

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/1002 vom 5. Oktober 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

TOX Fassadendübel Fassad und Fassad XL

Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk

TOX-Dübel-Technik GmbH Brunnenstraße 31 72505 Krauchenwies DEUTSCHLAND

Werk 1 Plant 1

19 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

ETAG 020, März 2012, verwendet als EAD gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011

ETA-17/1002 vom 17. Januar 2018

Europäische Technische Bewertung ETA-17/1002

Seite 2 von 19 | 5. Oktober 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/1002

Seite 3 von 19 | 5. Oktober 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Der TOX Fassadendübel in den Größen Fassad 10 und Fassad XL 14 ist ein Kunststoffdübel bestehend aus einer Dübelhülse aus Polyamid und einer zugehörigen Spezialschraube aus galvanisch verzinktem Stahl oder nichtrostendem Stahl.

Die Dübelhülse wird durch das Eindrehen der Spezialschraube, die die Hülse gegen die Bohrlochwandung presst, verspreizt.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser ETA zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 1

3.2 Sicherheit und Barrierefreiheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristische Tragfähigkeit für Zug- und Querbeanspruchung	Siehe Anhang C 1 – C 3, C 5
Rand- und Achsabstände	Siehe Anhang B 2 – B 4
Verschiebungen	Siehe Anhang C 4, C 5
Dauerhaftigkeit	Siehe Anhang B 1

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 020, März 2012, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: 97/463/EG.

Folgendes System ist anzuwenden: 2+

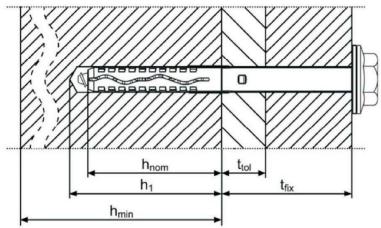
Europäische Technische Bewertung ETA-17/1002

Seite 4 von 19 | 5. Oktober 2020

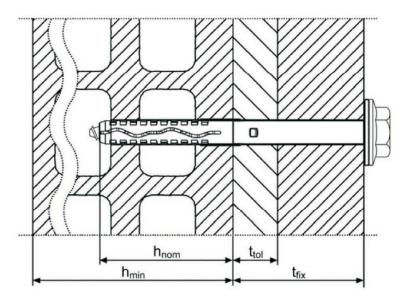
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 5. Oktober 2020 vom Deutschen Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt Ziegler



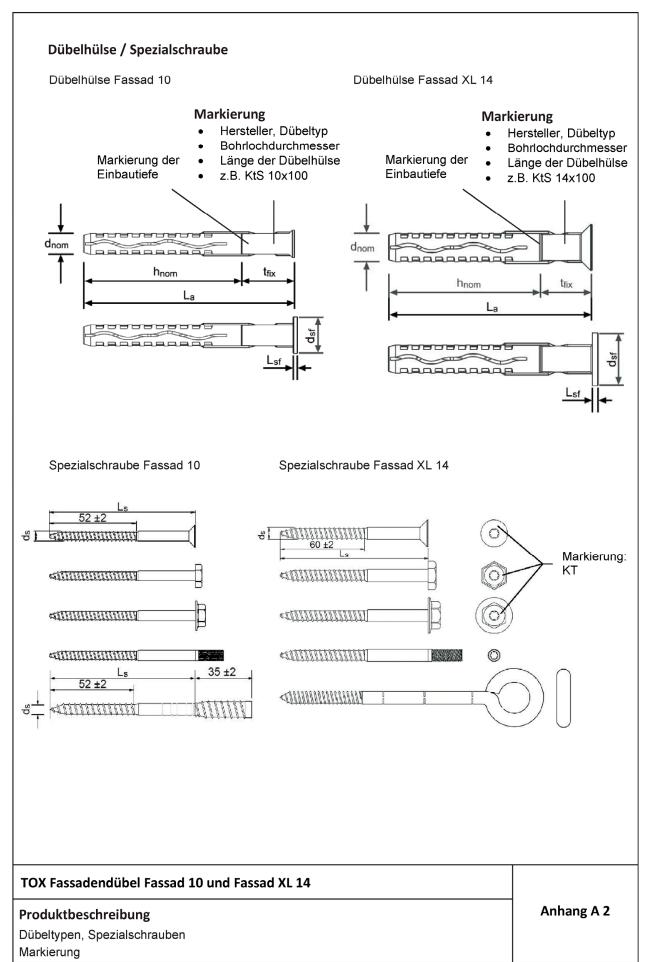
TOX Fassadendübel Fassad 10 und Fassad XL 14

