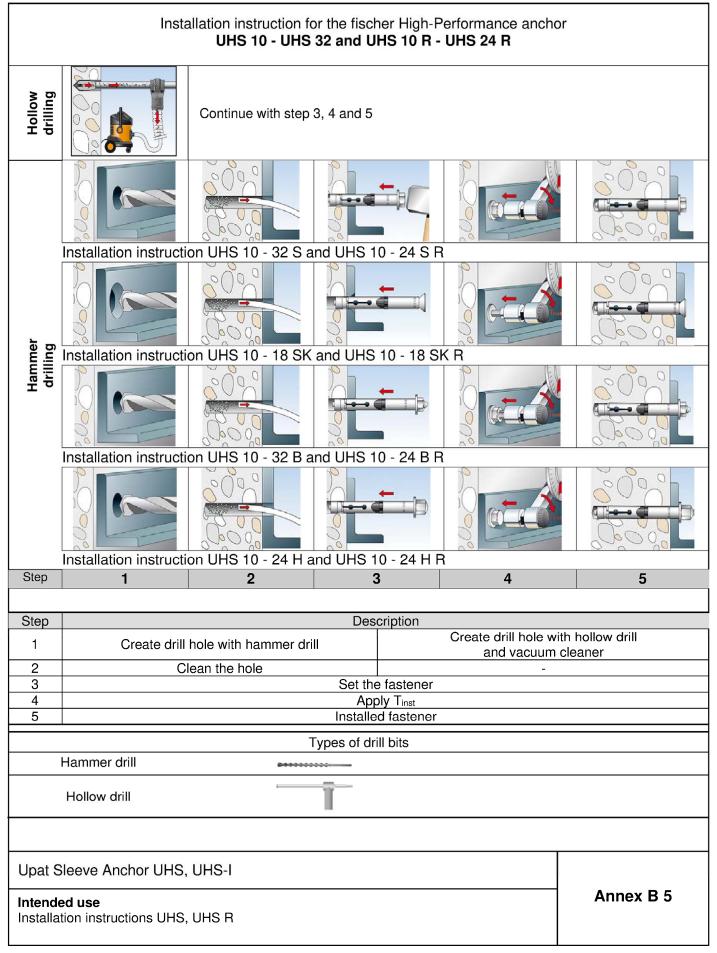
(Fig. not to scale)

Upat Sleeve Anchor UHS, UHS-I	
Intended use Installation parameters UHS-I, UHS-I R	Annex B 3

English translation prepared by DIBt

Electronic copy of the ETA by DIBt: ETA-17/0288

Installation instructions:


- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which
 the fastener is to be placed is in the range given and is not lower than that of the concrete to
 which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids
- Hammer or hollow drilling according to Annex B5 and B6
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill
 hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under
 shear or oblique tension load it is not in the direction of load application

Upat Sleeve Anchor UHS, UHS-I

Intended Use
Installation instructions

Annex B 4

Installation instruction for the fischer High-Performance anchor internal thread UHS-I and UHS-I R Continue with step 2, 3, and 4 Hammer Step 3 Description Step Create Create drill hole with hammer drill, drill hole with hollow drill 1 clean drill hole and vacuum cleaner Hammering in the anchor flushed with the surface of the concrete 2 Tighten the anchor. The included hexagon bit in the package should be used. Other tightening methods are 3 allowed. Tighten the anchor in the concrete until the gap U is 3 - 5 mm or the required setting torque Tinst is reached. Only one of the above requirements has to be fulfilled. Attach the fixture and use a suitable screw or anchor rod. The length of the screw or anchor rod should be determined depending on the thickness of fixture tfix, admissible tolerances, and available thread length ls,max and I_{s,min} including the gap U. Tighten the screw with the torque \leq max T_{fix} (max T_{fix} see table B3.1) Types of drill bits Hammer drill Hollow drill Upat Sleeve Anchor UHS, UHS-I Annex B 6 Intended use Installation instructions UHS-I, UHS-I R

