

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0979 vom 17. Juni 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS EM PLUS

Verbunddübel zur Verankerung in Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

41 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

ETA-17/0979 vom 22. Juli 2019

Europäische Technische Bewertung ETA-17/0979

Seite 2 von 41 | 17. Juni 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0979

Seite 3 von 41 | 17. Juni 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "fischer Injektionssystem FIS EM Plus" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionssystem fischer FIS EM Plus und einem Stahlteil nach Anhang A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3 bis B 8, C 1 bis C 12
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 13 und C 14
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 15 bis C 18

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-17/0979

Seite 4 von 41 | 17. Juni 2020

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

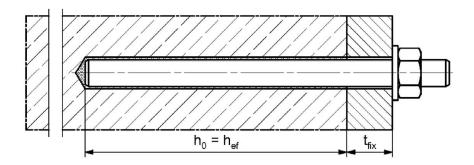
Folgendes System ist anzuwenden: 1

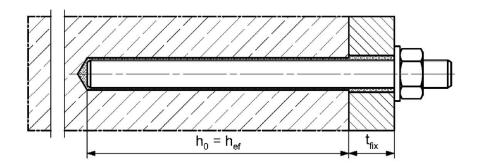
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

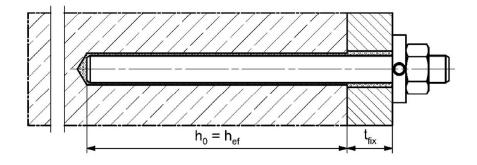
Ausgestellt in Berlin am 17. Juni 2020 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt: Baderschneider


Einbauzustände Teil 1

fischer Ankerstange


Vorsteckmontage

Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

 h_0 = Bohrlochtiefe

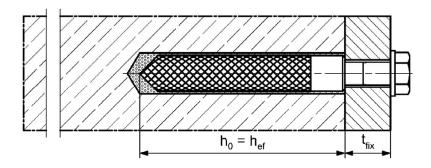
h_{ef} = Effektive Verankerungstiefe

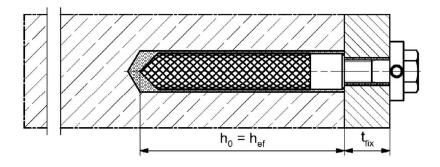
t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS EM Plus

Produktbeschreibung

Einbauzustände Teil 1


Anhang A 1


Einbauzustände Teil 2

fischer Innengewindeanker RG MI

Vorsteckmontage

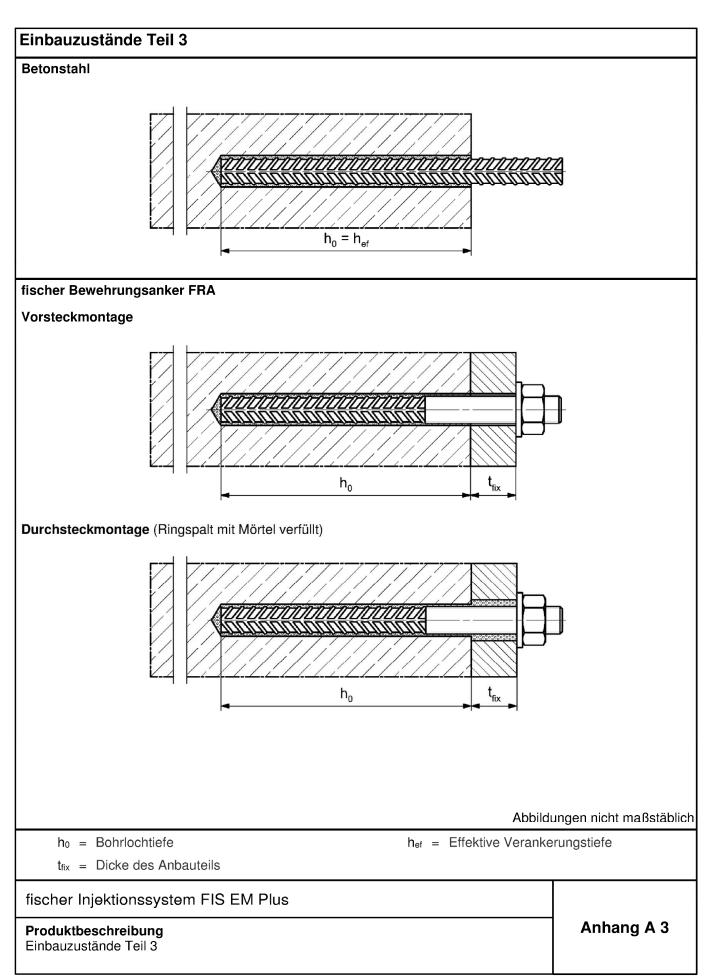
Vorsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

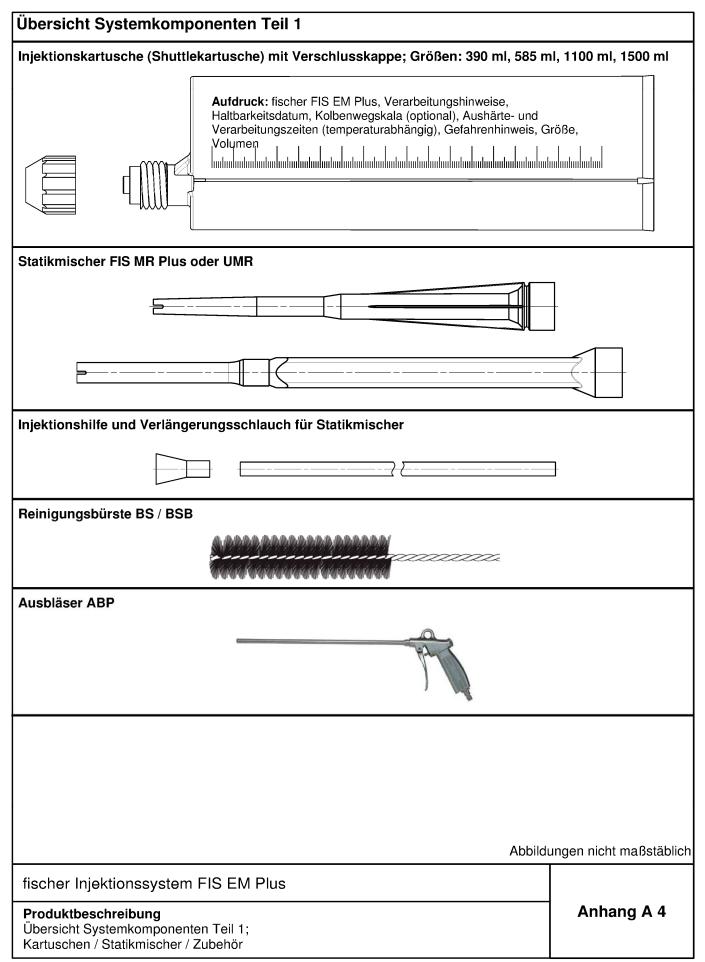
 h_0 = Bohrlochtiefe

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

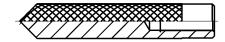

fischer Injektionssystem FIS EM Plus

Produktbeschreibung

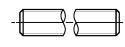

Einbauzustände Teil 2

Anhang A 2

Übersicht Systemkomponenten Teil 2

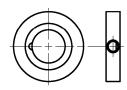

fischer Ankerstange

Größen: M8, M10, M12, M14, M16, M20, M22, M24, M27, M30

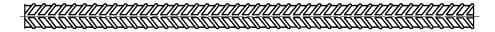

fischer Innengewindeanker RG MI

Größen: M8, M10, M12, M16, M20

Schraube / Gewindestange / Scheibe / Mutter






fischer Verfüllscheibe mit Injektionshilfe

Betonstahl

Nenndurchmesser: \$\phi8\$, \$\phi10\$, \$\phi12\$, \$\phi14\$, \$\phi16\$, \$\phi18\$, \$\phi20\$, \$\phi22\$, \$\phi24\$, \$\phi25\$, \$\phi26\$, \$\phi26\$, \$\phi28\$, \$\phi30\$, \$\phi32\$, \$\phi34\$, \$\phi36\$, \$\phi40\$

fischer Bewehrungsanker FRA

Größen: M12, M16, M20, M24

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Produktbeschreibung

Übersicht Systemkomponenten Teil 2; Stahlteile Anhang A 5

1		Material Mörtel Härter Füllstoffe							
	Injektionskartusche		Mörtel, Härter, Füllstoffe						
		Stahl	Nichtrostender Stahl R	Hochkorrosions- beständiger Stahl HCR					
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionswiderstands- klasse CRC III nach EN 1993-1-4:2015	gemäß EN 10088-1:201 der Korrosionswiderstand klasse CRC V nach EN 1993-1-4:2015					
2	Ankerstange	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm² A ₅ > 12% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\% \text{ Bruchdehnung}$	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm² $A_5 > 12\%$ Bruchdehnung					
			ıng A ₅ > 8%, wenn keine Anford eistungskategorie C2 zu berück						
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014					
4	Sechskantmutter	Festigkeitsklasse 4, 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014					
6	Handelsübliche Schraube oder Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 $A_5 > 8$ % Bruchdehnung					
7	fischer Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014					
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rir gemäß NDP oder NCL gemäß f _{uk} = f _{tk} = k·f _{yk}	ng, Klasse B oder C mit fyk und 3 EN 1992-1-1/NA	k					
9	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom Rir oder C mit fyk und k gemäß NDP oder NCL der EN 1992-1-1:2004 + AC:2010 fuk = ftk = k · fyk	EN ISO 3506-1:20 1.4401, 1.4404, 1. 1.4362, 1.4062 ge Korrosionswiderst EN 1993-1-4:2015 1.4565; 1.4529, ge	4571, 1.4578, 1.4439, mäß EN 10088-1:2014 de andsklasse CRC III nach emäß EN 10088-1:2014 de andsklasse CRC V nach					
fisc	her Injektionssystem	r FIS EM Plus							

Spezifizierung des Verwendungszwecks (Teil 1) Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien Beanspruchung der Verankerung FIS EM Plus mit ... fischer Betonstahl fischer Ankerstange Innengewinde-Bewehrungsanker anker RG MI **FRA** Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (fischer FHD, Heller "Duster Expert"; Bohrernenndurchmesser (d₀) Bosch "Speed 12 mm bis 35 mm Clean"; Hilti "TE-CD, TE-YD" DreBo "D-Plus", DreBo "D-Max") alle Größen Diamantbohren Tabellen: Tabellen: Tabellen: Tabellen: ungerissenen C1.1 C2.1 C3.1 C3.2 Beton Statische und C4.1 C4.1 alle C4.1 alle alle C4.1 alle quasi-statische C7.1 Größen C5.1 Größen Größen C9.1 Größen C11.1 gerissenen Belastung, im C6.1 C8.1 C10.1 C12.1 Beton C13.1 C13.2 C14.1 C14.2 Tabellen: Tabellen: M10 ф10 Seismische C15.1 C16.1 C1 bis bis Leistungs-C16.2 C16.2 M30 ф32 kategorie C17.1 C17.2 _1) _1) (nur Hammer-M12 Tabellen: bohren mit M₁₆ C15.1 _1) Standardbohrer / _1) C2 M20 C16.2 Hohlbohrer) M24 C18.1 Trockener oder nasser alle Größen 11 Beton Nutzungskategorie Wasser-12 aefülltes alle Größen (nicht zulässig für eine Nutzungsdauer von 100 Jahren) Bohrloch D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) Einbaurichtung $T_{i,min} = -5$ °C bis $T_{i,max} = +40$ °C Einbautemperatur Temperatur-(maximale Kurzzeittemperatur +60 °C; -40 °C bis +60 °C bereich I maximale Langzeittemperatur +35 °C) Gebrauchstemperaturbereiche Temperatur-(maximale Kurzzeittemperatur +72 °C; -40 °C bis +72 °C bereich II maximale Langzeittemperatur +50 °C) 1) keine Leistung bewertet fischer Injektionssystem FIS EM Plus Anhang B 1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 6 Tabelle A6.1.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018.

