

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0570 of 25 February 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

VJ Technology Injection system V420+ for concrete

Bonded anchor for use in concrete

VJ Technology Ltd.
Brunswick Road; Cobbs Wood Ind. Estate
ASHFORD KENT TN23 1EN .
GROSSBRITANNIEN

VJ Technology Plant 1

32 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-17/0570 issued on 7 September 2017

European Technical Assessment ETA-17/0570

Page 2 of 32 | 25 February 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0570

Page 3 of 32 | 25 February 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "VJ Technology Injection system V420+ for concrete" is a bonded anchor consisting of a cartridge with injection mortar V420+ and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod IT-M6 to IT-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	B2, C 1, C 2, C 3, C 5, C 7
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 4, C 6, C 8
Displacements	See Annex
(static and quasi-static loading)	C 9 to C 11
Characteristic resistance and displacements for seismic	See Annex
performance category C1 and C2	C 12 to C 17
Durability	See Annex
	B 1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0570

Page 4 of 32 | 25 February 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

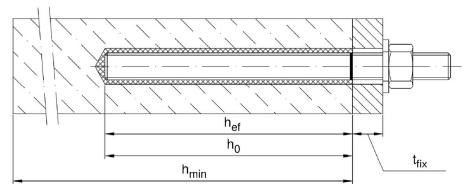
The system to be applied is: 1

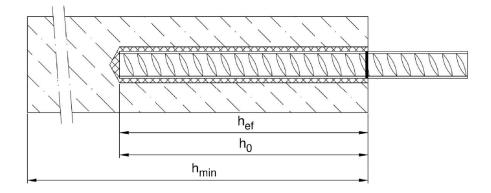
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

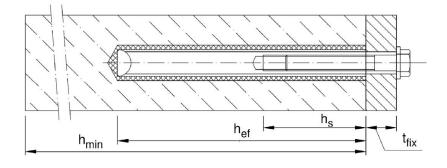
Issued in Berlin on 25 February 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