Electronic copy of the ETA by DIBt: ETA-17/0288

English translation prepared by DIBt

min $\{N^{0}_{Rk,c}, N_{Rk,p}\}^{4}$

cteristic: R	s of tensic	on resis	tance ur	nder sta	tic and c	quasi-sta	tic loads	3
		UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
		16,1	29,3	46,4	67,4	125,3	195,8	282,0
$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4	125,3	2	2)
		16,1	29,3	46,4	67,4		2)	
γMs ¹⁾	[-]				1,5			
_NI	[LAN]]	16,1	29,3	46,4	67,4	125,3	2	2)
INRk,s	[KIN]	16,1	29,3	46,4	67,4		2)	
γMs ¹⁾	[-]				1,6			
		7,5	12,0	16,0	25,0	34,4	48,1	63,3
— N _{Rk,p}	[kN]	12,5 22,9 28,8 35,	35,2	49,2	68,8	90,4		
		12,5	20,0	28,8	35,2	49,2	:	2)
	C25/30				1,12			
	C30/37				1,22			
	C35/45				1,32			
ψс	C40/50				1,41			
	C45/55				1,50			
	C50/60				1,58			
γinst	[-]				1,0			
failure								
h_{ef}	[mm]	40	60	70	80	100	125	150
$k_{\text{cr,N}}$					7,73)			
k ucr,N					11,0 ³⁾			
S _{cr,N}		120	180	210	240	300	375	450
Ccr,N	 [mm]	60	90	105	120	150	187,5	225
Scr,sp		190	300	320	340	380	480	570
	R NRk,s γMs 1) NRk,s γMs 1) Vc γinst right failure hef kcr,N kucr,N Scr,N Ccr,N	R -NRk,s [kN] γMs 1) [-] -NRk,s [kN] γMs 1) [-] -NRk,p [kN] NRk,p [kN] NRk,p [kN]	NR S 10	R UHS 10 12	R UHS 10	R UHS 10	NRK,S [KN] 16,1 29,3 46,4 67,4 125,3 17,6 12,0 16,0 25,0 34,4 18,0 21,0 24,0 30,0 18,0 21,0 24,0 18,0 21,0 24,0 18,0 21,0 24,0 18,0 21,0 24,0 18,0 21,0	NRK,s [kN] 16,1 29,3 46,4 67,4 125,3 195,8 NRK,s [kN] 16,1 29,3 46,4 67,4 125,3 195,8 16,1 29,3 46,4 67,4 125,3 195,8 16,1 29,3 46,4 67,4 125,3 195,8 16,1 29,3 46,4 67,4 125,3 195,8 NRK,s [kN] 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 125,3 195,8 NRK,s [kN] 16,1 29,3 46,4 67,4 20,4 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 20,4 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 125,3 16,1 29,3 46,4 67,4 125,3 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,1 1,0

¹⁾ In absence of other national regulations

Characteristic resistance (splitting)

Upat Sleeve Anchor UHS, UHS-I	_
Performances Performance characteristics of tension resistance for UHS and UHS R	Annex C 1

 $N^0_{Rk,sp}$ [kN]

²⁾ Anchor type no performance assessed ³⁾ Based on concrete strength as cylinder strength

⁴⁾ N⁰_{Rk,c} acc. EN 1992-4:2018

Table C2.1: Performance characteristics of tension	resistance under static and quasi-static loads
for UHS-I and UHS-I R	·

for UHS-I and UHS-	ıĸ						
Anchor type UHS-I and UHS-I R			UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I	
Steel failure							
Anchor in combination with screw	/ threa	ded rod	of galvanised s	teel complying	with DIN EN IS	SO 898	
Strength class 5.8			10	19	29	43	
Strength class 6.8	$N_{Rk,s}$	[kN]	12	23	35	44	
Strength class 8.8			16	27	44	44	
Partial factor	γMs ¹⁾	[-]		1	,5		
Anchor in combination with screw	/ threa	ided rod	of stainless ste	el complying w	ith DIN EN ISC	3506	
Screw/thread strength class A50	$N_{Rk,s}$	[kN]	10	19	29	43	
Partial factor	γMs ¹⁾	[-]		2,	86		
Screw/thread strength class A70	$N_{Rk,s}$	[kN]	14	26	41	54	
Partial factor	γMs ¹⁾	[-]		1,	87	•	
Screw/thread strength class A80	N _{Rk,s}	[kN]	16	29	46	46	
Partial factor	γMs ¹⁾	[-]		1,	60		
Pullout failure	·						
Characteristic resistance in cracked concrete C20/25	_N _{Rk,p}	[kN]	9,0		1	2,0	
Characteristic resistance in uncracked concrete C20/25	T T T T T T T T T T T T T T T T T T	[KIV]	20	,0	28,8		
Increasing factors for N _{Rk,p} for cracked and uncracked concrete	Ψο	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	1,22 1,32 1,41 1,50				
Installation factor	γinst	[-]		1,	,0		
Concrete cone failure and splitting	failure						
Effective embedment depth	h _{ef}	[mm]	60			70	
Factor for cracked concrete	k _{cr,N}	- [-]		7,7			
Factor for uncracked concrete	k _{ucr,N}		4.0	11,		10	
Spacing Figure 4 distance	S _{cr,N}	-	18			10	
Edge distance	C _{cr,N}	-[mm]	90			05	
Spacing (splitting)	Scr,sp	_	30			20	
Edge distance (splitting)	C _{cr,sp}	51.5.17	15			60	
Characteristic resistance (splitting)	$N^0_{Rk,s}$	p[kN]		min {N ⁰ _{Rk}	_{к,с,} N _{Rk,р} } ³⁾		