Anwendung in Beton und Vollsteinmauerwerk

Anwendung in Loch- und Hohlsteinmauerwerk

Legende

 h_{nom} = Gesamtlänge des Kunststoffdübels im Verankerungsgrund


h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

h = Bauteildicke (Wand) t_{fix} = Dicke des Anbauteils

 t_{tol} = Dicke der Toleranzausgleichsschicht oder der nichttragenden Schicht

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Produktbeschreibung	Anhang A 1
Einbauzustand	

Tabelle A1: Abmessungen [mm]

Тур	Dübelhülse				s	pezials	chraube	1)				
	d _{nom}	h _{nom}	t _{fix,min}	t _{fix,max}	L _{a,min}	L _{a,max}	L _{sf} ²⁾	d _{sf}	ds	d _k ³⁾	L _{s,min}	L _{s,max}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
10	10	70	10	230	80	300	2	18	7	5,8	90	310
14	14	70	10	290	80	360	3	26	10	8,4	90	370

- Um sicherzustellen, dass die Schraube die Dübelhülse durchdringt, muss L_s = L_a + L_{sf} + 8 betragen. Gilt nur bei Ausführung mit flachem Rand
- 2)
- Kerndurchmesser des Schraubengewindes

Tabelle A2: Werkstoffe

Benennung	Werkstoff
Dübelhülse	Polyamid PA6, Farbe: rot, grau
Spazialashrauha	Stahl, Festigkeitsklasse 6.8, galvanisch verzinkt Zn ≥ 5µm nach EN ISO 4042:2018
Spezialschraube	nichtrostender Stahl gemäß EN 10088-3:2014, Werkstoffnummer 1.4401, 1.4404 oder 1.4571

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Produktbeschreibung	Anhang A 3
Abmessungen und Werkstoffe	

Spezifizierungen des Verwendungszwecks

Beanspruchung der Verankerung:

- · statische oder quasi-statische Belastung
- · Mehrfachbefestigung von nichttragenden Systemen

Verankerungsgrund:

- · BewehrteroderunbewehrterNormalbetonmiteinerFestigkeitsklasse≥C12/15(Nutzungskategoriea), gemäß EN 206-1:2000, Anhang C 1
- Vollsteinmauerwerk (Nutzungskategorie b) nach Anhang C 2
 Anmerkung: Die charakteristische Tragfähigkeit des Dübels kann auch für Vollsteinmauerwerk mit größeren Abmessungen und größeren Druckfestigkeiten angewendet werden
- · Hohl- oder Lochsteine (Nutzungskategorie c) nach Anhang C 3
- · Porenbeton (Nutzungskategorie d) nach Anhang C 5
- · Festigkeitsklasse des Mauermörtels ≥ M2,5 gemäß EN 998-2:2010.
- · Bei anderen Steinen der Nutzungskategorie a, b, c oder d darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach ETAG 020, Anhang B Fassung März 2012 ermittelt werden.

Temperaturbereich:

· Temperaturbereich a): -40°C bis +40°C (max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C)

· Temperaturbereich b): -40°C bis +80°C (max. Langzeit-Temperatur +50°C und max. Kurzzeit-Temperatur +80°C)

Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl)
- Die Spezialschraube aus galvanisch verzinktem Stahl darf auch im Freien verwendet werden, wenn nach sorgfältigem Einbau der Befestigungseinheit der Bereich des Schraubenkopfes gegen Feuchtigkeit und Schlagregen so geschützt wird, dass ein Eindringen von Feuchtigkeit in den Dübelschaft nicht möglich ist. Dafür ist vor dem Schraubenkopf eine Fassadenbekleidung oder eine vorgehängte hinterlüftete Fassade zu befestigen und der Schraubenkopf selbst mit einer weichplastischen dauerelastischen Bitumen-Öl-Kombinationsbeschichtung (z.B. Kfz-Unterboden-bzw. Hohlraumschutz) zu versehen.
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl).
- Anmerkung: Besonders aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerung erfolgt in Übereinstimmung mit ETAG 020, Anhang C Fassung März 2012 unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten, der Art und Festigkeit des Verankerungsgrundes, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Position der Dübel ist in den Konstruktionszeichnungen anzugeben.
- Die Befestigungen sind nur als Mehrfachbefestigung für nichttragende Systeme nach ETAG 020 Fassung März 2012 zu verwenden.