prepositioned installation or

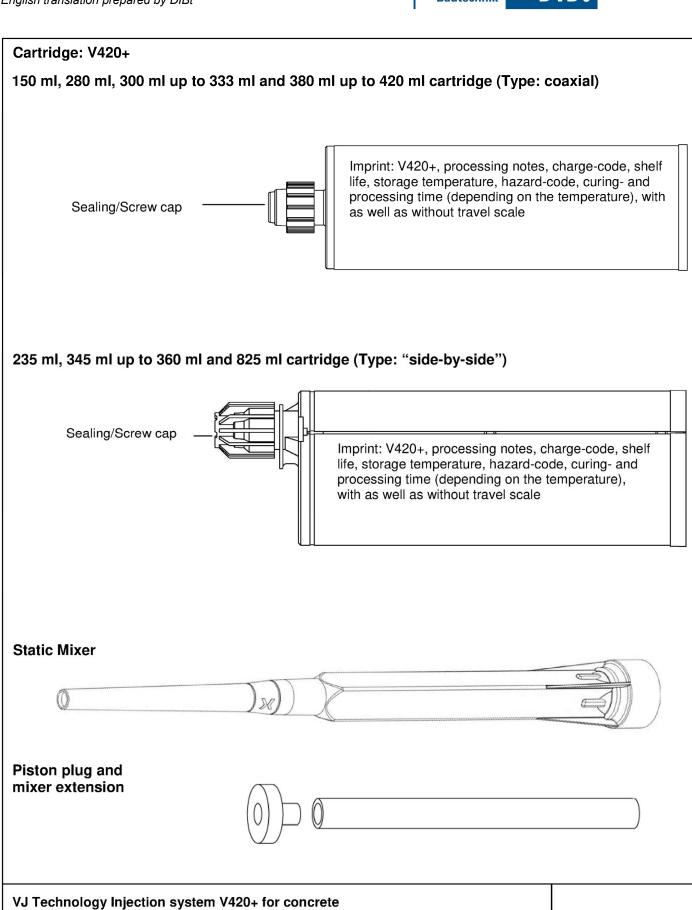

push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IT-M6 up to IT-M20

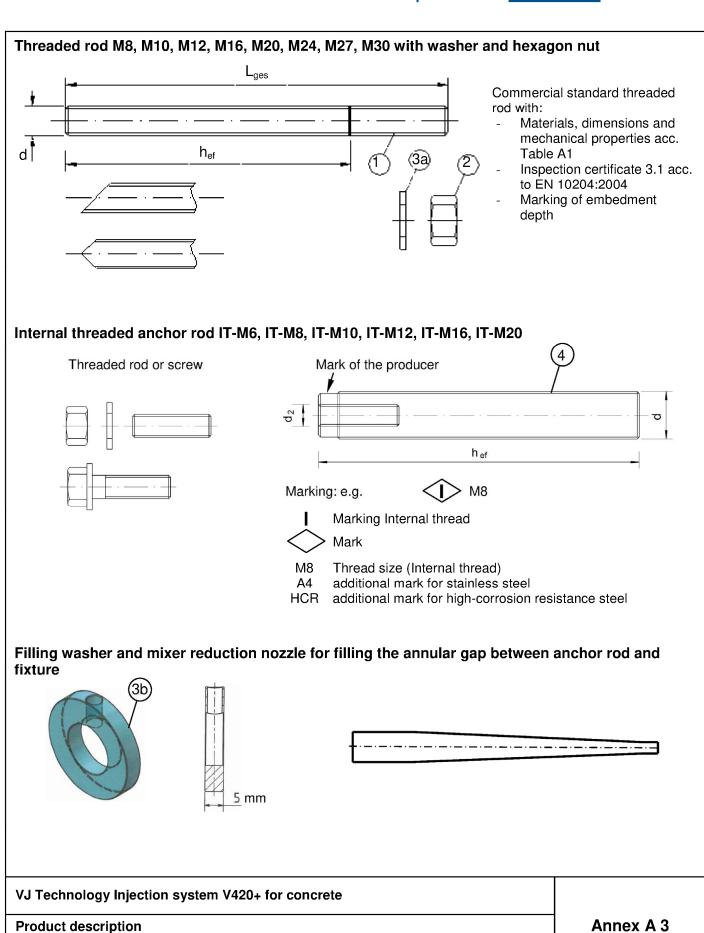
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth


 h_0 = depth of drill hole

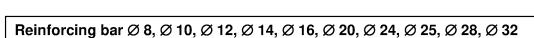
 h_{min} = minimum thickness of member

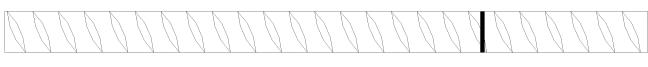
VJ Technology Injection system V420+ for concrete	
Product description Installed condition	Annex A 1