¹⁾ In absence of other national regulations

Upat Sleeve Anchor UHS, UHS-I	
Performances Performance characteristics of tension resistance for UHS-I and UHS-I R	Annex C 2

²⁾ Based on concrete strength as cylinder strength

³⁾ N⁰_{Rk,c} acc. EN 1992-4:2018

Anchor type UHS-S, -SK, -B, -H a UHS-S R, -SK R, -B R, -H R	nd		UHS 10	UHS	UHS	UHS	UHS	UHS	UHS	
				12	15	18	24	28	32	
Installation factor	γinst	[-]				1,0				
Steel failure without lever arm UHS-S			10.0	00.0	50.0	70.0	1400	170.4	017.0	
UHS-B	V ⁰ Rk,s	FL-NIT	18,0	33,0	59,0	76,0	146,0	176,4	217,0	
UHS-H	- V Rk,s	[kN]	16,0 16,0	27,2 27,2	42,8 42,8	61,9 61,9	119,0 119,0	148,8	169,0	
0113-11	1 2)	[]	10,0			· · · · ·	119,0		,	
	$\frac{t_{\text{fix}}^{2)}}{V^{0}}$	[mm]			≥ 50.0		-			
UHS-SK ———	V ⁰ Rk,s	[kN]	18,0	33,0	59,0	76,0	-	3)		
	$\frac{t_{\text{fix}}^{2)}}{\mathbf{x}^{0}}$	[mm]	<			15	-			
Davidal factors	$V^0_{Rk,s}$ $\gamma_{Ms}^{1)}$	[kN]	8,0	14,0	23,0	34,0				
Partial factor	1,25									
Factor for ductility UHS-S R	V ⁰ Rk,s	[kN]	10.0	33,0	50.0	1,0	146.0	3	<u> </u>	
Partial factor	γ _{Ms} 1)	[-]	18,0	33,0	59,0	76,0 1,33	146,0		,	
UHS-B R, -H R	V ⁰ Rk,s	[kN]	16,0	27,2	42,8	61,9	119,0	3	i)	
Partial factor	γ _{Ms} ¹⁾	[-]	10,0	21,2	42,0	1,25	113,0		,	
Tarrar radio	t _{fix} 2)	[mm]	≥ '	10	≥ .	-				
	V ⁰ Rk,s	[kN]	18,0	33,0	59,0	76,0	-			
UHS-SK R	t _{fix} 2)	[mm]	<		-	15	-	3)		
	V^0 Rk,s	[kN]	8,0	14,0	23,0	34,0				
Partial factor	γ _{Ms} 1)	[-]				1,33				
Factor for ductility	k ₇					1,0				
Steel failure with lever arm and	concret	e pryou	t failure							
Characteristic bending resistance UHS-S, -SK, -B, -H	$M^0_{Rk,s}$	[Nm]	12	30	60	105	266	518	896	
Partial factor	γ _{Ms} 1)	[-]				1,25				
Characteristic bending resistance UHS R	M^0 Rk,s	[Nm]	12	30	60	105	266	3	i)	
UHS-B R, -H R	1)					1,25				
Partial factor UHS-S R, -SK R	- γMs ¹⁾	[-]				1,33				
Factor for pryout failure	k ₈	[-]	1,0			2	,0			
Concrete edge failure										
Effective embedment depth for calculation	I _f =	[mm]				h _{ef}				
Outside diameter of a fastener	d _{nom}	. []	10	12	15	18	24	28	32	
1) In absence of other national regulat 2) The thickness of the fixture has influ 3) No performance assessed	ions ience to t	he chara	cteristic res	sistance for	shear loac	ds, steel fa	ilure withou	it lever arm		