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

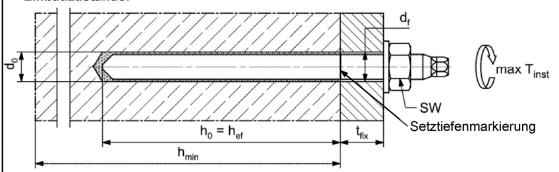
fischer Injektionssystem FIS EM Plus

Verwendungszweck
Spezifikationen (Teil 2)

Anhang B 2

Ankerstangen		G	ewinde	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Schlüsselweite		SW		13	17	19	22	24	30	32	36	41	46
Bohrernenndurchme	sser	do		10	12	14	16	18	22 24 ¹⁾	25	28	30	35
Bohrlochtiefe	h₀						h₀ =	h _{ef}					
Effektive		$h_{\text{ef, min}}$		60	60	70	75	80	90	93	96	108	120
Verankerungstiefe		h _{ef, max}	[mm]	160	200	240	280	320	400	440	480	540	600
Durchmesser des	Vorsteck- montage	d _f	[]	9	12	14	16	18	22	24	26	30	33
Durchgangsloch im Anbauteil	Durchsteck- montage	df		12	14	16	18	20	26	28	30	33	40
Minimale Dicke des	Betonbauteils	h _{min}			n _{ef} + 30 (≥ 100				h	1 _{ef} + 2c	lo		
Maximales Montage	drehmoment	max T _{inst}	[Nm]	10	20	40	50	60	120	135	150	200	300

¹⁾ Beide Bohrernenndurchmesser sind möglich


Prägung (an beliebiger Stelle) fischer Ankerstange:

Stahl galvanisch verzinkt FK ¹⁾ 8.8	• oder +	Stahl feuerverzinkt FK¹¹ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	•	Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 70	-
Hochkorrosionsbeständiger Stahl HCR FK 80	(Nichtrostender Stahl R FK 50	~
Nichtrostender Stahl R FK 80	*		

Alternativ: Farbmarkierung nach DIN 976-1:2016

1) FK = Festigkeitsklasse

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 6, Tabelle A6.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck
Montagekennwerte Ankerstangen

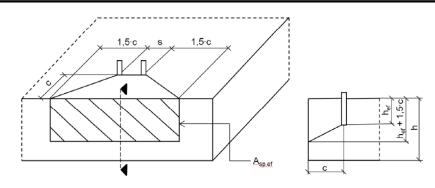
Anhang B 3

Tabelle B4.1: Minimale Ach	ıs- und	Rand	absta	inde fi	ur Ank	ersta	ngen เ	und B e	etonst	ahl	
Ankerstangen			М8	M10	M12	M14	M16	-	M20	M22	M24
Betonstahl (Stabnenndurchmess	ser)	ф	8	10	12	14	16	18	20	22	24
Minimaler Randabstand											
Ungerissener / Gerissener Beton	Cmin	[mm]	40	45	45	45	50	55	55	55	60
Minimaler Achsabstand	Smin	[[[[[gemäß Anhang B5								
Minimaler Achsabstand											
Ungerissener / Gerissener Beton	Smin	[mm]	40	45	55	60	65	85	85	95	105
Minimaler Randabstand	Cmin	[[[]]	gemäß Anhang B5								
Erforderliche projizierte Fläche											
Ungerissener Beton	^	[1000	8	13	22	23	24	38,5	38,5	39,5	40
Gerissener Beton	A _{sp,req}	mm²]	6,5	10	16,5	17,5	18,5	29,5	29,5	30	30,5
Gones Boton				. •	10,0	, -	, .				,-
		-				, -	,	20,0			
Ankerstangen			-	-	M27	-	M30	-	-	-	-
	ser)	ф	- 25	- 26		·	,		- 34		<u>-</u>
Ankerstangen	ser)	ф	- 25	- 26		-	M30	-	-	- 36	-
Ankerstangen Betonstahl (Stabnenndurchmess	ser)		-	-		-	M30	-	-	-	-
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand	,	ф	- 25	- 26	M27 -	- 28	M30 30	- 32	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton	Cmin		- 25	- 26	M27 -	- 28	M30 30 80	- 32	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand	Cmin	[mm]	- 25	- 26	M27 -	- 28	M30 30 80	- 32	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand	Cmin Smin		- 25 75	- 26 75	M27 - 75	- 28 80 gemä	M30 30 80 B Anha	- 32 120 ng B5	- 34	- 36 135	40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand Ungerissener / Gerissener Beton	Cmin Smin	[mm]	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	М30 30 80 В Anha	- 32 120 ng B5	- 34	- 36 135	40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand Ungerissener / Gerissener Beton Minimaler Randabstand	Cmin Smin	[mm]	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	М30 30 80 В Anha	- 32 120 ng B5	- 34	- 36 135	40

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

 $A_{sp,req} < A_{sp,t}$


 $A_{\text{sp,req}} = \text{erforderliche projizierte Fläche} \\$

A_{sp,t} = A_{sp,ef} = effektive projizierte Fläche (gemäß Anhang B5)

fischer Injektionssystem FIS EM Plus	
Verwendungszweck Minimale Achs- und Randabstände für Ankerstangen und Betonstahl	Anhang B 4

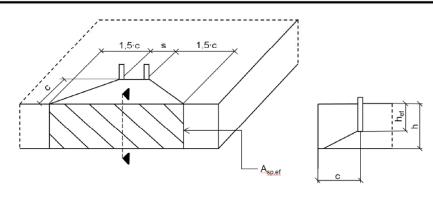


Tabelle B5.1: Effektive projizierte Fläche A_{sp,t} bei einer Betonbauteildicke h > h_{ef} + 1,5 ⋅ c und h ≥ h_{min}

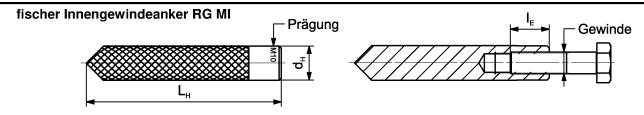
Einzelanker		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	IIIII C ≥ C _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	$mit \ c \ge c_{min} \ und \ s \ge s_{min}$

Tabelle B5.2: Effektive projizierte Fläche $A_{sp,t}$ bei einer Betonbauteildicke $h \le h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker		$A_{sp,t} = 3 \cdot c \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s > 3 · c	A _{sp,t} = 6 · c · vorhandenes h	[mm²]	IIII C ≥ C _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min} und s ≥ s _{min}

Randabstände und Achsabstände sind auf 5 mm aufzurunden

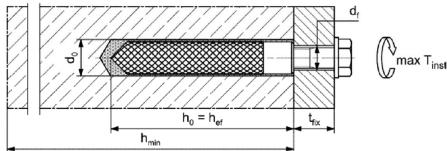
Abbildungen nicht maßstäblich


fischer Injektionssystem FIS EM Plus

Verwendungszweck
Mindestdicke der Betonbauteile für Ankerstangen;
minimale Achs- und Randabstände

Anhang B 5

Innengewindeanker RG MI	G	ewinde	M8	M10	M12	M16	M20
Hülsendurchmesser	d _{nom} = d _H	Junac	12	16	18	22	28
Bohrernenn- durchmesser	d ₀		14	18	20	24	32
Bohrlochtiefe	h ₀			•	$h_0 = h_{ef} = L_H$		•
Effektive Verankerungstiefe ($h_{ef} = L_H$)	h _{ef}		90	90	125	160	200
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	55	65	75	95	125
Durchmesser des Durch- gangsloch im Anbauteil	df		9	12	14	18	22
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45
Minimale Einschraubtiefe	I _{E,min}		8	10	12	16	20
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80	120


Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 6, Tabelle A6.1 entsprechen

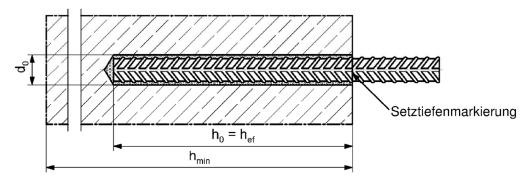
Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck

Montagekennwerte fischer Innengewindeanker RG MI


Stabnenndurchmesser		ф	82)	10 ²⁾	12 ²⁾	14	16	18	20	22	24
Bohrernenndurchmesser	d ₀		10 12	12 14	14 16	18	20	25	25	30	30
Bohrlochtiefe	h ₀						$h_0 = h_{ef}$				
Effektive	h _{ef,min}	[mm]	60	60	70	75	80	85	90	94	98
Verankerungstiefe	h _{ef,max}	[]	160	200	240	280	320	360	400	440	480
Mindestdicke des Betonbauteils	h _{min}		h _{ef} + 30 (≥ 100) h _{ef} + 2d ₀								
Stabnenndurchmesser		ф	25	26	28	30	32	34	36	40	-
Stabnenndurchmesser Bohrernenndurchmesser	d ₀	ф	25	26 35	28 35	30	32 40	34 40	36 45	40 55	-
	d ₀	ф				40		40			<u>-</u>
Bohrernenndurchmesser						40	40	40			-
Bohrernenndurchmesser Bohrlochtiefe	h ₀	Φ [mm]	30	35	35	40	40 h ₀ = h _{ef}	40	45	55	