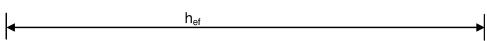

Product description Injection system

Annex A 2

Threaded rod, internal threaded rod and filling washer


	ble A1: Mate	rials				
Part	Designation	Material				
zi h	nc plated ≥ ot-dip galvanised ≥	acc. to EN 10087:1998 5 μm acc. to EN ISO 4 40 μm acc. to EN ISO 3 45 μm acc. to EN ISO 3	4042: 1461:	1999 or 2009 and EN ISO 10684:2	004+AC:2009 or	
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
1			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%
	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
	Timedada rea	acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%
		EN 130 696-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 12% ³⁾
			4	for threaded rod class 4.6	or 4.8	1
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod class 5.6	or 5.8	
			8	for threaded rod class 8.8		
3a	Washer	(e.g.: EN ISO 887:2006	3, EN	alvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 70	094:2000)
3b	Filling washer	Steel, zinc plated, hot-	dip ga	alvanised or sherardized	T	T = -
4	Internal threaded anchor rod	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
4	anchor rod	acc. to		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
4	anchor rod	acc. to EN ISO 898-1:2013		$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8% A ₅ > 8%
Stai Stai	nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.erial 1.4401 / 1.4404 / 1.4	8.8 4311 4571	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014)	
itai Stai	nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.erial 1.4401 / 1.4404 / 1.4	8.8 4311 4571	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014)	
Stai Stai	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.erial 1.4401 / 1.4404 / 1.erial 1.452 Property class	8.8 4311 4571 29 or	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel	$A_5 > 8\%$
itai itai ligl	nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.4 erial 1.4401 / 1.4404 / 1.4 nce steel (Material 1.452 Property class acc. to	8.8 4311 4571 29 or	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength	A ₅ > 8% Elongation at fracture
itai itai ligl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.erial 1.4401 / 1.4404 / 1.erial 1.452 Property class	8.8 4311 4571 29 or -	$f_{uk} = 800 \text{ N/mm}^2 \\ \text{/ } 1.4567 \text{ or } 1.4541, \text{ acc. to} \\ \text{/ } 1.4362 \text{ or } 1.4578, \text{ acc. to} \\ \text{1.4565, acc. to EN } 10088-1 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} = 500 \text{ N/mm}^2 \\ f_{uk} = 700 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
itai itai ligl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.erial 1.4401 / 1.4404 / 1.erial 1.4452 Property class acc. to EN ISO 3506-1:2009	8.8 4311 4571 29 or -	$f_{uk} = 800 \text{ N/mm}^2$ $/ 1.4567 \text{ or } 1.4541, \text{ acc. to}$ $/ 1.4362 \text{ or } 1.4578, \text{ acc. to}$ $1.4565, \text{ acc. to EN } 10088-1$ $Characteristic steel$ $ultimate tensile strength$ $f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$
itai itai ligl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.4 erial 1.4401 / 1.4404 / 1.4 nce steel (Material 1.452) Property class acc. to EN ISO 3506-1:2009 acc. to	8.8 4311 4571 29 or -	$f_{uk} = 800 \text{ N/mm}^2$ $/ 1.4567 \text{ or } 1.4541, \text{ acc. to}$ $/ 1.4362 \text{ or } 1.4578, \text{ acc. to}$ $1.4565, \text{ acc. to EN } 10088-1$ $Characteristic steel$ $ultimate tensile strength$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$
Stai Stai High	nless steel A2 (Materials of the corrosion resistary Threaded rod 1)4)	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.erial 1.4401 / 1.4404 / 1.ere steel (Material 1.452 Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009	8.8 4311 4571 29 or - 50 70 80 50 70 80	f_{uk} = 800 N/mm² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² f_{uk} = 800 N/mm² for threaded rod class 50 for threaded rod class 80	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	A ₅ > 8% Elongation at fracture A ₅ ≥ 8% A ₅ ≥ 12% ³⁾ A ₅ ≥ 12% ³⁾
Stai Stai ligl	nless steel A2 (Materials of the corrosion resistary Threaded rod 1)4)	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.4 erial 1.4401 / 1.4404 / 1.4 nce steel (Material 1.452) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (8.8 4311 4571 29 or - 50 70 80 50 70 80 .4307 .4404 or 1.4	$f_{uk} = 800 \text{ N/mm}^2$ $/ 1.4567 \text{ or } 1.4541, \text{ acc. to}$ $/ 1.4362 \text{ or } 1.4578, \text{ acc. to}$ $1.4565, \text{ acc. to EN } 10088-1$ $Characteristic steel$ $ultimate tensile strength$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 1, acc. to EN 10088-1:2014	A ₅ > 8% Elongation at fracture A ₅ ≥ 8% A ₅ ≥ 12% ³⁾ A ₅ ≥ 12% ³⁾ 2014 2014
Stai Stai High	Threaded rod 1)4) Hexagon nut 1)4)	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.4 erial 1.4401 / 1.4404 / 1.4 nce steel (Material 1.452) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (8.8 4311 4571 29 or - 50 70 80 -4307 .4404 or 1.4 6, EN	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 / / 1.4311 / 1.4567 or 1.454 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 70 rosion resistance steel	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 1, acc. to EN 10088-1:8, acc. to EN 10088-1:014	A ₅ > 8% Elongation at fracture A ₅ ≥ 8% A ₅ ≥ 12% ³⁾ A ₅ ≥ 12% ³⁾ 2014 2014
Stai Stai High	Threaded rod 1)4) Hexagon nut 1)4) Washer	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.4 erial 1.4401 / 1.4404 / 1.4 nce steel (Material 1.452) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:2006)	8.8 4311 4571 29 or - 50 70 80 -4307 .4404 or 1.4 6, EN	f_{uk} = 800 N/mm² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² f_{uk} = 800 N/mm² for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 / / 1.4311 / 1.4567 or 1.454 / / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 70 rosion resistance steel Characteristic steel ultimate tensile strength	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 1, acc. to EN 10088-1:8, acc. to EN 10088-1:014 093:2000 or EN ISO 70 Characteristic steel yield strength	A ₅ > 8% Elongation at fracture A ₅ ≥ 8% A ₅ ≥ 12% ³⁾ A ₅ ≥ 12% ³⁾ 2014 2014
Stai Stai Higl	Threaded rod 1)4) Hexagon nut 1)4) Washer	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1.erial 1.4401 / 1.4404 / 1.erial 1.4401 / 1.4404 / 1.ere steel (Material 1.452) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:2006) Stainless steel A4, Hig	8.8 4311 4571 29 or - 50 70 80 -4307 .4404 or 1.4 6, EN	$f_{uk} = 800 \text{ N/mm}^2$ $/ 1.4567 \text{ or } 1.4541, \text{ acc. to}$ $/ 1.4362 \text{ or } 1.4578, \text{ acc. to}$ $1.4565, \text{ acc. to EN } 10088-1$ $Characteristic steel$ $ultimate tensile strength$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $f_{or threaded rod class } 50$ $for threaded rod class } 50$ $for threaded rod class } 80$ $/ / 1.4311 / 1.4567 \text{ or } 1.454$ $/ / 1.4571 / 1.4362 \text{ or } 1.454$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / / 1.4571 / 1.4362 \text{ or } 1.457$ $/ / / / / / / / / / / / / / / / / / / $	f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) : 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 1, acc. to EN 10088-1:8, acc. to EN 10088-1:2014 093:2000 or EN ISO 70	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$ 2014 2014 204:2000) Elongation at


¹⁾ Property class 70 or 80 for threaded rods up to M24 and Internal threaded anchor rods up to IT-M16,


 $^{^{3)}}$ A₅ > 8% fracture elongation if <u>no</u> requirement for performance category C2 exists $^{4)}$ Property class 80 only for stainless steel A4 and high corrosion resistance steel HCR

VJ Technology Injection system V420+ for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IT-M20 only property class 50

- Minimum value of related rip area f_{R.min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Reinf	orcing bars	
1	EN 1992-1-1-2007-AC: 2010 Annov (:	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

VJ Technology Injection system V420+ for concrete	
Product description Materials reinforcing bar	Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IT-M6 to IT-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IT-M6 to IT-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IT-M6 to IT-M20.