Z82761.20 8.06.01-619/20

Performance characteristics of shear resistance for UHS and UHS R

Electronic copy of the ETA by DIBt: ETA-17/0288

Installation factor Steel failure without lever arm Anchor in combination with scre	γinst		12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12		
Anchor in combination with scre		[-]			,0			
	·							
	w / threade	d rod of	f galvanised s	teel complying	with DIN EN IS	O 898:2013		
Strength class 5.8			5	9	15	21		
Strength class 6.8	V^0 Rk,s	[kN]	6	11	18	24		
Strength class 8.8			8	14	23	24		
Partial factor	γ _{Ms} 1)	- [-]		1	,25			
Factor for ductility	k ₇				1,0			
Anchor in combination with scre		d rod of		el complying v	vith DIN EN ISO	3506:2010		
Strength class A50	V^0 Rk,s	[kN]	5	9	15	21		
Partial factor	$\gamma {\sf Ms}^{1)}$	[-]		2	2,38			
Strength class A70	V^0 Rk,s	[kN]	7	13	20	30		
Partial factor	$\gamma_{Ms}^{1)}$	[-]		1	,56			
Strength class A80	V^0_Rk,s	[kN]	8	15	23	32		
Partial factor	γ Ms $^{1)}$. 1		1	,33			
Factor for ductility	k ₇	· [-]			1,0			
Steel failure with lever arm and c	oncrete pry	out fail	ure					
Anchor in combination with screw	/ threaded i	od of ga	alvanised steel	complying wit	h DIN EN ISO 89	8:2013		
Strength class 5.8			8	19	37	65		
Strength class 6.8	M^0 Rk,s	[Nm]	9	23	44	78		
Strength class 8.8		· -	12	30	60	105		
Partial factor	γ _{Ms} 1)			•	1,25	•		
Factor for ductility	k ₇	-[-]	1,0					
Anchor in combination with scre	w / threaded	d rod of	stainless stee	complying wit	h DIN EN ISO 35	06:2010		
Strength class A50	M ⁰ Rk,s	[Nm]	8	19	37	65		
Partial factor	γ _{Ms} 1)	[-]			2,38	•		
Strength class A70	M ⁰ Rk,s	[Nm]	11	26	52	92		
Partial factor	γ _{Ms} 1)	[-]		•	1,56			
Strength class A80	M ⁰ Rk,s	[Nm]	12	30	60	105		
Partial	γ _{Ms} 1)				1,33			
actor		- []						
Factor for ductility	k ₇	[-]			1,0			
Factor for pryout failure	k ₈				2,0			
Concrete edge failure								
	$I_f =$	[me ser]			h _{ef}			
	d	- նատյ 🗕		12		15		
1) In absence of other national regulation				16	1	10		
Effective embedment depth for calculation Outside diameter of fastener	d _{nom}	[mm]		12	h _{ef}	15		

Table C5.1: Performance characteristics of tension resistance under fire exposure

			R30		<u> </u>	R60	
Anchor type		No. see		N10-11 11 00	Nlsu (100		N ⁰ Rk,c,fi,60
Anchor type		N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	[kN]
UHS 10, UHS 10 F	}	0,2	1,8	1,8	0,2	1,8	1,8
UHS 12, UHS 12 F	}	2,0	3,0	5,0	1,3	3,0	5,0
UHS 15, UHS 15 F	}	3,2	4,0	7,4	2,3	4,0	7,4
UHS 18, UHS 18 F	}	4,8	6,3	10,3	3,9	6,3	10,3
UHS 24, UHS 24 F	}	8,9	9,0	18,0	7,3	9,0	18,0
UHS 28		13,9	12,6	31,4	11,3	12,6	31,4
UHS 32		20,0	16,5	49,6	16,3	16,5	49,6
UHS 12/M6-I,	5.8, A50 ¹⁾	0,1			0,1		
UHS 12/M6-I R	8.8, A70, A80 ^{1) 2)}	0,2		50	0,2	0.0	F 0
UHS 12/M8-I,	5.8, A50 ¹⁾	1,3	2,3	5,0	0,8	2,3	5,0
UHS 12/M8-I R	8.8, A70, A80 ^{1) 2)}	2,0			1,3		
UHS 15/M10-I,	5.8, A50 ¹⁾	2,0			1,4		
UHS 15/M10-I R	8.8, A70, A80 ^{1) 2)}	3,2	1		2,3		
UHS 15/M12-I,	5.8/A50 ¹⁾	3,0	3,0	7,4	2,4	3,0	7,4
UHS 15/M12-I R	8.8, A70, A80 ^{1) 2)}	4,8			3,9		
			R90		,	R120	1
Anchor type		N _{Rk,s,fi,90}	N _{Rk,p,fi,90}	N ⁰ Rk,c,fi,90	N _{Rk,s,fi,120}	N _{Rk,p,fi,120}	N ⁰ Rk,c,fi,120
• •		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
UHS 10, UHS 10 F	}	0,1	1,8	1,8	0,1	1,5	1,5
UHS 12, UHS 12 F	}	0,6	3,0	5,0	0,2	2,4	4,0
UHS 15, UHS 15 F	}	1,4	4,0	7,4	1,0	3,2	5,9
UHS 18, UHS 18 F		3,0	6,3	10,3	2,6	5,0	8,2
UHS 24, UHS 24 F	}	5,6	9,0	18,0	4,8	7,2	14,4
UHS 28		8,8	12,6	31,4	7,5	10,1	25,2
UHS 32		12,6	16,5	49,6	10,8	13,2	39,7
UHS 12/M6-I,	5.8, A50 ¹⁾	0,1			0,1		
UHS 12/M6-I R	8.8, A70, A80 ^{1) 2)}	0,1	2,3	E 0	0,1	1.0	4.0
UHS 12/M8-I,	5.8, A50 ¹⁾	0,4	2,3	5,0	0,1	1,8	4,0
UHS 12/M8-I R	8.8, A70, A80 ^{1) 2)}	0,6			0,2		
UHS 15/M10-I,	5.8, A50 ¹⁾	0,9			0,6		
UHS 15/M10-I R	8.8, A70, A80 ^{1) 2)}	1,4	3.0	7.4	1,0	0.4	F 0
UHS 15/M12-I,	5.8/A50 ¹⁾	1,9	3,0	7,4	1,6	2,4	5,9
UHS 15/M12-I R	8.8, A70, A80 ^{1) 2)}	3,0			2,6		