¹⁾ Minimale Achs- und Randabstände siehe Anhang B 4

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

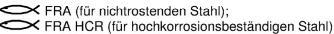
Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

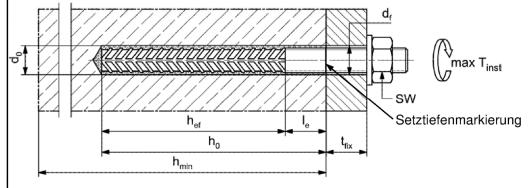
Verwendungszweck

Montagekennwerte Betonstahl

²⁾ Beide Bohrernenndurchmesser sind möglich


Bewehrungsanke	er FRA	Ge	winde	М1	2 ¹⁾	M16	M20	M24	
Stabnenndurchme	sser	ф		1	2	16	20	25	
Schlüsselweite		SW		1	9	24	30	36	
Bohrernenndurchr	nesser	d_0		14 16		20	25	30	
Bohrlochtiefe		h ₀				h _{ef} + l _e			
Effektive	ektive			7	0	80	90	96	
Verankerungstiefe	-	h _{ef,max}		140		220	300	380	
Abstand Betonobe Schweißstelle	rfläche zur	l _e				100			
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	5	5	65	85	105	
Durchmesser des	Vorsteck- montage	≤ d _f		1	4	18	22	26	
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		1	8	22	26	32	
Mindestdicke des Betonbauteils		h _{min}		h ₀ +	30		h ₀ + 2d ₀	o + 2d ₀	
Maximales Montagedrehmom	ent	max T _{inst}	[Nm]	4	0	60	120	150	

¹⁾ Beide Bohrernenndurchmesser sind möglich


fischer Bewehrungsanker FRA

Prägung stirnseitig z. B.:

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA

Tabelle B9.1: Kennwerte der Reinigungsbürsten BS / BSB (Stahlbürste mit Stahlborsten)

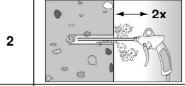
Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d₀		10	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Stahlbürsten- durchmesser BS	dь	[mm]	11	14	16	2	0	25	26	27	30		40		ı	-	-
Stahlbürsten- durchmesser BSB	dь		-	-	-		-	-	-	-	-		-		42	47	58

Tabelle B9.2 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

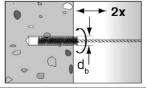
Temperatur im Verankerungsgrund [°C]	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ¹⁾ t _{cure}
-5 bis 0 ²⁾	240 min	200 h
> 0 bis 5 ²⁾	150 min	90 h
> 5 bis 10	120 min	40 h
> 10 bis 20	30 min	18 h
> 20 bis 30	14 min	10 h
> 30 bis 40	7 min	5 h

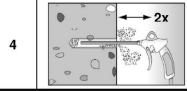
¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln


²⁾ Minimale Kartuschentemperatur +5°C

fischer Injektionssystem FIS EM Plus	
Verwendungszweck Kennwerte der Reinigungsbürsten Verarbeitungs- und Aushärtezeiten	Anhang B 9

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)


Bohrloch erstellen.
Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabellen B3.1, B6.1, B7.1, B8.1

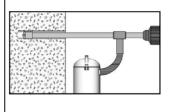

Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

3

Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B9.1**

Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 6 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

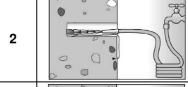
Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

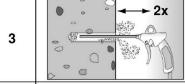
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B3.1, B6.1, B7.1, B8.1**

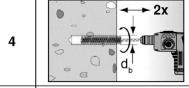
Mit Schritt 6 fortfahren

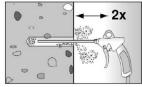
fischer Injektionssystem FIS EM Plus

Verwendungszweck Montageanleitung Teil 1

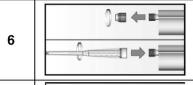

Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)


Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B3.1**, **B6.1**, **B7.1**, **B8.1**


Bohrkern brechen und herausziehen.


Bohrloch spülen, bis das Wasser klar wird.

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)


Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten. Entsprechende Bürsten siehe **Tabelle B9.1**

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Kartuschenvorbereitung

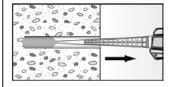
5

Verschlusskappe abschrauben

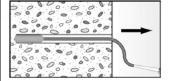
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

Kartusche in die Auspresspistole legen.

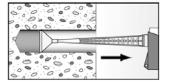
Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.


fischer Injektionssystem FIS EM Plus

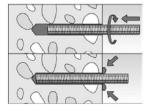
Verwendungszweck Montageanleitung Teil 2

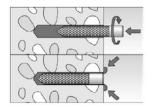


Mörtelinjektion

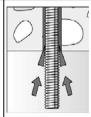


Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

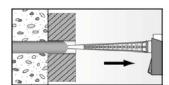

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden



Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

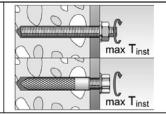

Montage Ankerstange und fischer Innengewindeanker RG MI

10

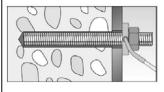


Nur saubere und ölfreie Stahlteile verwenden. Setztiefe des Stahlteiles markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Stahlteiles muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage das Stahlteil mit Keilen (z.B. fischer Zentrierkeile) oder fischer Überkopf-Clips fixieren bis der Mörtel auszuhärten beginnt


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

11


Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

12

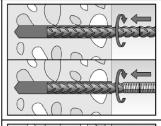
Montage des Anbauteils, max T_{inst} siehe **Tabellen B3.1 und B6.1**

Option

Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden.

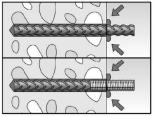
Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS HB, FIS SB, FIS V, FIS EM Plus).

ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Anker)


fischer Injektionssystem FIS EM Plus

Verwendungszweck Montageanleitung Teil 3 Anhang B 12

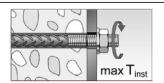
Z51920.20



Montage Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

11

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

12

Montage des Anbauteils, max T_{inst} siehe **Tabelle B8.1**

fischer Injektionssystem FIS EM Plus

Verwendungszweck Montageanleitung Teil 4 Anhang B 13

Z51921.20

Tabelle C1.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- / Querzug- beanspruchung von **fischer Ankerstangen** und **Standard-Gewindestangen**

	beanspru	ıchung	von	fisc	her A	nkers	tange	en und	d Sta ı	ndard	d-Gew	/inde	stang	jen	
Anke	r- / Gewindestange				М8	M10	M12	M14	M16	M20	M22	M24	M27	M30	
Zugtr	agfähigkeit, Stahlversa	gen³)											•		
Rk,s	Otal Land and a start		4.8		15(13)	23(21)	33	46	63	98	121	141	184	224	
.Z	Stahl galvanisch verzinkt	<u>\$</u>	5.8		19(17)	29(27)	43	58	79	123	152	177	230	281	
Charakt. erstand l	VEIZITIKU	Festigkeits- klasse	8.8	[kN]	29(27)	47(43)	68	92	126	196	243	282	368	449	
Sha rsta	Nichtrostender Stahl R	sstig Klas	50	[KIN]	19	29	43	58	79	123	152	177	230	281	
Wide	und Hochkorrosions-	щ	70		26	41	59	81	110	172	212	247	322	393	
	beständiger Stahl HCR		80		30	47	68	92	126	196	243	282	368	449	
Teilsi	icherheitsbeiwerte 1)														
ا ا	Stahl galvanisch		4.8						1,5	0					
Jeit: Ms,N	Stahl galvanisch verzinkt	its-	5.8						1,5	0					
eilsicherheits- beiwert _{YMs.} n		Festigkeits- klasse	8.8	[-]					1,5	0					
eilsiche	Nichtrostender Stahl R	estic Kla	50	LJ					2,8						
Teil be		щ	_70						1,50 ²⁾ /						
	beständiger Stahl HCR		80						1,6	0					
Quer	tragfähigkeit, Stahlvers	agen ³⁾													
Ohne	Hebelarm														
X,s	Stahl galvanisch	Festigkeits- klasse	4.8		9(8)	14(13)	20	28	38	59	73	85	110	135	
Charakt. erstand V ^o Rk,	Stahl galvanisch verzinkt		5.8			17(16)	25	34	47	74	91	106	138	168	
Charakt erstand		stigkeit klasse	8.8	[kN]		23(21)	34	46	63	98	122	141	184	225	
Cha erst	Nichtrostender Stahl R	esti Kla	50	[]	9	15	21	29	39	61	76	89	115	141	
Wide	und Hochkorrosions-	ட்	70		13	20	30	40	55	86	107	124	161	197	
<u> </u>	beständiger Stahl HCR		80		15	23	34	46	63	98	122	141	184	225	
	itätsfaktor • •		k ₇	[-]					1,0)					
Mit H	ebelarm		4.0		15(10)	20(07)	F0	00	100	050	057	440	CCE	000	
, K	Stahl galvanisch		4.8			30(27)	52 CF	83	133	259	357	448	665	899	
۵ تخ ≥ تخ	verzinkt	eits ie	5.8 8.8			37(33) 60(53)	65 105	104 167	166 266	324 519	716	560 896	833 1333	1123 1797	
Charakt. derstand M ⁰ Rk,	NELL L. CLUB	Festigkeits- klasse	50	[Nm]	19	37	65	104	166	324	447	560	833	1123	
다 Signal	Nichtrostender Stahl R und Hochkorrosions-	Fest K	70		26	52	92	146	232	454	626	784	1167	1573	
	beständiger Stahl HCR	_	80		30	60	105	167	266	519	716	896		1797	
<u> </u>	S bestandiger Stani HOR Teilsicherheitsbeiwerte 1)		- 00		1 00		100	107		010	7.10	000	1000	1737	
			4.8						1,2						
eits-	Stahl galvanisch	ď							1,2						
rhei:	verzinkt	ceits-	5.8 8.8						1,2						
che Vert	Nichtrostondor Stahl D	stigkeit klasse	50	[-]	2,38										
Teilsicherheits beiwert ms.v	Nichtrostender Stahl R und Hochkorrosions-	Festigkeits- klasse	70	'∐ ⊦	1,252) / 1,56										
======================================	beständiger Stahl HCR		80						1,3						
——					l				.,0	-					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte für die Stahltragfähigheit unter Zug- / Querzugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

Anhang C 1

²⁾ Nur zulässig für hochkorrosionsbest. Stahl HCR, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