Temperature Range:

- I: -40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

VJ Technology Injection system V420+ for concrete	
Intended Use Specifications	Annex B 1

Page 11 of European Technical Assessment ETA-17/0570 of 25 February 2020

English translation prepared by DIBt

Table B1: In	stallation par	ameters fo	or threa	ded r	od						
Anchor size			М8	M10	M12	M16	M20	M24	M27	M30	
Diameter of element		$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmer	at donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	п аерті	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned i	nstallation d _f	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ¹⁾	Push through installation d _f		[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	ment	T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness	of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀			
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	nce	c _{min}	[mm]	35	40	45	50	60	65	75	80

For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.
 Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for rebar Table B2:

Rebar size				Ø 10 ¹⁾	Ø 12 ¹	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effective content of the content	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]		30 mm 00 mm	≥	h _{ef} + 2d ₀						
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded rod

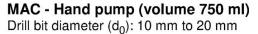
Anchor size	IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20		
Internal diameter of sleeve	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of sleeve1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}		200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f	[mm]	7	9	12	14	18	22
Maximum torque moment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

VJ Technology Injection system V420+ for concrete

Intended Use

Electronic copy of the ETA by DIBt: ETA-17/0570


Installation parameters

Annex B 2

Table B4	Table B4: Parameter cleaning and setting tools												
THE REAL PROPERTY.	anna ann an a		8	- mmmi									
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CD		l _b h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installation direction and us of piston plug					
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1			
M8	8		10	PP10	11,5	10,5							
M10	8 / 10	IT-M6	12	PP12	13,5	12,5		No plua	roquirod				
M12	10 / 12	IT-M8	14	PP14	15,5	14,5		No plug required					
	12		16	PP16	17,5	16,5							
M16	14	IT-M10	18	PP18	20,0	18,5	BR18						
	16		20	PP20	22,0	20,5	BR20						
M20		IT-M12	22	PP22	24,0	22,5	BR22						
	20		25	PP25	27,0	25,5	BR25	h _{ef} >	h _{ef} >				
M24		IT-M16	28	PP28	30,0	28,5	BR28	250 mm	250 mm	all			
M27			30	PP30	31,8	30,5	BR30	230 111111	230 111111				
	24 / 25		32	PP32	34,0	32,5	BR32						
M30	28	IT-M20	35	PP35	37,0	35,5	BR35						
	32		40	PP40	43,5	40,5	BR40						

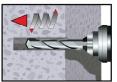
Drill hole depth (h₀): < 10 d_s Only in non-cracked concrete

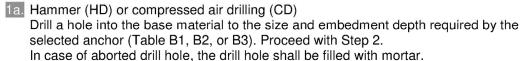
CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

HDB - Hollow drill bit system

Drill bit diameter (d₀): all diameters


The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa <u>and</u> flow rate of minimum 150 m 3 /h (42 l/s).

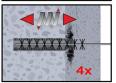

VJ Technology Injection system V420+ for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

Drilling of the bore hole

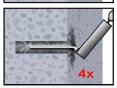
1b. Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

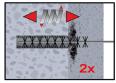
MAC: Cleaning for dry and wet bore holes with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

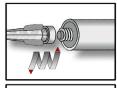
CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete

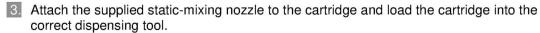
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion.
 If the bore hole ground is not reached with the brush, a brush extension must be used.

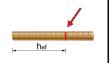
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

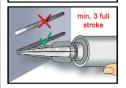

VJ Technology Injection system V420+ for concrete

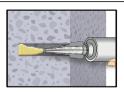

Intended Use
Installation instructions

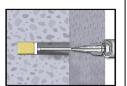
Annex B 4

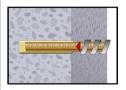


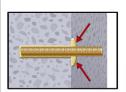
Installation instructions (continuation)

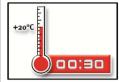


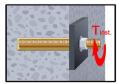

For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.


4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.


- Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm


8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

9. After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

VJ Technology Injection system V420+ for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Ma	aximum w	orking time and minin	num curing time			
Concrete	Concrete temperature		Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete		
- 5 °C	to	- 1 °C	50 min	5 h	10 h		
0 °C	to	+ 4 °C	25 min	3,5 h	7 h		
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h		
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h		
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min		
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min		
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min		
Cartridge	temp	erature	+5°C to +40°C				

VJ Technology Injection system V420+ for concrete	
Intended Use	Annex B 6
Curing time	

Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cı	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
CI	haracteristic tension resistance, Steel failu	re 1)	•								
Steel, Property class 4.6 and 4.8			[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
CI	haracteristic tension resistance, Partial fac	tor 2)									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5			
	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]	2,86							
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	7			
St	ainless steel A4 and HCR, class 80	γMs,N	[-]				1,6	3			
CI	haracteristic shear resistance, Steel failure				1						
F	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
r arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
ith lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
₹M	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
CI	haracteristic shear resistance, Partial facto	or ²⁾		•	'						
	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]	1,33							

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
²⁾ in absence of national regulation

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: Characteristic values for Concrete cone failure and Splitting with all kind of action

Anchor size		All Anchor types and sizes		
Concrete cone fa	ailure			
Non-cracked concrete		k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	<u> </u>	s _{cr,sp}	[mm]	2 c _{cr,sp}

Electronic copy of the ETA by DIBt: ETA-17/0570

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Page 18 of European Technical Assessment ETA-17/0570 of 25 February 2020