¹⁾ Intermediate values by linear interpolation

Upat Sleeve Anchor UHS, UHS-I

Performances
Performance characteristics of tension resistance under fire exposure

Annex C 5

²⁾ In combination with screw / threaded rod strength class 8.8, A70, A80

English translation prepared by DIBt

Electronic copy of the ETA by DIBt: ETA-17/0288

Table C6.1: Performance characteristics of shear resistance under fire exposure

		R	30	R60		
Anchor type		V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ Rk,s,fi,60 [Nm]	
UHS 10, UHS 10 R		0,3	0	0,3	0	
UHS 12, UHS 12 R		2,0	2	1,3	1	
UHS 15, UHS 15 R		3,2	4	2,3	3	
UHS 18, UHS 18 R		4,8	7	3,9	6	
UHS 24, UHS 24 R		8,9	19	7,3	15	
UHS 28		13,9	37	11,3	30	
UHS 32		20,0	64	16,3	52	
UHS 12/M6 I,	5.8, A50 ¹⁾	0,2	0	0,2	0	
UHS 12/M6 I R	8.8, A70, A80 ^{1) 2)}	0,3	0	0,3	0	
UHS 12/M8 I,	5.8, A50 ¹⁾	1,3	1	0,8	1	
UHS 12/M8-I R	8.8, A70, A80 ^{1) 2)}	2,0	2	1,3	1	
UHS 15/M10 I,	5.8, A50 ¹⁾	2,0	3	1,4	2	
UHS 15/M10-I R	8.8, A70, A80 ^{1) 2)}	3,2	4	2,3	3	
UHS 15/M12-I,		3,0	4	2,4	4	
UHS 15/M12-I R	8.8, A70, A80 ^{1) 2)}	4,8	7	3,9	6	
		R	90	R1	20	
Anchor type		V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]	
UHS 10, UHS 10 R		0,2	0	0,1	0	
UHS 12, UHS 12 R		0,6	1	0,2	0	
UHS 15, UHS 15 R		1,4	2	1,0	1	
UHS 18, UHS 18 R		3,0	5	2,6	4	
UHS 24, UHS 24 R		5,6	12	4,8	10	
UHS 28		8,8	23	7,5	20	
UHS 32		12,6	40	10,8	34	
UHS 12/M6-I,	5.8, A50 ¹⁾	0,1	0	0,1	0	
UHS 12/M6-I R	8.8, A70, A80 ^{1) 2)}	0,2	0	0,1	0	
UHS 12/M8-I,	5.8, A50 ¹⁾	0,4	1	0,1	0	
UHS 12/M8-I R		0,6	1	0,2	0	
UHS 15/M10 I,	5.8, A50 ¹⁾	0,9	2	0,6	1	
UHS 15/M10-I R		1,4	3	1,0	1	
	5.8/A50 ¹⁾	1,9	4	1,6	3	
UHS 15/M12-I R	8.8, A70, A80 ^{1) 2)}	.,-	6	.,-	4	

¹⁾ Intermediate values by linear interpolation

Table C6.2: Minimum spacings and minimum edge distances of anchors under fire exposure for tension and shear loads