1,56

1,56

Tabelle C2.1:						hltragfähig er Innengev		•						
fischer Innenge	windea	nker RG MI			М8	M10	M12	M16	M20					
Zugtragfähigkei	it, Stahl	versagen												
		Festigkeits-	5.8		19	29	43	79	123					
Charakt. Widerstand mit	Merce	klasse	8.8	[kN]	29	47	68	108	179					
Schraube	$N_{Rk,s}$	Festigkeits-	R	[KIN]	26	41	59	110	172					
		Klasse 70	HCR		26	41	59	110	172					
Teilsicherheitsb	eiwerte	9 1)												
		Festigkeits-	5.8				1,50							
Teilsicherheits-	0/N4− N1	klasse	8.8	[-]			1,50							
eiwerte	γMs,N	Festigkeits-	R	[-]			1,87							
		Klasse 70	HCR				1,87							
Quertragfähigke		nlversagen												
Ohne Hebelarm														
Ola a wallat	Festigke		5.8		9,2	14,5	21,1	39,2	62,0					
Charakt. Widerstand mit	$V^0_{Rk,s}$	klasse	8.8	[kN]	14,6	23,2	33,7	54,0	90,0					
Schraube	v ⊓k,5	Festigkeits-	_R	[14,14]	12,8	20,3	29,5	54,8	86,0					
		Klasse 70	HCR		12,8	20,3	29,5	54,8	86,0					
Duktilitätsfaktor			k 7	[-]			1,0							
Mit Hebelarm						1	Г							
		Festigkeits-	5.8		20	39	68	173	337					
Charakt. Widerstand mit	M ⁰ Rk,s	klasse	8.8	[Nm]	30	60	105	266	519					
Schraube	IVI IIK,S	Festigkeits-	R	[]	26	52	92	232	454					
		Klasse 70	HCR		26	52	92	232	454					
Teilsicherheitsb	eiwerte	9 1)												
		Festigkeits-	5.8		1,25									
Teilsicherheits-	γMs,V	klasse	se 8.8	[-]			1,25							
beiwerte	,, ,	Festiakeits-	R				1,56							

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Festigkeits-Klasse 70

R

HCR

fischer Injektionssystem FIS EM Plus Anhang C 2 Leistungen Charakteristische Werte für die Stahltragfähigkeiten unter Zug-/ Querzugbeanspruchung von fischer Innengewindeankern RG MI

Charakteristischer Widerstand

 $1,2\cdot W_{el}\cdot f_{uk^1)}$

Tabelle C3.1: Charakteris Querzugbe							•	-	hig	keit	un	ter	Zu	g- /					
Stabnenndurchmesser		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Zugtragfähigkeit, Stahlversage	n																		
Charakteristischer Widerstand	$A_s \cdot f_{uk^1}$																		
Quertragfähigkeit, Stahlversag	en																		
Ohne Hebelarm																			
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]							(),5 ·	As ·	f _{uk} 1)						
Duktilitätsfaktor	k ₇	[-]									1,0								
Mit Hebelarm																			

¹⁾ fuk bzw. fyk ist den Spezifikationen des Betonstahls zu entnehmen

M⁰Rk,s [Nm]

Tabelle C3.2: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug-/ Querzugbeanspruchung von **fischer Bewehrungsankern FRA**

fischer Bewehrungsanker FRA			M12	M16	M20	M24
Zugtragfähigkeit, Stahlversage	n					
Charakteristischer Widerstand	N _{Rk,s}	[kN]	63	111	173	270
Teilsicherheitsbeiwert 1)						
Teilsicherheitsbeiwert	γMs,N	[-]		1	,4	
Quertragfähigkeit, Stahlversag	en					
Ohne Hebelarm						
Charakteristischer Widerstand	V^0 Rk,s	[kN]	30	55	86	124
Duktilitätsfaktor	k ₇	[-]		1	,0	•
Mit Hebelarm						
Charakteristischer Widerstand	M^0 Rk,s	[Nm]	92	233	454	785
Teilsicherheitsbeiwert 1)				•		•
Teilsicherheitsbeiwert	γMs,V	[-]		1,	56	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus

Leistungen
Charakteristische Werte für die Stahltragfähigkeiten unter Zug- /
Querzugbeanspruchung von Betonstahl und fischer Bewehrungsanker FRA

Größe										Α	lle G	rößer	1				
Zugbelastung																	
Montagebeiwert		γinst	[-]			Sie	ehe	e Anh	nänge	C t	bis	C 12	und C 1	7 bis	С	18	
Faktoren für B	etondruckfestigkei	ten > 0															
	C25/30										1,	02					
-	C30/37										1,	04					
- Erhöhungs-	C35/45											06					
faktor für τ _{Rk}	C40/50	Ψ_{c}	[-]									07					
-	C45/55										1,	08					
_	C50/60											09					
Versagen durc	h Spalten																
	h / h _{ef} ≥ 2,0										1,0	h _{ef}					
Randabstand ⁻	2,0 > h / h _{ef} > 1,3	C _{cr,sp}	l <u> </u>							4,	6 h _{ef}	- 1,8	<u> </u>				
-	h / h _{ef} ≤ 1,3		[mm]								2,2	3 h _{ef}					
Achsabstand		Scr,sp	1								2 0	cr,sp					
Versagen durc	h kegelförmigen B	etonaı	sbruc	h													
Ungerissener B	eton	k _{ucr,N}									11	1,0					
Gerissener Beto		k _{cr,N}	[-]								7	,7					
Randabstand		C _{cr,N}	ļ								1,5	h _{ef}					
Achsabstand		Scr,N	[mm]								2 (cr,N					
Faktoren für di	e Dauerzugbelastu	ıng															
Faktor		$\Psi^0_{\sf sus}$	[-]								_	1)					
Querzugbelast	ung																
Montagebeiwer		γinst	[-]								1	,0					
	n auf der lastabgev	<u> </u>		} }								<u>, </u>					
Faktor für Betor		k ₈	[-]								2	,0					
Betonkantenau	sbruch											<u>′</u>					
Effektive Länge Querzugbelastu	des Stahlteils bei ng	lf	[mm]									12 d _n 8 d _{nor}	om) n; 300 n	nm)			
Rechnerische I	Durchmesser																
Größe				М	8	M10)	M12	M14	. N	/116	M20	M22	M24	ιŢ	M27	Мз
fischer Ankersta Standard-Gewir		d_{nom}		8	3	10		12	14		16	20	22	24		27	30
fischer Innenge	windeanker RG MI	d _{nom}	[mm]	12	2	16		18	_2)		22	28	_2)	_2)		_2)	_2)
fischer Bewehru	ngsanker FRA	d _{nom}		_2	2)	_2)		12	_2)		16	20	_2)	25		_2)	_2)
Stabnenndurchr	nesser		ф	8	10	12	14	16	18 2	0 2	22 2	4 25	26 28	30	32	34	36 4
Betonstahl		d _{nom}	[mm]	8	10	12	14	16	18 2	0 2	22 2	4 25	26 28	30	32	34	36 4
¹⁾ Leistung ni ²⁾ Dübelvaria	cht bewertet nte nicht Bestandtei	l der E							1	I		•		•			
fischer Injek	tionssystem FIS	EM P	lus											Anh			

Tabelle C5.1:	Charakteristische Werte und Standard-Gewinde Bohrloch; ungerissener	stanç	gen in	n ham	ımerg	ebohr	ten o	der di	aman	tgebo	hrten
Anker- / Gewinde	stange	ge M8 M10 M12 M14 M16 M20 M22 M24 M27 M30									
17 11 1 1 17											

		, - J-			<u> </u>			_ ,		<u> </u>			
Anker- /	Gewindestange			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Kombini	ertes Versagen durc	h Herau	ısziehen ı	und Be	etonau	sbruc	h						
Rechneri	scher Durchmesser	d	[mm]	8	10	12	14	16	20	22	24	27	30
Ungeriss	sener Beton												
Charakte	eristische Verbundtr	agfähig	keit im ur	geriss	senen	Beton	C20/2	5					
	oohren mit Standard-	<u>oder Ho</u>	<u>hlbohrer (t</u>	rocker	<u>ier ode</u>	r nasse	er Betc	<u>n)</u>					
Tempe- ratur-	I: 35 °C / 60 °C		[N/mm ²]	18	18	18	17	17	16	15	15	15	14
bereich	II: 50 °C / 72 °C	τ _{Rk,ucr}	[14/11111]	18	17	17	16	16	15	14	14	14	13
<u>Hammert</u>	oohren mit Standard-	oder Ho	hlbohrer (wasse	rgefüllte	es Boh	rloch)	•		•	•	•	
Tempe-	I: 35 °C / 60 °C		[N 1/1 2]	16	16	15	13	13	11	11	10	10	9
ratur- bereich	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	12	11	10	10	9	9
	oohren (trockener ode	r nasser	Beton so	wie wa	ısserge	fülltes	Bohrlo	<u>ch)</u>					
Tempe-	I: 35 °C / 60 °C			16	15	13	12	12	10	10	10	9	9
ratur- bereich	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
	beiwerte									-			
Trockene	er oder nasser Beton							1	,0				
Wasserge	efülltes Bohrloch	γinst	[-]					1	,4				
Gerisser	ner Beton												
	eristische Verbundtr												
	oohren mit Standard-	<u>oder Ho</u>	<u>hlbohrer (</u> 1	trocker	<u>ner ode</u>	r nass	er Beto	<u>on)</u>	1	1			
Tempe- ratur-	I: 35 °C / 60 °C		[N/mm ²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
bereich	II: 50 °C / 72 °C	τ _{Rk,cr}		7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
<u>Diamant</u>	oohren (trockener ode	r nasser	Beton)			_							
Tempe-	I: 35 °C / 60 °C		[N 1/100 100 2]	7	7	7	7	6	6	7	7	7	7
ratur- bereich	II: 50 °C / 72 °C	τ _{Rk,cr}	[N/mm ²]	7	7	7	7	6	6	7	7	7	7
Hammerk	oohren mit Standard-	oder Ho	hlbohrer u	nd Dia	mantb	ohren (wasse	rgefüll	tes Bol	<u>hrloch)</u>		1	
Tempe-	I: 35 °C / 60 °C		FN 1/ 07	6	7,5	7,5	7	6	6	6	6	6	6
ratur- bereich	II: 50 °C / 72 °C	τ _{Rk,cr}	[N/mm ²]	6	7	7	7	6	6	6	6	6	6
	beiwerte		1	ı	1	ı	ı	1	1	1	1	'	
	er oder nasser Beton							1	,0				