English translation prepared by DIBt

ristic tension resistant pristic bond resistant services and contract pristic bond resistant services are services a	oncrete failure ance in non-crack Dry, wet concrete and flooded bore hole	^τ Rk,ucr ^τ Rk,ucr ^τ Rk,ucr	[N/mm²] [N/mm²]	17 15 12	17 14 11		see Ta	ee Tab able C1 14 12 9,5	13 12 9,0	13 11 9,0	13 11 9,0	
ctor d pull-out and cristic bond resistate 80°C/50°C II: 120°C/72°C III: 160°C/100°C II: 120°C/72°C III: 160°C/100°C	Dry, wet concrete in cracked of concrete and flooded bore hole ance in cracked of concrete and flooded bore doncrete and flooded bore	γMs,N red concrete τRk,ucr τRk,ucr τRk,ucr τRk,ucr τRk,ucr	[-] C20/25 [N/mm²] [N/mm²] [N/mm²]	15 12	14	16 14	15 13	14 12	13	11	11	
ristic bond resistant to the control of the control	Dry, wet concrete and flooded bore hole Dry, wet concrete and flooded bore ance in cracked concrete and flooded bore	τ _{Rk,ucr}	C20/25 [N/mm²] [N/mm²] [N/mm²]	15 12	14	16 14	15	14	12	11	11	
ristic bond resista : 80°C/50°C I: 120°C/72°C II: 160°C/100°C ristic bond resista : 80°C/50°C II: 120°C/72°C	Dry, wet concrete and flooded bore hole Dry, wet concrete and flooded bore ance in cracked concrete and flooded bore	^τ Rk,ucr ^τ Rk,ucr ^τ Rk,ucr concrete C20 ^τ Rk,cr	[N/mm²] [N/mm²] [N/mm²]	15 12	14	14	13	12	12	11	11	
: 80°C/50°C I: 120°C/72°C II: 160°C/100°C ristic bond resista : 80°C/50°C I: 120°C/72°C	Dry, wet concrete and flooded bore hole Dry, wet concrete and flooded bore	^τ Rk,ucr ^τ Rk,ucr ^τ Rk,ucr concrete C20 ^τ Rk,cr	[N/mm²] [N/mm²] [N/mm²]	15 12	14	14	13	12	12	11	11	
I: 120°C/72°C II: 160°C/100°C ristic bond resistate : 80°C/50°C I: 120°C/72°C II: 160°C/100°C	concrete and flooded bore hole ance in cracked concrete and flooded bore	τ _{Rk,ucr} τ _{Rk,ucr} concrete C20 τ _{Rk,cr}	[N/mm²] [N/mm²]	15 12	14	14	13	12	12	11	11	
II: 160°C/100°C ristic bond resista : 80°C/50°C II: 120°C/72°C II: 160°C/100°C	flooded bore hole ance in cracked company, wet concrete and flooded bore	τ _{Rk,ucr} concrete C20 τ _{Rk,cr}	[N/mm²]	12	11							
ristic bond resista : 80°C/50°C I: 120°C/72°C II: 160°C/100°C	Dry, wet concrete and flooded bore	τ _{Rk,cr})/25			11	10	9,5	۵n	lanl	an	
: 80°C/50°C I: 120°C/72°C II: 160°C/100°C	Dry, wet concrete and flooded bore	τ _{Rk,cr}		7,0					9,0	0,0	3,0	
I: 120°C/72°C	concrete and flooded bore		[N/mm²]	7,0								
II: 160°C/100°C	flooded bore	τ _{Rk,cr}			7,5	8,0	9,0	8,5	7,0	7,0	7,0	
	hole		[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
n factor ψ ⁰ sus in	hole	τ _{Rk,cr}	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
	cracked and nor	n-cracked co	ncrete C20/25									
: 80°C/50°C	Dry, wet			0,79								
l: 120°C/72°C	concrete and flooded bore	concrete and	ψ^0_{sus}	[-]				0,	75			
II: 160°C/100°C	hole			0,66								
	1	C25/30	1,02									
		C30/37		1,04								
g factors for conc	rete			1,07								
				1,08								
				1,09								
6-11		C50/60		1,10								
	alayant naramat	or.					000 To	bla C2				
n	elevani parameti	3 1					see ra	ible C2				
R	elevant paramete	<u></u>					see Ta	ble C2				
	ciovani paramet	J1					500 10	1010 02				
	MAC					1.2				NPA		
d wet concrete							1.	.0				
		γinst	[-]									
d bore hole	CAC											
g :	cone failure R n factor R wet concrete	flooded bore hole 1: 160°C/100°C flooded bore hole flooded bore hole flooded bore hole Relevant parameters Relevant parameters MAC CAC HDB	120°C/72°C	120°C/72°C flooded bore hole	120°C/72°C	Time	Find the control of	120°C/72°C	120°C/72°C flooded bore hole	120°C/72°C	Figure F	