Anchor type			UHS 10	UHS 12 UHS 12-I	UHS 15 UHS 15-I	UHS 18	UHS 24	UHS 28	UHS 32				
Cacaina	Scr,N,fi		4x h _{ef}										
Spacing	Scr,N,fi Smin,fi		40	50	60	70	80	100	120				
	C _{cr} ,N,fi	. [mm]			2 x h _{ef}	h _{ef}							
Edge distance	Cmin,fi	[]		for fire expo	C _{min} osure from mo	$_{n,fi}=2 \times h_{ef}$, pre than one	side C _{min,fi} <u>></u>	300 mm					

Upat Sleeve Anchor UHS, UHS-I

Perfomances

Performance characteristics of shear resistance under fire exposure Minimum spacings and minimum edge distances of anchors under fire exposure Annex C 6

²⁾ In combination with screw / threaded rod strength class 8.8, A70, A80

Electronic copy of the ETA by DIBt: ETA-17/0288

Table C7.1: Minimum thickness of concrete member, minimum spacing and minimum edge distances **UHS, UHS R**

Anchor type UHS-S, -SK, -B, -H a UHS-S R, -SK R, -B R, -H R		UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32	
Minimum thickness of concrete member	h _{min}	[mm]	80	120	140	160	200	250	300
Minimum spacing,	Smin		40	50	60	70	80	100	120
cracked concrete	for c ≥		40	80	120	140	180	200	260
Minimum edge distance,	Cmin	— [mm]	40	50	60	70	80	100	120
cracked concrete	for s ≥	_	40	80	120	160	200	220	280
Minimum spacing,	Smin		40	60	70	80	100	120	160
uncracked concrete	for c ≥		70	100	100	160	200	220	360
Minimum edge distance,	Cmin	— [mm]	40	60	70	80	100	120	180
uncracked concrete	for s ≥		70	100	140	200	220	240	380

Intermediate values may be calculated by linear interpolation

Table C7.2: Minimum thickness of concrete member, minimum spacing and minimum edge distances **UHS-I, UHS-I R**

Anchor type UHS-I and UHS-I R			UHS 12/M6 I UHS 12/M8 I	UHS 15/M10 I UHS 15/M12 I
Minimum thickness of concrete member	h _{min}	[mm]	125	150
Minimum spacing,	Smin		50	60
cracked concrete	for c ≥	– – [mm]	80	120
Minimum edge distance,	Cmin		50	60
cracked concrete	for s ≥	_	80	120
Minimum spacing,	Smin		60	70
uncracked concrete	for c ≥	_ [mm]	100	100
Minimum edge distance,	Cmin	– [mm] –	60	70
uncracked concrete	for s ≥		100	140

Intermediate values may be calculated by linear interpolation.

Upat Sleeve Anchor UHS, UHS-I	
Performances Minimum thickness of concrete member, minimum spacing and minimum edge distances	Annex C 7

	erformance characteris							performa	nce	
Anchor type UHS UHS-S R, -SK R,	S-S, -SK, -B, -H and -B R, -H R			UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32	
Steel failure										
	UHS-S, -B			29,3	46,4	67,4	125,3	195,8	282,0	
	UHS-H, -H R, -B R	N _{Rk,s,C1}	[kN]	29,3	46,4	67,4	125,3	3)	
Characteristic	UHS-SK			29,3	46,4	67,4		3)		
resistance of tension load	Partial factor	γMs,C1 ¹⁾	[-]			1,	5			
C1	UHS-S R	N _{Rk,s,C1}	[kN]	29,3	46,4	67,4	125,3	3)	
	UHS-SK R			29,3	46,4	67,4		3)		
	Partial factor	γMs,C1 ¹⁾	[-]			1,	6			
Pullout failure										
Characteristic resistance of		$\frac{N_{\text{Rk,p,C1}}}{\gamma_{\text{Mp,C1}}^{1)}}$		12,0	16,0	25,0	36,0	50,3	66,1	
tension load in cr	[-]			1,	5					
Steel failure witl										
	esistance of shear load	C1		-	ı	Г	Г			
UHS-S		_		25,0	41,0	60,0	123,0	141,0	200,0	
UHS-B		$V_{Rk,s,C1}$	[kN]	17,0	30,0	46,0	103,0	117,0	169,0	
UHS-H				17,0	30,0	46,0	103,0			
		t _{fix} 2)	[mm]	≥ 10	≥	15				
UHS-SK		$V_{Rk,s,C}$	[kN]	25,0	41,0	60,0		3)		
0110 010		t _{fix} ²⁾	[mm]	< 10		15				
		$V_{Rk,s,C}$	[kN]	11,0	16,0	27,0				
Partial factor		γMs,C1 ¹⁾	[-]		ı	1,	25			
UHS-S R		V _{Rk,s,C1}	[kN]	25,0	41,0	60,0	123,0	-	-	
Partial factor		γMs,C1 ¹⁾	[-]			1,				
UHS-BR, -HR		V _{Rk,s,C1}	[kN]	17,0	30,0	46,0	103,0	-	-	
Partial factor		γMs,C1 ¹⁾	[-]			1,2	25			
		t _{fix} 2)	[mm]	≥ 10	≥					
UHS-SK R		V _{Rk,s,C1}		25,0	41,0	60,0		3)		
		t _{fix} ²⁾	[mm]	< 10	<					
		V _{Rk,s,C1}	[kN]	11,0	16,0	27,0				
Partial factor		γMs,C1 ¹⁾	- [-]				33			
Factor for annular gap $\alpha_{\rm gap}$ $\alpha_{\rm gap}$				0,50						