Finhau:

- · Beachtung des Bohrverfahrens nach Anhang C 1, C 2, C 3 und C 5
- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- · Temperatur beim Setzen des Dübels von ≥-20°C
- · UV-Belastung durch Sonneneinstrahlung des ungeschützten, d.h. unverputzten Dübels ≤ 6 Wochen

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Verwendungszweck	Anhang B 1
Spezifikationen	

785559 20 8 06 04-97/20

Tabelle B1: Montagekennwerte

Dübeltyp		10	14
Bohrlochdurchmesser	$d_0 = [mm]$	10	14
Bohrerschneidendurchmesser	d _{cut} ≤ [mm]	10,45	14,45
Tiefe des Bohrlochs bis zum tiefsten Punkt 1)	h₁ ≥ [mm]	85	85
Gesamtlänge des Kunststoffdübels im Verankerungsgrund 1), 2)	h _{nom} ≥ [mm]	70	70
Bohrlochdurchmesser im Anbauteil	d _f ≤ [mm]	10,5	14,5

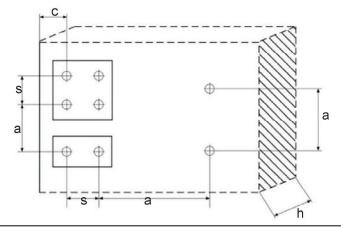

¹⁾ Siehe Anhang A 1

Tabelle B2: Minimale Bauteildicke, Randabstand und Achsabstand in Beton

Befestigungspunkte mit Achsabständen a $\leq s_{cr,N}$ gelten als Gruppen mit einer maximalen charakteristischen Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle C3. Für a $> s_{cr,N}$ gelten die Dübel als Einzeldübel, von denen jeder eine charakteristische Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle C 3 hat.

Тур		Minimale Bauteildicke h _{min} [mm]	Charak- teristischer Randabstand C _{cr,N} [mm]	Minimaler Randabstand C _{min} [mm]	Minimaler Achsabstand S _{min} [mm]	Charak- teristischer Achsabstand Scr,N [mm]
10	Beton C12/15	100	100	85	70	85
10	Beton ≥ C16/20	100	70	60	50	85
1.0	Beton C12/15	100	140	120	105	115
14	Beton ≥ C16/20	100	100	85	75	115

Anordnung Randabstände und Achsabstände in Beton

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Verwendungszweck	Anhang B 2
Montagekennwerte, Rand- und Achsabstand in Beton	

Im Mauerwerk aus Hohlblöcken oder Lochsteinen ist der Einfluss von h_{nom} > 70 mm durch Baustellenversuche nach ETAG 020, Anhang B zu ermitteln.

Tabelle B3: Minimale Bauteildicke, Randabstand und Achsabstand in Vollsteinmauerwerk

Dübeltyp		1	0	1	14	
Minimale Bauteildicke	h _{min} [mm]	115	240 ²⁾	115	240 1)	
Einzeldübel						
Minimaler Achsabstand	a _{min} [mm]	max (250 mm / s _{1,min} / s _{2,min})			S_{2,min})	
Minimaler Randabstand	c _{min} [mm]	100	120 ²⁾	100	200 1)	
Dübelgruppe						
Achsabstand vertikal zum freien Rand	s _{1,min} [mm]	200	85 ²⁾	200		
Achsabstand parallel zum freien Rand	s _{2,min} [mm]	400	85 ²⁾	400		
Minimaler Randabstand	c _{min} [mm]	100	120 ²⁾	100		

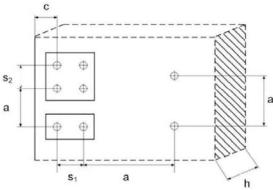

¹⁾ Nur für Kalksandvollsteine KS-NF bei einer Bauteildicke von h≥ 240 mm [vgl. Tabelle C4, Fußnote 5]