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 3

Anchor size threaded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm								•	•	
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γMs,V	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	'									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} • f _{uk}	(or see	Table C) (1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]	1,0							
Concrete edge failure										
Effective length of fastener	l _f	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	_n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Anchor s	size internal thre	eaded anchor rods			IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20	
Steel fail	ure ¹⁾						1				
Character	ristic tension resi	stance, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength class 5.8 and 8.8			γ _{Ms,N}	[-]		•	1	,5	•	•	
	ristic tension resi and HCR, Streng	stance, Stainless	N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial fac			γ _{Ms,N}	[-]		•	1,87			2,86	
Combine	ed pull-out and o	concrete cone failu	ire							•	
Character	ristic bond resista	ance in non-cracked	concrete	C20/25							
ture e	: 80°C/50°C	Dry, wet concrete	^τ Rk,ucr	[N/mm²]	17	16	15	14	13	13	
Temperature range = = ::	I: 120°C/72°C	and flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	14	14	13	12	12	11	
	II: 160°C/100°C		^τ Rk,ucr	[N/mm ²]	11	11	10	9,5	9,0	9,0	
	ristic bond resista	ance in cracked cor	crete C20)/25		T	T	Г	T	1	
ture e	: 80°C/50°C	Dry, wet concrete	τ _{Rk,cr}	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0	
Temperature range = = ∷	I: 120°C/72°C	and flooded bore hole	τ _{Rk,cr}	[N/mm ²]	6,5	7,0	7,5	7,0	6,0	6,0	
Ten =	II: 160°C/100°C	nooded bore noie	τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5	
Reduktion	n factor ψ ⁰ sus in	cracked and non-c	racked co	ncrete C20)/25						
ture	: 80°C/50°C	Dwy wat concrete			0,79						
Temperature range = = :::	I: 120°C/72°C		Ψ^0_{sus}	[-]	0,75						
Tem r =	II: 160°C/100°C	flooded bore hole			0,66						
			C2	25/30	1,02						
				30/37	1,04						
	g factors for cond	crete		35/45	1,07						
Ψ_{C}				10/50	1,08						
				15/55 50/60	1,09 1,10						
Concrete	cone failure			JU/UU			1,	10			
	parameter						see Ta	able C2			
Splitting	failure										
	parameter						see Ta	able C2			
Installation	on factor										
		MAC				1,2			NPA		
for dry an	d wet concrete	CAC	γ _{inst}	[-]				,0			
		HDB	_ 'IIISI	[]				,2			
for floode	d bore hole	CAC					1	,4			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IT-M20 strength class 50 is valid

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Deutsches Institut für **Bautechnik**

1,0

Anchor size for internal threade	ed anch	or rods		IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20		
Steel failure without lever arm ¹⁾					•	'	•				
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61		
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98		
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25				
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40		
Partial factor		γ _{Ms,V}	[-]	1,56 2,38							
Ductility factor k ₇			[-]	1,0							
Steel failure with lever arm ¹⁾											
Characteristic bending moment, Steel, strength class	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325		
	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519		
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25				
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		М ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456		
Partial factor		γ _{Ms,V}	[-]			1,56			2,38		
Concrete pry-out failure											
Factor		k ₈	[-]				2,0				
Installation factor		γ _{inst}	[-]	[-] 1,0							
Concrete edge failure											
Effective length of fastener		I _f	[mm]		min	(h _{ef} ; 12 • c	I _{nom})		min(h _{ef} ; 300r		
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30		
			1		1	1	·		1		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IT-M20 strength class 50 is valid

[-]

 γ_{inst}

Installation factor

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Ancho	r size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel f	ailure									•				
Charac	cteristic tension resi	stance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{(1)}$									
Cross	section area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial	factor		γ _{Ms,N}	[-]					1,	4 ²⁾				
	ined pull-out and o													
Charac	cteristic bond resista	ance in non-c	racked cond	crete C20/2	:5									
ature e	I: 80°C/50°C	Dry, wet	^τ Rk,ucr	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
Temperature range	II: 120°C/72°C	and flooded	^τ Rk,ucr	[N/mm ²]	13	12	12	12	12	11	11	11	11	11
	III: 160°C/100°C	bore hole	^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Charac	cteristic bond resista	ance in crack	ed concrete	C20/25						ı		ı		
ature e	I: 80°C/50°C	Dry, wet	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	II: 120°C/72°C	and flooded	^τ Rk,cr	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Ten	III: 160°C/100°C	bore hole	^τ Rk,cr	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Redukt	tion factor ψ ⁰ sus in	cracked and	non-cracke	d concrete	C20/2	5								
ture	I: 80°C/50°C	Dry, wet		0,79										
Temperature range	II: 120°C/72°C	concrete and	Ψ^0_{sus}	[-]	0,75									
Ten	III: 160°C/100°C	flooded bore hole			0,66									
			C25		1,02									
			C30							04				
	sing factors for cond	crete	C35		1,07									
Ψ_{C}			C40		1,08 1,09									
			C50							10				
Concr	ete cone failure		, 500	· · · ·	1				.,					
Releva	ınt parameter							;	see Ta	able C	2			
Splittir														
Releva	ınt parameter								see Ta	able C	2			
Installa	ation factor		_	_										
		MAC					1,2					NPA		
for dry	and wet concrete	CAC HDB	γ_{inst}	[-]						,0 ,2				
for flooded bore hole CAC			┥		1,2									