Wassergefülltes Bohrloch

γinst
[-]

1,2

1,4

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen, Nutzungsdauer 50 Jahre

Anhang C 5

Tabelle C6.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 100 Jahre

	Nutzunç	gsdauer	TUU Ja	nre									
Anker- / Ge	windestange			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Kombiniert	es Versagen dur	ch Herau	sziehen	und Be	etonau	sbruc	h						
Rechnerisc	ner Durchmesser	d	[mm]	8	10	12	14	16	20	22	24	27	30
Ungerisser	er Beton												
Charakteris	stische Verbundt	ragfähigl	keit im ur	igeriss	senen	Beton	C20/2	5					
<u>Hammerbol</u>	<u>nren mit Standard-</u>	oder Hol	nlbohrer (t	rocker	er ode	r nasse	er Beto	<u>n)</u>					
Tempe- ratur- —	I: 35 °C / 60 °C	_	[N/mm²]	18	18	18	17	17	16	15	15	15	14
	I: 50 °C / 72 °C	TRk,ucr	[[[]]]	18	17	17	16	16	15	14	14	14	13
Diamantboh	ren (trockener od	er nasser	Beton)			•				•			
	I: 35 °C / 60 °C		FA 17 27	16	15	13	12	12	10	10	10	9	9
ratur- — bereich ^I	I: 50 °C / 72 °C	- TRk,ucr	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
Montagebe	iwerte		•										
Trockener o	der nasser Beton	γinst	[-]					1	,0				
	I: 35 °C / 60 °C	_		0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
dauer 100 Jahre	I: 50 °C / 72 °C	α 100 Jahre	[-]	0,55	0,60	0,60	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Gerissener	Beton												
Charakteris	stische Verbundt	ragfähigl	ceit im ge	risser	en Be	ton C2	20/25						
<u>Hammerbol</u>	ren mit Standard	oder Ho	nlbohrer (1	trocker	ner ode	r nass	er Betc	<u>n)</u>					
	I: 35 °C / 60 °C		[N]/m, m, 21	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
ratur- — bereich ^I	I: 50 °C / 72 °C	TRk,cr	[N/mm ²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Diamantbol	ren (trockener od	er nasser	Beton)	•	•		•		•	•			
	I: 35 °C / 60 °C		FN 17 21	7	7	7	7	6	6	7	7	7	7
ratur- — bereich ^I	I: 50 °C / 72 °C	TRk,cr	[N/mm²]	7	7	7	7	6	6	7	7	7	7
Montagebe	iwerte		•										
Trockener of	der nasser Beton	γinst	[-]					1	,0				
	I: 35 °C / 60 °C	_		0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65
dauer – 100 Jahre ^I	I: 50 °C / 72 °C	- α 100 Jahre	[-]	0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65

1) Berechnung der charakteristischen Verbundtragfähigkeit im ungerissenen Beton TRK,100, ucr:

 $\tau_{\text{Rk},100,\text{ucr}} = \alpha_{100 \text{ Jahre}} \cdot \tau_{\text{Rk},\text{ucr}}$

²⁾ Berechnung der charakteristischen Verbundtragfähigkeit im gerissenen Beton T_{Rk,100, cr}:

 $\tau_{\text{Rk,100,cr}} = \alpha_{100 \text{ Jahre}} \cdot \tau_{\text{Rk,cr}}$

fischer Injektionssystem FIS EM Plus

Leistungen
Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und
Standard-Gewindestangen, Nutzungsdauer 100 Jahre

Anhang C 6

Tabelle C7.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre

	Bohrloch	ungei	rissener	oder geris	ssener Bet	on; Nutzur	ngsdauer 5	0 Jahre
Innenge	windeanker RG MI			М8	M10	M12	M16	M20
Kombini	ertes Versagen durc	h Herau	ısziehen	und Betonau	sbruch			
Rechneri	scher Durchmesser	d	[mm]	12	16	18	22	28
Ungeriss	sener Beton							
Charakte	eristische Verbundtr	agfähig	keit im ur	igerissenen	Beton C20/2	5		
	oohren mit Standard-	<u>oder Hol</u>	<u>nlbohrer (1</u>	rockener ode	r nasser Beto	<u>on)</u>	<u> </u>	Г
Tempe- ratur-	I: 35 °C / 60 °C	_	 [N/mm²]	15	14	14	13	12
bereich	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[13/11111]	14	13	13	12	11
Hammert	oohren mit Standard-	oder Ho	hlbohrer (wassergefüllt	es Bohrloch)			
Tempe-	I: 35 °C / 60 °C		55.17	14	12	12	11	10
ratur- bereich	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm²]	13	12	11	10	9
Diamant	oohren (trockener ode	r nasser	Beton so	wie wasserge	fülltes Bohrlo	<u>och)</u>	l	
Tempe-	I: 35 °C / 60 °C		FN.17 27	13	12	11	10	9
ratur- bereich	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm²]	12	11	10	9	8
Montage	beiwerte		•				•	•
Trockene	r oder nasser Beton	••	r 1			1,0		
Wasserg	efülltes Bohrloch	γinst	[-]			1,4		
Gerisser	ner Beton							
Charakte	eristische Verbundtr	agfähigl	keit im ge	rissenen Be	ton C20/25			
	oohren mit Standard-	oder Ho	<u>hlbohrer u</u>	nd Diamantb	ohren (trocke	ner oder nass	<u>ser Beton)</u>	Г
Tempe-	I: 35 °C / 60 °C	_	[N1/mm21	7	6	6	7	7
ratur- bereich	II: 50 °C / 72 °C	τ _{Rk,cr}	[N/mm²]	7	6	6	7	7
<u>Hammert</u>	oohren mit Standard-	oder Ho	hlbohrer u	nd Diamantb	ohren (wasse	rgefülltes Boh	<u>nrloch)</u>	
Tempe-	I: 35 °C / 60 °C		[N 1 / see see 2]	7	6,5	6	6	6
ratur- bereich	II: 50 °C / 72 °C	τ _{Rk,cr}	[N/mm²]	7	6	6	6	6
Montage	beiwerte							
Trockene	r oder nasser Beton	2/:-	[-]			1,0		
Wasserg	efülltes Bohrloch	γinst	[-]		1,2		1	,4

fischer Injektionssystem FIS EM Plus	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI; Nutzungsdauer 50 Jahre	Anhang C 7

Tabelle C8.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 100 Jahre

Janie							
Innengewindeanker RG MI			М8	M10	M12	M16	M20
Kombiniertes Versagen dur	ch Herau	sziehen ı	und Betonau	sbruch			
Rechnerischer Durchmesser	d	[mm]	12	16	18	22	28
Ungerissener Beton							
Charakteristische Verbundt	ragfähigl	ceit im un	igerissenen	Beton C20/2	5		
Hammerbohren mit Standard-	oder Hol	<u>ılbohrer (t</u>	rockener ode	r nasser Betc	<u>on)</u>		
Tempe- I: 35 °C / 60 °C	_	[N/mm²]	15	14	14	13	12
bereich II: 50 °C / 72 °C	τ _{Rk,ucr}	[[]]	14	13	13	12	11
<u> Diamantbohren (trockener ode</u>	er nasser	Beton)					
Tempe- I: 35 °C / 60 °C		[N 1 / ma ma 2]	13	12	11	10	9
ratur- ————————————————————————————————————	τ _{Rk,ucr}	[N/mm ²]	12	11	10	9	8
Montagebeiwerte							
Trockener oder nasser Beton	γinst	[-]			1,0		
Nutzungs- I: 35 °C / 60 °C		r 1	0,75	0,75	0,75	0,75	0,75
100 Jahre II: 50 °C / 72 °C	· α100 Jahre	[-]	0,55	0,60	0,60	0,65	0,65
Gerissener Beton							
Charakteristische Verbundt	ragfähigl	ceit im ge	rissenen Be	ton C20/25			
<u> Hammerbohren mit Standard-</u>	oder Hol	nlbohrer u	nd Diamantb	ohren (trocke	ner oder nass	ser Beton)	
Tempe- I: 35 °C / 60 °C		[N1/mmm2]	7	6	6	7	7
ratur- H: 50 °C / 72 °C	τ _{Rk,ucr}	[N/mm ²]	7	6	6	7	7
Montagebeiwerte							
Trockener oder nasser Beton	γinst	[-]			1,0		
Nutzungs- I: 35 °C / 60 °C		[]	0,60	0,85	0,80	0,65	0,65
100 Jahre II: 50 °C / 72 °C	· α100 Jahre	[-]	0,60	0,85	0,80	0,65	0,65

¹⁾ Berechnung der charakteristischen Verbundtragfähigkeit im ungerissenen Beton T_{Rk,100, ucr}:

 $\tau_{\text{Rk,100, ucr}} = \alpha_{100 \text{ Jahre}} \cdot \tau_{\text{Rk,ucr}}$

²⁾ Berechnung der charakteristischen Verbundtragfähigkeit im gerissenen Beton T_{Rk,100, cr}:

 $\tau_{\text{Rk,100, cr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,cr}}$

fischer Injektionssystem FIS EM Plus

Leistungen
Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG
MI; Nutzungsdauer 100 Jahre