Upat Sleeve Anchor UHS, UHS-I	
Performances Performance characteristics of tension and shear resistance for seismic performance category C1	Annex C 8

¹⁾ In absence of other national regulations 2) The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm

³⁾ No performance assessed

Table C9.1: Performance characteristics of **tension and shear resistance** for **seismic performance category C2** for UHS-S. -SK. -B. -H and UHS-S. R. -SK. R. -B. R. -H. R.

(category C2 for UHS	5-S, -SK, -E	s, -H and	UHS-S	H, -SK H	, -B H, -F	IK			
Anchor type UH UHS-S R, -SK I	IS-S, -SK, -B, -H and R, -B R, -H R			UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32	
Steel failure										
	UHS-S, -B			29,3	46,4	67,4	125,3	125,3 195,8		
	UHS-H, -H R, -B R	N _{Rk,s,C2}	[kN]	29,3	46,4	67,4	125,3	3	3)	
Characteristic	UHS-SK			29,3	46,4	67,4		3)		
resistance of tension load	Partial factor	γ Ms,C2 $^{1)}$	[-]			1	,5			
C2	UHS-S R	— Np00	[kN]	29,3	46,4	67,4	125,3	3	3)	
	UHS-SK R	─ N _{Rk,s,C2}	[KIN]	29,3	46,4	67,4		3)		
	Partial factor	γMs,C2 ¹⁾	[-]			1	,6			
Pullout failure										
Characteristic re		$N_{Rk,p,C2}$	[kN]	6,2	11,3	21,8	43,0	65	5,9	
tension load in	cracked concrete C2	$\gamma_{\text{Mp,C2}}^{1)}$	[-]	1,5						
Steel failure w	ithout lever arm									
Characteristic	resistance of shear lo	ad C2								
UHS-S	UHS-S UHS-B			14,7	28,9	41,0		100,7		
UHS-B			[kN]	9,8	20,9	34,1	61,9	67	',2	
UHS-H				9,8	20,9	34,1	61,9	3	3)	
		t _{fix} 2)	[mm]	≥ 10	≥	15				
UHS-SK		$V_{Rk,s,C2}$	[kN]	14,8	23,3	33,8		3)		
UH3-3K		t _{fix} 2)	[mm]	< 10	<	15		,		
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1				
Partial factor		γ Ms,C2 $^{1)}$	[-]			1,	25			
UHS-S R		$V_{Rk,s,C2}$	[kN]	14,7	28,9	41,0	100,7	3	3)	
Partial factor		γMs,C2 ¹⁾	[-]			1,	33			
UHS-BR, -HR		$V_{Rk,s,C2}$	[kN]	9,8	20,9	34,1	61,9	3	3)	
Partial factor		γMs,C2 ¹⁾	[-]			1,	25			
		t _{fix} 2)	[mm]	≥ 10	≥	15				
UHS-SK R		$V_{Rk,s,C2}$	[kN]	14,8	23,3	23,3 33,8				
0110-01(11		t _{fix} 2)	[mm]	< 10	<	15		,		
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1				
Partial factor	Partial factor $\gamma_{Ms,C2}^{-1}$			1,33						
Factor for annular gap α_{gap}			— [- <u>]</u>	0,50						

¹⁾ In absence of other national regulations

Upat Sleeve Anchor UHS, UHS-I	
Performances Performance characteristics of tension and shear resistance for seismic performance category C2	Annex C 9