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

Table C8: Characteristic	values of	shear I	oads	und	er st	atic	and	quas	si-sta	atic ac	tion	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm				'		•					•	
Characteristic shear resistance	V ⁰ Rk,s	[kN]	$0.50 \cdot A_s \cdot f_{uk}^{1)}$									
Cross section area	A _s	[mm²]	50 79 113 154 201 314 452 491 616				804					
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm		•	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾									
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		'		•		1,5 ²⁾			•	
Concrete pry-out failure		•	•									
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure		<u>'</u>										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mm)					mm)				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]		•				1,0			•	•

 $[\]stackrel{1)}{\text{s}}\,\text{f}_{\text{uk}}$ shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded re	od		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete (Non-cracked concrete C20/25 under static and quasi-static action									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20/2	25 under stat	ic and quasi-stat	ic action							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-factor} \ \cdot \ \tau;$

Table C10: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Non-cracked and cracked concrete C20/25 under static and quasi-static action										
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor } \cdot V;$

VJ Technology Injection system V420+ for concrete Annex C 9 **Performances** Displacements under static and quasi-static action (threaded rods)

Table C11: Displacements under tension load ¹⁾ (Internal threaded rod)								
Anchor size Internal thre	eaded rod		IT-M6	ІТ-М8	IT-M10	IT-M12	IT-M16	IT-M20
Non-cracked concrete C20/25 under static and quasi-static action								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete C20/2	5 under static	and quasi-static	action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor τ ; τ: action bond stress for tension

Table C12: Displacements under shear load²⁾ (Internal threaded rod)

Anchor size Inter	IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20			
Non-cracked and cracked concrete C20/25 under static and quasi-static action									
All temperature	δ _{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04	
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06	

²⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$

V: action shear load

VJ Technology Injection system V420+ for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 10

Table C13:	Table C13: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Non-cracked cond	crete C20/25	under static an	d quasi	-static	action								
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048	
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050	
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186	
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192	
Cracked concrete	C20/25 und	er static and qu	asi-stat	ic actic	n								
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108	
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113	
range II: $\delta_{\text{N}_{\infty}}$ -factor [mm/(N/mm²)]		0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148		
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425	
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449	

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} &\cdot \tau; \\ &\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-factor} &\cdot \tau; \end{split}$$
τ: action bond stress for tension

Displacements under shear load²⁾ (rebar) Table C14:

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20	0/25 under st	-static a	action									
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

 $^{^{2)}}$ Calculation of the displacement $\delta_{V0}=\delta_{V0}\text{-factor}\ \cdot \text{V};$ $\delta_{V_{\infty}}=\delta_{V_{\infty}}\text{-factor}\ \cdot \text{V};$

V: action shear load

VJ Technology Injection system V420+ for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 11

	e C15: Charact (perform	nance categ												
Ancho	r size threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel 1														
(Seism	,		N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}					
(Seism Steel, Stainle	cteristic tension resis nic C2) strength class 8.8 ess Steel A4 and HCl th class ≥70	N _{Rk,s,eq,C2}	[kN]	NI	PA		1,0 •	$N_{Rk,s}$		NI	PA			
Partial	factor		γ _{Ms,N}	[-]				see Ta	ıble C1					
Comb	ined pull-out and co	oncrete failure												
Chara	cteristic bond resista	nce in cracked a	nd non-cracke	d concrete (ı								
<u>o</u>	I: 80°C/50°C		^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0		
rang	1: 80°C/50°C	τ _{Rk,eq,C2}	[N/mm²]	NPA		3,6	3,5	3,3	2,3	NI	PA			
ure	But II: 80°C/50°C entry But III: 120°C/72°C III: 160°C/100°C Dry, wet concrete and flooded bore hole		^τ Rk,eq,C1	[N/mm ²]	6,0 6,5		7,0	7,5	7,0	6,0	6,0	6,0		
erati			τ _{Rk,eq,C2}	[N/mm ²]	NPA		3,1	3,0	2,8	2,0	NI	PA		
due	III: 160°C/100°C		^τ Rk,eq,C1	[N/mm ²]	5,5 5,5		6,0	6,5	6,0	5,5	5,5	5,5		
<u> </u>	III. 160°C/100°C		τ _{Rk,eq,C2}	[N/mm ²]	NI	PA	2,5	2,7	2,5	1,8	NI	PA		
Reduk	tion factor ψ ⁰ sus in α	cracked and non	-cracked concr	ete C20/25										
range	I: 80°C/50°C	– Dry, wet			0,79									
Temperature range	II: 120°C/72°C	concrete and flooded bore	ψ^0_{sus}	[-]	0,75									
Temp	III: 160°C/100°C	hole			0,66									
Increa	sing factors for concr	ete ψ _C	C25/30 to	C50/60				1	,0					
Concr	ete cone failure													
	nt parameter							see Ta	ble C2					
Splitti								_						
	ant parameter							see Ta	ıble C2					
	ation factor and wet concrete	CAC			1,0									
		HDB	γ _{inst}	[-]					,2					
tor floc	ded bore hole	CAC			1,4									