Anhang C 8

Tabelle C9.1:	Charakte hammer- Beton; N	oder d	iamantg	ebo	hrt	en	Bol	_		_								ser	er	
Stabnenndurchme	esser		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Kombiniertes Ver	sagen durc	h Herau			_	_														
Rechnerischer Dur		d	[mm]		10		14			20	22	24	25	26	28	30	32	34	36	40
Ungerissener Bet	on																			
Charakteristische	Verbundtr	agfähig	keit im ur	nger	isse	enei	n Be	eton	C2	0/25										
Hammerbohren mit	Standard- od	der Hohlb	ohrer (tro	cken	er o	der	nas	ser E	3eto	<u>n)</u>										
	°C / 60 °C		[N.17	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
ratur- II: 50°	C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Hammerbohren mit	Standard- o	der Hohll	oohrer (wa	ısser	gefü	ülltes	s Bo	hrlo	ch)					l	l					
Tempe- I: 35 °	°C / 60 °C		,	16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	8
ratur- II: 50 °	C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]		14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	8
Diamantbohren (tro		r naecor	Reton co									١,٥		L						
	C / 60 °C	ii iidooel	<u> </u>	т т	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
Iratur-		$ au_{Rk,ucr}$	[N/mm²]	\vdash																
Dereien	°C / 72 °C			15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Montagebeiwerte												4.0								
Trockener oder nas		γinst	[-]									1,0								
Wassergefülltes Bo												1,4								
Gerissener Beton Charakteristische		oafähial	coit im ac	rico		n P	oto	n C	20/2) <u>-</u>										
Hammerbohren mi											n)									
<u> </u>	C / 60 °C	<u>oder rio</u>		7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
ratur-		$ au_{Rk,cr}$	[N/mm ²]	-	-						_									
20101011	°C / 72 °C			7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Diamantbohren (tro		<u>er nasser</u>	<u>Beton)</u>	Ι_Τ	_	_	_				_	_	_	I _	_		_	_	_	_
ratur-	°C / 60 °C	$ au_{Rk,cr}$	[N/mm²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
bereich II: 50°	°C / 72 °C	OT III, CI		7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
<u>Hammerbohren mi</u>	t Standard-	oder Ho	<u>hlbohrer ι</u>	ınd [Dian	nani	boh	ren	(wa	.sser	gefü	illtes	s Bo	hrlo	ch)	1				
Tempe- I: 35 ° ratur-	°C / 60 °C	_	 [N/mm²]	6	7,5	6,5	6,5	6,5	6	6	6	6	6	6	6	6	5	5	5	5
bereich II: 50°	°C / 72 °C	τ _{Rk,cr}	[14/11111] 	6	6,5	6,5	6	6	6	6	6	6	6	6	6	6	5	5	5	5
Montagebeiwerte																				
Trockener oder na	sser Beton		r 1									1,0								
Wassergefülltes Bo	ohrloch	Yinst	[-]			1	,2								1,4					
Trockener oder na		γinst	[-]			1	,2					1,0			1,4					_
fischer Injektio	nssystem	FIS EN	/ ∕I Plus											T						
Leistungen Charakteristische Jahre				it voi	n Be	eton	star	nl; N	utzı	ıngs	dau	er 5	0			An∣	han	ıg C	9	

Tabelle C10.1: 0							_	_		_										
	nammer- 3eton; N		_					irio	cn;	un	ger	ISS	ene	er o	aeı	ge	eris	ser	ier	
Stabnenndurchmes	sser		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Kombiniertes Versa	agen durc	h Herau	sziehen	und	Be	tona	ust	ruc	h											
Rechnerischer Durch	nmesser	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Ungerissener Betor	n																			
Charakteristische V	erbundtr/	agfähigl	ceit im ur	nger	isse	enei	ı Be	eton	C20	0/25										
Hammerbohren mit St	tandard- o	der Hohlb	ohrer (tro	cken	er c	der	nas	ser E	<u>Betor</u>	<u>n)</u>					ı				· · ·	
Tempe- I: 35 °C ratur-	/ 60 °C		[N/mm ²]	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
bereich II: 50 °C	/ 72 °C	τ _{Rk,ucr}		15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Diamantbohren (troc	kener ode	r nasser	Beton)																	
Tempe- I: 35 °C	/ 60 °C			16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
ratur- bereich II: 50 °C	/ 72 °C	τ _{Rk,ucr}	[N/mm ²]	15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Montagebeiwerte																				
Trockener oder nass	er Beton	γinst	[-]									1,0								
Nutzungs- I: 35 °C	/ 60 °C			0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
dauer ————————————————————————————————————	/ 72 °C	α100 Jahre	[-]	0,55	0,60	09'0	0,65	0,65 (0,65	0,65	0,65 (0,65	0,65 (0,65	0,65 (0,65	0,65	0,65	0,65	0,65
Gerissener Beton									<u> </u>								Ŭ			Ĭ
Charakteristische V	/erbundtr	agfähigl	ceit im ge	riss	sene	en B	eto	n C	20/2	5										
Hammerbohren mit S											n)									
Tempe- I: 35 °C			•	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
ratur- —————bereich II: 50 °C		$ au_{Rk,cr}$	[N/mm ²]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Diamantbohren (troc	kener ode	r nasser	Beton)																	
Tempe- I: 35 °C	/ 60 °C			7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
ratur- bereich II: 50 °C	/ 72 °C	τ _{Rk,cr}	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Montagebeiwerte																				
Trockener oder nass	er Beton	γinst	[-]									1,0								
Nutzungs- I: 35 °C	/ 60 °C			09'0	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
dauer ———— 100 Jahre II: 50 °C	/ 72 °C	α ₁₀₀ Jahre	[-]	0,60	,85 (0,80	0,65	0,65 د	0,65 c	0,65 د	0,65 (0,65 د	,65	0,65 (0,65	0,65	0,65 د	0,65 (0,65	0,65
¹⁾ Berechnung de		eristisch	nen Verbi		o trag								o ı Be					0	0	<u> </u>
$ au_{Rk,100,ucr}=lpha_{100J}$ 2) Berechnung de			on Vorbi	undi	trac	fähi	aka	it in	n ac	rice	ono	n B	otoi	n To						
$ au_{Rk,100, cr} = lpha_{100 Ja}$		cristisci	ien verb	und	i, ay	, iaii	gne	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ii ge	1133			e to		ik, 100	, Cr •				
fischer Injektions	ssystem	FIS EN	/I Plus											T						
Leistungen Charakteristische V Jahre	Verte für o	lie Zugtra	agfähigke	it vo	n Be	eton	stah	nl; N	utzu	ıngs	dau	er 1	00			٩nh	an	g C	10	

Tabelle C11.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre

ungens	SCIICI U	uei gei	issellel Deloi	i, ivutzurigsu	au c i 30 Jailie	7
fischer Bewehrungsanker F	RA		M12	M16	M20	M24
Kombiniertes Versagen dure	ch Herau	ısziehen	und Betonausbi	ruch		
Rechnerischer Durchmesser	d	[mm]	12	16	20	25
Ungerissener Beton						
Charakteristische Verbundtı	ragfähig	keit im ur	ngerissenen Bet	on C20/25		
Hammerbohren mit Standard-	oder Hol	hlbohrer (1	rockener oder na	asser Beton)		
Tempe- I: 35 °C / 60 °C	_	[N1/mm2]	15	14	13	12
ratur-	- τ _{Rk,ucr}	[N/mm²]	14	13	12	12
Hammerbohren mit Standard-	oder Ho	hlbohrer (wassergefülltes I	<u>Bohrloch)</u>		
Tempe- I: 35 °C / 60 °C		27	14	12	11	10
ratur- H: 50 °C / 72 °C	- τ _{Rk,ucr}	[N/mm²]	13	12	11	9
Diamantbohren (trockener ode	er nasser	Beton so	wie wassergefüll	tes Bohrloch)		
Tempe- I: 35 °C / 60 °C		FN.17 27	13	12	10	9
ratur- H: 50 °C / 72 °C	T _{Rk,ucr}	[N/mm ²]	12	11	10	9
Montagebeiwerte		•				
Trockener oder nasser Beton		f 1		1,	,0	
Wassergefülltes Bohrloch	- γinst	[-]		1,	,4	
Gerissener Beton						
Charakteristische Verbundti						
Hammerbohren mit Standard-	oder Ho	<u>hlbohrer u</u>	ınd Diamantbohr	en (trockener ode	er nasser Beton)	
Tempe- I: 35 °C / 60 °C	_	[N1/mm21	8	8	8	8
ratur-	T _{Rk,cr}	[N/mm ²]	8	8	8	8
Hammerbohren mit Standard-	oder Ho	hlbohrer u	ınd Diamantbohr	en (wassergefüllt	es Bohrloch)	
Tempe- I: 35 °C / 60 °C		[N]/m=:==27	7	6	6	6
ratur- H: 50 °C / 72 °C	T _{Rk,cr}	[N/mm ²]	7	6	6	6
Montagebeiwerte						
Trockener oder nasser Beton	- 00	[]		1,	,0	
Wassergefülltes Bohrloch	γinst	[-]	1	,2	1,	4

fischer Injektionssystem F	FIS	ΕM	Plus
----------------------------	-----	----	------

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA; Nutzungsdauer 50 Jahre

Anhang C 11

Tabelle C12.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 100 Jahre

		3		, 3		
fischer Bewehrungsanker Fl	RA		M12	M16	M20	M24
Kombiniertes Versagen durc	ch Herau	sziehen i	und Betonausbr	uch		
Rechnerischer Durchmesser	d	[mm]	12	16	20	25
Ungerissener Beton						
Charakteristische Verbundtr	agfähigk	eit im un	igerissenen Bet	on C20/25		
Hammerbohren mit Standard-	oder Hor	<u>ılbohrer (t</u>	rockener oder na	asser Beton)		
Tempe- I: 35 °C / 60 °C		[N.L/100 100 27]	15	14	13	12
ratur- ————————————————————————————————————	τ _{Rk,ucr}	[N/mm ²]	14	13	12	12
Diamantbohren (trockener ode	er nasser	Beton)				
Tempe- I: 35 °C / 60 °C			13	12	10	9
ratur-	τ _{Rk,ucr}	[N/mm ²]	12	11	10	9
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]		1,	,0	
Nutzungs- I: 35 °C / 60 °C		FN 1 / 21	0,75	0,75	0,75	0,75
dauer 100 Jahre II: 50 °C / 72 °C	⁻ α ₁₀₀ Jahre	[IN/mm²]	0,60	0,65	0,65	0,65
Gerissener Beton					-	
Charakteristische Verbundtr	agfähigk	ceit im ge	rissenen Beton	C20/25		
Hammerbohren mit Standard-	oder Hol	<u>ılbohrer u</u>	nd Diamantbohre	en (trockener ode	er nasser Beton)	
Tempe- I: 35 °C / 60 °C		[N.L/100.100.2]	8	8	8	8
ratur- bereich II: 50 °C / 72 °C	- τ _{Rk,cr}	[N/mm ²]	8	8	8	8
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]		1.	,0	
Nutzungs- I: 35 °C / 60 °C			0,80	0,65	0,65	0,65
dauer 100 Jahre II: 50 °C / 72 °C	⁻ α100 Jahre	[-]	0,80	0,65	0,65	0,65

 $^{1)}$ Berechnung der charakteristischen Verbundtragfähigkeit im ungerissenen Beton $\tau_{\text{Rk,100, ucr}}$:

 $\tau_{\text{Rk},\text{100, ucr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,ucr}}$

 $^{2)}$ Berechnung der charakteristischen Verbundtragfähigkeit im gerissenen Beton $\tau_{Rk,100,\,cr}$:

 $au_{\text{Rk,100, cr}} = lpha_{\text{100 Jahre}} \cdot au_{\text{Rk,cr}}$

fischer Injektionssystem FIS EM Plus	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA; Nutzungsdauer 100 Jahre	Anhang C 12