Tabelle B4: Minimale Bauteildicke, Randabstand und Achsabstand in Loch- und Hohlsteinmauerwerk (nur für 10)

Dübeltyp		10 in HLz-2DF ¹⁾	10 in KSL-8DF ¹⁾
Minimale Bauteildicke	h _{min} [mm]	115	115
Einzeldübel			
Minimaler Achsabstand	a _{min} [mm]	max (250 mn	n / s _{1,min} / s _{2,min})
Minimaler Randabstand	c _{min} [mm]	100	60
Dübelgruppe			
Achsabstand vertikal zum freien Rand	s _{1,min} [mm]	100	100
Achsabstand parallel zum freien Rand	s _{2,min} [mm]	100	100
Minimaler Randabstand	c _{min} [mm]	100	60

¹⁾ Information Ausgangsmaterial siehe Tabelle C5

Anordnung Randabstände und Achsabstände in Mauerwerk

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Verwendungszweck	Anhang B 3
Rand- und Achsabstand in Vollsteinmauerwerk und	
Loch- und Hohlsteinmauerwerk	

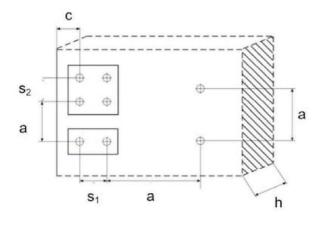
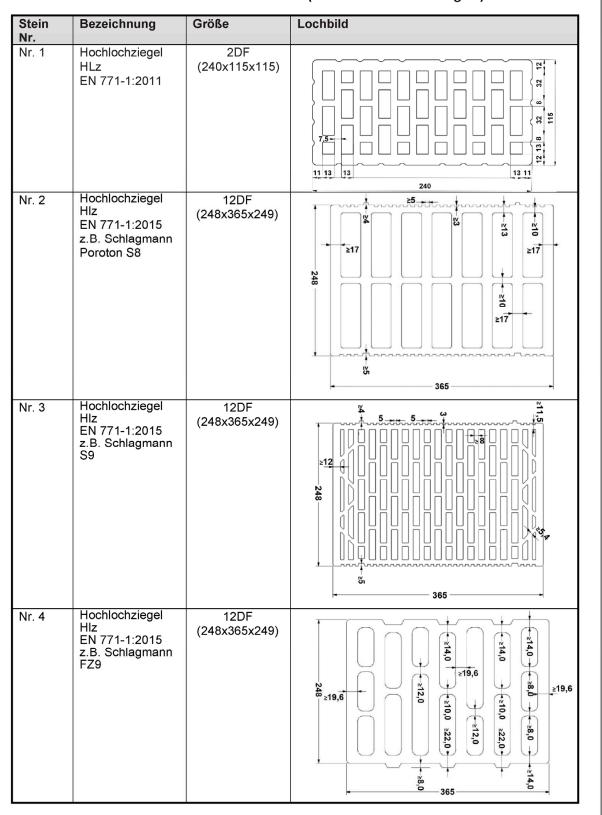

²⁾ Nur für Mz-NF und KS-NF [vgl. Tabelle C4, Fußnote 6]

Tabelle B5: Minimale Bauteildicke, Randabstand und Achsabstand in Porenbeton

Dübeltyp		10
Minimale Bauteildicke	h _{min} [mm]	200
Einzeldübel		
Minimaler Achsabstand	a _{min} [mm]	max (250 mm / s _{1,min} / s _{2,min})
Minimaler Randabstand	c _{min} [mm]	100
Dübelgruppe		
Minimaler Achsabstand vertikal zum freien Rand	S _{1,min} [mm]	200
Minimaler Achsabstand parallel zum freien Rand	S _{2,min} [mm]	400
Minimaler Randabstand	c _{min} [mm]	100


Anordnung Randabstände und Achsabstände in Porenbeton

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Verwendungszweck	Anhang B 4
Rand- und Achsabstand in Porenbeton	

Tabelle B6: Verzeichnis der Hohl und Lochsteine (siehe Tabelle C5 Anhang C3)

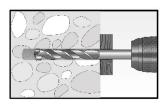
TOX Fassadendübel Fassad 10 und Fassad XL 14