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1+C2)	Annex C 12

Table C16: Characteristic (performance			oads	undei	r seisı	mic ac	tion					
Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm		•				•	•	•				
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}									
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	I] NPA 0,70 ⋅ V ⁰ _{Rk,s}							PA		
Partial factor [-] see Table C1												
Ductility factor	k ₇	[-]					1,0					
Steel failure with lever arm												
Ob	M ⁰ Rk,s,eq,C1	[Nm]			No Pe	rforman	ice Asse	essed (N	IPA)			
Characteristic bending moment	M ⁰ _{Rk,s,eq,C2}	[Nm]			No Pe	rforman	ice Asse	essed (N	IPA)			
Concrete pry-out failure	·											
Factor	k ₈	[-]					2,0					
Installation factor	γinst	[-]					1,0					
Concrete edge failure	·											
Effective length of fastener	If	[mm]		n	nin(h _{ef} ;	12 • d _{no}	m)		min(h _{ef} ;	300mm)		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation factor	γinst	[-]					1,0					
Factor for annular gap $\alpha_{\rm gap}$ [-] $0.5 (1.0)^{1)}$												

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1+C2)	Annex C 13

Table	e C17: Charac perforı)	teristic va mance ca			oads	und	er se	ismi	c act	ion					
Ancho	r size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel fa	ailure			,	T (0.0 (1)										
Charac	teristic tension resi	istance	N _{Rk,s,eq}	[kN]	$1.0 \cdot A_s \cdot f_{uk}^{1}$										
Cross s	section area		A _s	[mm²]	50 79 113 154 201 314 452 491 616 804										
Partial ⁻	factor		γ _{Ms,N}	[-]					1,	4 ²⁾					
	ned pull-out and o														
Charac	Characteristic bond resistance in cracked and non-cracked						25			ı	1	ı			
nre	I: 80°C/50°C	Dry, wet	τ _{Rk,eq}	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0	
Temperature range	II: 120°C/72°C	τ _{Rk,eq}	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0		
flooded bore hole T _{Rk,eq} [N/mm					4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0	
Redukt	ion factor ψ ⁰ sus in	cracked and	l non-cracke	d concrete	e C20/25										
nre	I: 80°C/50°C	Dry, wet			0,79										
Temperature range	II: 120°C/72°C	concrete and flooded	Ψ^0_{sus}	[-]	0,75										
Ter	III: 160°C/100°C	bore hole							0,	66					
Increas	sing factors for cond	crete ψ _C	C25/30 to	C50/60					1	,0					
Concre	ete cone failure														
	nt parameter								see Ta	able C	2				
Splittin					1										
	Relevant parameter								see Ta	able C	2				
Installa	ation factor		1												
for dry	and wet concrete	CAC HDB	γ _{inst}	[-]	1,0										
for floo	ded bore hole	CAC							1	,4					

 $[\]stackrel{1)}{\rm f}_{\rm uk}$ shall be taken from the specifications of reinforcing bars in absence of national regulation

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 14

Table C18: Characteristic values of shear loads under seismic action (performance category C1)												
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V _{Rk,s,eq}	[kN]					0,35	·As·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50 79 113 154 201 314 452 491 616 804								804	
Partial factor $\gamma_{Ms,V}$ [-] 1,5 ²⁾												
Ductility factor k ₇ [-] 1,0												
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			No	o Perf	ormar	nce As	sesse	d (NPA)	l	
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure												
Effective length of fastener	I _f	[mm]		ı	min(h _e	_{ef} ; 12 ·	· d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	nstallation factor Yinst [-] 1,0											
Factor for annular gap	$\alpha_{\sf gap}$	[-]					0	,5 (1,0)3)			

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 15

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation 3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Table C19: Displacements under tension load ¹⁾ (threaded rod)												
Anchor size threaded re		M8	M10	M12	M16	M20	M24	M27	M30			
Cracked concrete C20/2	mic C1 action											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110		
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412		
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424		

Table C20: Displacements under tension load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Cracked concrete	C20/25 und	er seismic C1 ad	ction									
l range l· ⊢	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature range II: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature range III: 160°C/100°C	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$; (τ : action bond stress for tension)

Table C21: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30		
Non-cracked and cracked concrete C20/25 under seismic C1 action												
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		

Table C22: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20/25 under seismic C1 action												
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\begin{array}{l} \delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} \ \cdot \ V; \ \ (V: action \ shear \ load) \end{array}$

VJ Technology Injection system V420+ for concrete	
Performances Displacements under seismic C1 action (threaded rods and rebar)	Annex C 16

Table C23: Displacements under tension load ¹⁾ (threaded rod)												
Anchor size thread	М8	M10	M12	M16	M20	M24	M27	M30				
Cracked concrete C20/25 under seismic C2 action												
All temperature	$\delta_{N,eq(DLS)}$	[mm]	N.	PA	0,24	0,27	0,29	0,27	NPA			
ranges	$\delta_{N,eq(ULS)}$	[mm]]	PA	0,55	0,51	0,50	0,58	INF	A		

Table C24: Displacements under shear load (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30	
Cracked concrete C20/25 under seismic C2 action											
All temperature	$\delta_{V,eq(DLS)}$	[mm]	NII	٦,٨	3,6	3,0	3,1	3,5	NDA		
ranges	$\delta_{V,ep(ULS)}$	[mm]	ואו	NPA 7,0 6,6 7,0 9,3			9,3	NPA			

VJ Technology Injection system V420+ for concrete

Performances
Displacements under seismic C2 action (threaded rods)

Annex C 17