Ankersta	nge	М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Verschie	bungs-Faktor	en für Zu	ıglast¹)								
Ungeriss	ener oder ger	issener l	Beton; To	emperati	urbereich	ı I, II					
δ _{N0-Faktor}	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
δn∞-Faktor	[[[]]]] []	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Verschie	bungs-Faktor	en für Qı	uerlast ²⁾								
Ungeriss	ener oder ger	issener l	Beton; To	emperatu	urbereich	ı I, II					
δv0-Faktor	[:ee:ee://.ch.1]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
δv∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $\begin{array}{l} (\tau_{\text{Ed}} \hbox{: Bemessungswert der} \\ einwirkenden \ Zugspannung) \end{array}$

2) Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C13.2: Verschiebungen für fischer Innengewindeanker RG MI

windeanker	М8	M10	M12	M16	M20
bungs-Faktor	en für Zuglast¹)				
sener oder ger	issener Beton; To	emperaturbereich	ı I, II		
[mm//NI/mm2)]	0,09	0,10	0,10	0,11	0,13
[[[[[[[]]	0,13	0,15	0,16	0,17	0,19
bungs-Faktor	en für Querlast ²⁾				
sener oder ger	issener Beton; To	emperaturbereich	ı I, II		
[mayon //cN]]	0,12	0,09	0,08	0,07	0,05
[IIIIII/KIN]	0,18	0,14	0,12	0,10	0,08
	ebungs-Faktore sener oder ger [mm/(N/mm²)] ebungs-Faktore	bungs-Faktoren für Zuglast¹) sener oder gerissener Beton; Te [mm/(N/mm²)] 0,09 0,13 bungs-Faktoren für Querlast²) sener oder gerissener Beton; Te [mm/kN] 0,12	bungs-Faktoren für Zuglast¹) sener oder gerissener Beton; Temperaturbereich [mm/(N/mm²)] 0,09 0,10 0,13 0,15 bungs-Faktoren für Querlast²) sener oder gerissener Beton; Temperaturbereich [mm/kN] 0,12 0,09	M8 M10 M12	M8 M10 M12 M16 M16 M12 M16 M16 M12 M16 M16

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer	Iniektionssystem	FIC	Dluc
uscher	meknonssystem	Γ 10	rius

Leistungen

Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 13

Stabnen durchme	•	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
	ebungs-Faktor	en fü	r Zug	ılast¹))													
	sener oder gei					perat	turbe	reich	I. II									
N0-Faktor		0.07				•		_	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
N∞-Faktor	[mm/(N/mm²)]	$\overline{}$							0,17									
/erschie	ebungs-Faktor																	
Jngeris:	sener oder gei	issen	er B	eton;	Tem	perat	turbe	reich	I, II									
V0-Faktor	[mm//sN]]	0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
V∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,0
1) Bered	chnung der effe	ktiven	ı Vers	schiel	bung:			2) E	Berech	าทนทธู	der (effekti	iven \	/erscl	hiebui	ng:		
δ _{N0} =	δ N0-Faktor · $ au$ Ed							ć	$\delta_{V0} = \delta$	V0-Fak	_{tor} · Vı	Ēd						
$\delta_{N\infty} =$	- δ _{N∞-Faktor} · τ _{Ed}							ć	δ _{V∞} = δ	Šv∞-Faŀ	_{ctor} · V	Ed						
	Bemessungswe								(V _{Ed} : E									
einwi	irkenden Zugsp	annur	ng)					(einwir	kende	en Qu	erkra	ft)					
Tabelle	e C14.2: Ver	schi	ebui	nger	ı für	fisc	her E	3ewe	ehrui	ngsa	nke	r FR	Α					
ischer F	Rewehrungs-																	
	Bewehrungs-		N	112				M16				M20				M2	24	
nker FF		en füi		112				M16								M2	24	
anker FF /erschie	RA		r Zug	/I12 Jlast¹)	perat			I, II							M2	24	
anker FF Verschie Ungeris	RA ebungs-Faktor sener oder gei	rissen	r Zug ier B	/I12 Jlast¹)	perat	turbe		I, II)			M2		
anker FF Verschie Ungerise DNO-Faktor	RA ebungs-Faktor	rissen	r Zug ier Be	//12 Jlast ¹⁾ eton;)	perat	turbe	reich	I, II			M20					12	
anker FF Verschie Ungerise ŠN0-Faktor ŠN∞-Faktor	RA ebungs-Faktor sener oder gei	issen	r Zug er Be	112 plast ¹⁾ eton; ,09 ,13	Tem	perat	turbe	reich 0,10	Ι, ΙΙ			M20				0,1	12	
anker FF Verschie Ungerise ŠNO-Faktor ŠNO-Faktor Verschie	RA ebungs-Faktor sener oder gei [mm/(N/mm²)]	rissen en für	r Zug er Be 0 0	112 glast ¹⁾ eton; ,09 ,13) Tem		turbe	reich 0,10 0,15				M20				0,1	12	
anker Ff Verschie Ungeriss ĎNo-Faktor ĎN∞-Faktor Verschie Ungeriss	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger	rissen en für	r Zug er Be 0 0 r Que	112 glast ¹⁾ eton; ,09 ,13) Tem		turbe	reich 0,10 0,15				M20				0,1	12	
Inker Ff /erschie Jngeriss No-Faktor /erschie Jngeriss No-Faktor	RA ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor	rissen en für	r Zug er Be 0 0 r Que er Be	llast ¹⁾ eton; ,09 ,13 erlast) Tem		turbe	reich 0,10 0,15 reich				0,11 0,16))			0,1	12	
Inker FF /erschie Jngeriss ino-Faktor /erschie Jngeriss ivo-Faktor	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger	en für	r Zug er Be 0 0 r Que er Be 0	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09		rechn	ung c	0,11 0,16 0,07 0,11	3	en Ve	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Jngeriss DNO-Faktor Verschie Jngeriss DVO-Faktor 1) Berec	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN]	en für	r Zug er Be 0 0 r Que er Be 0	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	I, II	rechn = δvc	_	0,11 0,16 0,07 0,11	3	en Ve	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker FF Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berect δNo =	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN]	en für	r Zug er Be 0 0 r Que er Be 0	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	I, II 2) Bei δνο		-Faktor	0,11 0,16 0,07 0,11 er efff	3	en Ve	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss ONO-Faktor Verschie Ungeriss OVO-Faktor 1) Berec δ NO = δ NO = δ NO =	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer	en für issen	r Zug 0 0 r Que er Be 0 0	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Ber δνο δνω	$\delta = \delta v_0$ $\delta = \delta v_0$)-Faktor ∞-Faktor	0,11 0,16 0,07 0,11 er efff	ektive		rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 der eff · V _{Ed}	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δN0-Faktor Verschie Ungeriss δV0-Faktor 1) Berec δN0 = δN0 = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δN0-Faktor Verschie Ungeriss δV0-Faktor 1) Berec δN0 = δN0 = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker Ff Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd:	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für rissen	o O O O O O O O O O O O O O O O O O O O	112 eton; ,09 ,13 erlast eton; ,12 ,18	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker FF Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd: einwi	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungsweirkenden Zugsp	en für en für issen ektiven ert der eannur	r Zug 0 0 r Que er Be 0 0 n Vers	plast ¹ ; eton; ,09 ,13 erlast eton; ,12 ,18 schiel	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	
Anker FF Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Bered δNo = (τEd: einwi	ebungs-Faktor sener oder ger [mm/(N/mm²)] ebungs-Faktor sener oder ger [mm/kN] chnung der effer δNo-Faktor · τEd Bemessungswe	en für en für issen ektiven ert der eannur	r Zug 0 0 r Que er Be 0 0 n Vers	plast ¹ ; eton; ,09 ,13 erlast eton; ,12 ,18 schiel	Tem	perat	turbe	reich 0,10 0,15 reich 0,09	1, II 2) Bei δνο δνω (Ve	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	0-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 ler eff · V _{Ed} · V _{Ed} ungsv	ektive	ler	rschie	0,1 0,1 0,0 0,0	12 18 06	

Tabelle C15.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- und Querzugbelastung von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

	ule seisillis	CITC L	_0131	ung		<u> </u>							
Anker- /	Gewindestange				M10	M12	M14	M16	M20	M22	M24	M27	M30
Zugtrag	fähigkeit, Stahlversage	n ¹⁾											
fischer A	Ankerstangen und Stan	dard-	Gew	rinde	stanger	ı, Leist	ungska	ategori	e C1 ²⁾				
<u>0</u> 5	Stahl galvanisch		5.8		29(27)	43	58	79	123	152	177	230	281
Mid.	verzinkt	e eits	8.8		47(43)	68	92	126	196	243	282	368	449
Charakt. Wider- stand N _{Rk,s,C1}	Nichtrostender Stahl R	Festigkeits klasse	50	[kN]	29	43	58	79	123	152	177	230	281
ara	und Hochkorrosions-	-est ≥	70		41	59	81	110	172	212	247	322	393
- 유	beständiger Stahl HCR	"	80		47	68	92	126	196	243	282	368	449
fischer A	Ankerstangen und Stan	dard-	Gew	inde	stanger	ı, Leist	ungska	ategori	e C2 ²⁾				
-	Stahl galvanisch	4	5.8		_4)	39	_4)	72	108	_4)	177	_4)	_4)
Charakt. Widerstand NRK,S,C2	verzinkt	Festigkeits- klasse	8.8		_4)	61	_4)	116	173	_4)	282	_4)	_4)
Charakt. Viderstan N _{Rk,s,C2}	Nichtrostender Stahl R	tigkeit lasse	50	[-]	_4)	39	_4)	72	108	_4)	177	_4)	_4)
ò\\\ Z	aria i locilitori colorio	Fest F	70		_4)	53	_4)	101	152	_4)	247	_4)	_4)
	beständiger Stahl HCR		80		_4)	61	_4)	116	173	_4)	282	_4)	_4)
	gfähigkeit, Stahlversag												
fischer A	Ankerstangen, Leistunç	skate	gor	ie C1									
2 <u>e</u>	Stahl galvanisch	۰	5.8		17(16)	25	34	47	74	91	106	138	168
Wider Rk,s, C1	verzinkt	eits	Festigkeits- klasse 20 70 70 70 70 70 70 70 70 70 70 70 70 70		23(21)	34	46	63	98	122	141	184	225
Charakt. Widerstand VRK,S, C1	Nichtrostender Stahl R	stigkeit klasse	50	[kN]	15	21	29	39	61	76	89	115	141
harakt. stand V	und Hochkorrosions-	Fes A	$\overline{}$		20	30	40	55	86	107	124	161	197
<u>ک</u> ۳	beständiger Stahl HCR		80		23	34	46	63	98	122	141	184	225
Standar	d-Gewindestangen, Lei	stung	ıskat	tegor	ie C1 ²⁾								
	Stahl galvanisch	١.	5.8		12(11)	17	24	33	52	64	74	97	118
Wider Rk,s, C1	verzinkt	eits	8.8		16(14)	24	32	44	69	85	99	129	158
¥; ₹	Nichtrostender Stahl R	stigkeit Klasse	50	[kN]	11	15	20	27	43	53	62	81	99
Charakt. Wider- stand V _{Rk,s, C1}	und Hochkorrosions-	Festigkeits- klasse	70		14	21	28	39	60	75	87	113	138
단 <u>x</u>	beständiger Stahl HCR	-	80		16	24	32	44	69	85	99	129	158
fischer A	Ankerstangen und Stan	dard-	Gew	inde	stanger	ı, Leist	ungska	ategori	e C2				
der-	Stahl galvanisch	γ.	5.8		_4)	14	_4)	27	43	_4)	62	_4)	_4)
Charakt. Widerstand VRK, s, C2	verzinkt	Festigkeits- klasse	8.8		_4)	22	_4)	44	69	_4)	99	_4)	_4)
م پلا م <	Nichtrostender Stahl R	stigkeit Klasse	50	[-]	_4)	14	_4)	27	43	_4)	62	_4)	_4)
harakt. stand V	und Hochkorrosions- beständiger Stahl HCR	Fes A			_4)	20	_4)	39	60	_4)	87	_4)	_4)
			80		_4)	22	_4)	44	69	_4)	99	_4)	_4)
⊢aktor fü	ir den Ringspalt	αgap		[-]				0	,5 (1,0)	<i>ა</i> ,			