²⁾ The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm

³⁾ No performance assessed

Table C10.1: Displacements under static and quasi static tension loads for UHS and UHS R										
Anchor type UHS-S, -SK, -B, -H and UHS-S R, -SK R, -B R, -H R			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32	
Tension load cracked concrete	N	[kN]	3,6	5,7	7,6	11,9	17,1	24,0	31,5	
Corresponding displacements	δ_{N0}	- [mm]	1,0	1,0	1,0	1,0	1,0	0,7	0,7	
Corresponding displacements	$\delta_{N\infty}$	– [mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1	
Tension load uncracked concrete	N	[kN]	6,0	11,2	14,1	17,2	24,0	33,6	44,2	
Corresponding displacements	δηο	_ [mm]	0,6	1,0	1,0	1,0	1,0	0,3	0,3	
Corresponding displacements	$\delta_{N\infty}$	- [mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1	

Table C10.2: Displacements under static and quasi static tension loads for UHS-I and UHS-I R

Anchor type UHS-I and UHS-I R			UHS 12/M6 I UHS 12/M8 I	UHS 15/M10 I UHS 15/M12 I
Tension load cracked concrete	NI	FL/NIT	4,3	5,7
Tension load uncracked concrete	N	[kN]	9,5	14,1
Carragnanding displacements	δ_{N0}	[mm]	1,7	1,9
Corresponding displacements		—— [mm]	2,2	2,9

Table C10.3: Displacements under static and quasi static shear loads for UHS-S and UHS-SK

Anchor type UHS-S and UHS-SK			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Shear load in cracked and uncracked concrete V [kN]			10,3	18,9	33,7	43,4	83,4	99,4	124,0
Corresponding	δνο	[mm]	2,4	2,7	4,4	5,0	7,0	6,0	8,0
displacements	δν∞	- [mm]	3,6	4,1	6,6	7,5	10,5	9,0	12,0

Table C10.4: Displacements under static and quasi static shear loads for UHS-B and UHS-H

Anchor type UHS-B and UHS-H			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Shear load in cracked and uncracked concrete	٧	[kN]	8,9	15,4	23,4	35,4	68,0	83,4	96,6
Corresponding	δνο	– [mm]	2,2	2,3	3,0	5,0	7,0	5,0	5,0
displacements	δν∞	_ []	3,3	3,5	4,5	7,5	10,5	7,5	7,5

Upat Sleeve Anchor UHS, UHS-I	
Performances Displacements under tension and shear loads	Annex C 10

Table C11.1:	Displacements under static and quasi static shear loads
	for UHS-S R, UHS-SK R, UHS-B R and UHS-H R

Anchor type UHS-S R, -SK R, -B R, -H R			UHS 10	UHS 12	UHS 15	UHS 18	UHS 24	
Shear load in cracked and uncracked concrete	٧	[kN]	10,3	16,0	24,6	37,7	68,0	
Corresponding	δνο	[mm]	3,5	3,5	3,7	5,7	9,0	
displacements	δ _{V∞}	— [mm]	5,3	5,3	5,6	8,6	13,5	

Table C11.2: Displacements under static and quasi static shear loads for UHS-I and UHS-I R

Anchor type: UHS-I and UHS-I R			UHS 12/M6 I	UHS 12/M8 I	UHS 15/M10 I	UHS 15/M12 I
Shear load in cracked and uncracked concrete	V	[kN]	4,6	8,3	13,3	13,7
Corresponding	δνο	_ [mm]	2,6	2,6	2,2	2,2
displacements	δv∞	_ [!!!!!]	3,9	3,9	3,3	3,3

Table C11.3: Displacements under tension loads for seismic performance category C2 for UHS and UHS R

Anchor type UHS-S, -SK, -B, -H and UHS-S R, -SK R, -B R, -H R			UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Displacement DLS	$\delta_{\text{N,C2 (DLS)}}$	[]	1,55	2,63	2,04	4,26	3,	06
Displacement ULS	δ N,C2 (ULS)	– [mm]	8,71	11,07	7,30	11,70	11	,44

Table C11.4: Displacements under shear loads for seismic performance category C2 for UHS and UHS R

Anchor type UHS-S, -Sk UHS-S R, -SK R	(and		UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Displacement DLS	$\delta_{\text{V,C2 (DLS)}}$	_ [mm]	3,53	4,18	4,67	5,59	4,	79
Displacement ULS	$\delta_{\text{V,C2 (ULS)}}$	- [mm]	6,62	7,38	9,03	14,09	9,9	95
Anchor type UHS-B, -H a	and		UHS 12	UHS 15	UHS 18	UHS 24	UHS 28	UHS 32
Disable server DLO			0.40	4.00	4.00		4.70	
Displacement DLS	δ v,c2 (DLS)	- [mm]	3,42	4,26	4,29		4,79	

Upat Sleeve Anchor UHS, UHS-I	
Performances Displacements under tension and shear loads	Annex C 11