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C1.1; für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte für die Stahltragfähigkeiten von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 15

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Der Wert in Klammer gilt für gefüllte Ringspalte zwischen der Änkerstange und dem Durchgangsloch im Anbauteil.

Die fischer Verfüllscheibe ist zu verwenden nach Anhang A 1

⁴⁾ keine Leistung bewertet

Tabelle C16.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- und Querzugbelastung von **Betonstahl (B500B)** für die seismische Leistungskategorie C1

			, , _ ,		7	<u> </u>		,,,,,		_0.0	9	JO. 10	.090		•
Stabnenndurchmesser		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Zugtragfähigkeit, Stahlversager	1)														
Betonstabstahl B500B nach DIN	I 488-2:200	9-08,	Leis	tung	skate	egori	e C1								
Charakteristischer Widerstand	$N_{\text{Rk,s,C1}}$	[kN]	44	63	85	111	140	173	209	249	270	292	339	389	443
Quertragfähigkeit, Stahlversage	n ohne He	belar	m ¹⁾												
Betonstabstahl B500B nach DIN	I 488-2:200	9-08,	Leis	tung	skate	egori	e C1								
Charakteristischer Widerstand	$V_{Rk,s,C1}$	[kN]	15	22	30	39	49	61	74	88	95	102	119	137	155

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 siehe Tabelle C16.2

Tabelle C16.2: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen und Betonstahl (B500B) für die seismische Leistungskategorie C1 oder C2

Ankei	r- / Gewindestange		M10) 1	VI12	M14	М	16	M20	M2	22	M24	M2	7	M30		
Stabn	enndurchmesser			ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Zugtr	agfähigkeit, Stahlversa																
	Olabela a serial d		5.8								1,50						
sits-	Stahl verzinkt	e e	8.8		1,50												
sicherheits wert y _{Ms,N}	Nichtrostender Stahl R	Festigkeits klasse	50	r 1		2,86											
Teilsicherheits beiwert y _{Ms,N}	und Hochkorrosions-	Fes	70	[-]						1,5	i0 ²⁾ / 1	,87					
Teils	beständiger Stahl HCR		80		1,60												
	Betonstahl	B5	500B		1,40												
Quert	ragfähigkeit, Stahlvers	agen¹)															
	Stahl verzinkt		5.8								1,25						
eits-	Starii verzirikt	eits- e	8.8								1,25						
erh€ rt ⅓M	Nichtrostender Stahl R	Festigkeits klasse	50	r 1							2,38						
eilsicherheits beiwert y _{Ms,V}	und Hochkorrosions-	Fes	70	[-]		1,25 ²⁾ / 1,56											
Teil	beständiger Stahl HCR		80		1,33												
	Betonstahl	B	500B								1,50						

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus Anhang C 16 Leistungen Charakteristische Werte der Stahltragfähigkeiten von Betonstahl unter seismischer Einwirkung (Leistungskat. C1) sowie Teilsicherheitsbeiwerte (Leistungskat. C1 / C2)

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl HCR, mit f_{yk} / f_{uk} ≥ 0,8 und A₅ > 12 % (z.B. fischer Ankerstangen)

Tabelle C17.1: Charakteristische We	rte für die Tragfähigkeit von fischer Ankerstangen
und Standard-Gewin	destangen für die seismische Leistungskategorie C1
im hammergebohrten	Bohrloch; Nutzungsdauer 50 und 100 Jahre

Anker- /	Gewindestange			M10	M12	M14	M16	M20	M22	M24	M27	M30
Charakte	eristische Verbundtra	agfähig	keit, koml	oinierte	s Vers	agen d	urch H	erauszi	ehen u	nd Bet	onausb	ruch
Hammer	bohren mit Standard	l- oder l	Hohlbohre	er (troc	kener d	oder na	sser B	eton)				
Tempe- ratur-	I: 35 °C / 60 °C	_	[N/mm ²]	7,0	7,0	6,7	6,0	5,7	6,7	6,7	6,7	6,7
bereich	II: 50 °C / 72 °C	τ _{Rk,C1}	ן [וא/ווווו-]	7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)											
Tempe- ratur-	I: 35 °C / 60 °C	_	[N/mm ²]	7,5	7,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7
bereich	II: 50 °C / 72 °C	τ _{Rk,C1}		6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7
Montage	ebeiwerte											
Trockene	er oder nasser Beton		r 1					1,0				
Wasserg	efülltes Bohrloch	γinst	[-]		1,2	2 ¹⁾				1,4 ¹⁾		
43					•		•				•	

¹⁾ Nicht zulässig für eine Nutzungsdauer von 100 Jahren

Tabelle C17.2: Charakteristische Werte für die Tragfähigkeit von Betonstahl für die seismische Leistungskategorie C1 im hammergebohrten Bohrloch; Nutzungsdauer 50 und 100 Jahre

Stabnen	ndur	chmesser		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Charakte	Charakteristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch																
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)																
Tempe- ratur-	1:	35 °C / 60 °C	_	[N/mm²]	7,0	7,0			5,7		6,7	6,7	6,7	6,7	6,7	6,7	4,8
bereich	II:	50 °C / 72 °C	τ _{Rk,C1}	[14/11111]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)																
Tempe-	l:	35 °C / 60 °C	_	[N/mm ²]	7,5	6,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
ratur- bereich	II:	50 °C / 72 °C	τ _{Rk,C1}	[IN/IIIII-] 	6,5	6,5	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Montage	Montagebeiwerte																
Trockene	er ode	er nasser Beton		r 1							1,0						
Wasserg	efüllt	es Bohrloch	γinst	[-]		1,2 1) 1,4 1)											

¹⁾ Nicht zulässig für eine Nutzungsdauer von 100 Jahren

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte unter seis. Einwirkung (Leistungskategorie C1) für fischer Ankerstangen, Standard-Gewindest. und Betonstahl; Nutzungsdauer 50 und 100 Jahre

Anhang C 17

Tabelle C18.1: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C2 im hammergebohrten Bohrloch; Nutzungsdauer 50 und 100 Jahre

Anker- /	Gewindestange		M12	M16	M20	M24					
Charakt	eristische Verbundtr	agfähigkeit, l	combiniertes Vers	sagen durch Hera	usziehen und Be	etonausbruch					
Hamme	rbohren mit Standard	d- oder Hohlb	ohrer (trockener	oder nasser Beto	n)						
Tempe- ratur-	I: 35 °C / 60 °C	τ _{Bk.C2} [N/m	3,5	5,8	5,0	3,1					
bereich	II: 50 °C / 72 °C	$ au_{ m Rk,C2}$ [N/m	3,3	5,5	4,7	2,9					
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)											
Tempe-	I: 35 °C / 60 °C	τ _{Bk C2} [N/m	3,5	5,8	5,0	3,1					
ratur- bereich	II: 50 °C / 72 °C	$ au_{ m Rk,C2}$ [N/m	3,3	5,5	4,7	2,9					
Montage	ebeiwerte										
Trocken	er oder nasser Beton		,	1	,0						
Wasserg	gefülltes Bohrloch	γinst [-	J	1,2 ¹⁾	1,	4 ¹⁾					
1) Nicht z	rulässig für eine Nutzu	ngsdauer von	100 Jahren								

¹⁾ Nicht zulässig für eine Nutzungsdauer von 100 Jahren

Verschiebungen unter Zuglast¹)											
δN,C2 (DLS)-Faktor	[mm/(N/mm²)]	0,09	0,10	0,11	0,12						
δ N,C2 (ULS)-Faktor		0,15	0,17	0,17	0,18						
Verschiebungen unter Querlast ²⁾											
δv,C2 (DLS)-Faktor		0,18	0,10	0,07	0,06						
	[mm/kN]	,	,	·	·						

1) Berechnung der effektiven Verschiebung:

$$\begin{split} &\delta_{\text{N,C2}}\,(\text{DLS}) = \delta_{\text{N,C2}}\,(\text{DLS})\text{-Faktor}\,\cdot\,\tau_{\text{Ed}} \\ &\delta_{\text{N,C2}}\,(\text{ULS}) = \delta_{\text{N,C2}}\,(\text{ULS})\text{-Faktor}\,\cdot\,\tau_{\text{Ed}} \\ &(\tau_{\text{Ed}}\text{: Bemessungswert der} \end{split}$$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\begin{array}{l} \delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Faktor}} \cdot V_{\text{Ed}} \\ \delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Faktor}} \cdot V_{\text{Ed}} \\ \text{(VEd: Bemessungswert der einwirkenden Querkraft)} \end{array}$

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte unter seis. Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard-Gewindestangen; Nutzungsdauer 50 und 100 Jahre

Anhang C 18