Verwendungszweck

Steingeometrie

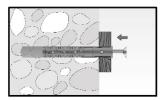
Anhang B 5

Tabelle B7: Verzeichnis der Hohl und Lochsteine (siehe Tabelle C5 Anhang C3)


TOX Fassadendübel Fassad 10 und Fassad XL 14

Verwendungszweck
Steingeometrie

Anhang B 6


Montageanleitung


1. Loch bohren

2. Bohrloch säubern

3. Dübel durch das vorgebohrte Anbauteil in das Bohrloch stecken

4. Anbauteil festschrauben

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Verwendungszweck	Anhang B 7
Montageanleitung	

Tabelle C1: Charakteristische Tragfähigkeit der Schraube

	1	LO	14			
Versagen des Spreizelements (Spe	gvz	nicht- rostender Stahl	gvz	nicht- rostende r Stahl		
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	15,0	13,5	30,2	27,1
Teilsicherheitsbeiwert	$\gamma_{\text{Ms}^{1)}}$		1,5	1,6	1,5	1,6
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	7,5	6,8	15,1	13,6
Teilsicherheitsbeiwert	$\gamma_{\text{Ms}^{1)}}$		1,25	1,33	1,25	1,33
Charakteristische Biegemoment	$M_{Rk,s}$	[Nm]	12,8	11,5	36,2	32,6
Teilsicherheitsbeiwert	$\gamma_{\text{Ms}^{1)}}$	·	1,25	1,33	1,25	1,33

¹⁾ Wenn keine nationalen Regelungen vorhanden

Tabelle C2: Werte unter Beanspruchung in Beton C20/25 bis C50/60 in jede Lastrichtung, ohne dauernde zentrische Zuglast und ohne Hebelarm, Befestigung von Fassadensystemen

Dübeltyp	Feuerwiderstandsklasse	F _{Rk,fi,90}	γ _{M,fi} 1)
Fassad 10	R 90	0,8 kN	1,0

¹⁾ Wenn keine nationalen Regelungen vorhanden

Tabelle C3: Charakteristische Tragfähigkeit für Versagen durch Herausziehen bei Anwendung in Beton (Bohrverfahren: Hammerbohren)

				10	14			
Versagen durch Herausziehen (Ku	24/40 °C	50/80 °C	24/40 50/80 °C °C					
Beton ≥ C16/20 gemäß EN 206-1:2000								
Charakteristische Zugtragfähigkeit	$N_{Rk,p}$	[kN]	5,0	3,5	7,5	5,0		
Teilsicherheitsbeiwert	$\gamma_{\text{Mc}^{1)}}$		1,8					
Beton C12/15 gemäß EN 206-1:20	Beton C12/15 gemäß EN 206-1:2000							
Charakteristische Zugtragfähigkeit	$N_{Rk,p}$	[kN]	3,5	2,5	5,0	3,5		
Teilsicherheitsbeiwert	$\gamma_{\text{Mc}^{1)}}$			1	,8			

¹⁾ Wenn keine nationalen Regelungen vorhanden

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Leistungen	Anhang C 1
Charakteristische Tragfähigkeiten der Schraube,	
charakteristisches Biegemoment, charakteristische Tragfähigkeit bei Anwendung in Beton	

Tabelle C4: Charakteristische Tragfähigkeit F_{RK} in [kN] in Vollsteinmauerwerk (Nutzungskategorie "b")

Veranke- rungsgrund	Min. Format oder min. Größe (L x B x H)	Roh- dichte	Mindest- druck- festigkeit	Bohr- ver- fahren	Bau- teil- dicke	Bemer- kungen	-	Tragfäh	ristische nigkeit [kN]	9	
							10	0	14	4	
	[mm]	ρ [kg/dm³]	f _b [N/mm²]		h [mm]		24/40 °C	50/80 °C	24/40 °C	50/80 °C	
			20		115 H ¹⁾		4,0 6,0 ⁴⁾	3,5	4,5 7,5 ⁵⁾	4,5 5,0 ⁵⁾	
Mauerziegel Mz EN 771- 1:2011	NF (240x115x71)	1,8	10				3,0 4,5 ⁴⁾	2,5	3,0 5,0 ⁵⁾	3,0 3,5 ⁵⁾	
	(240)(110)(1)		20				6,0 ⁶⁾	3,5 ⁶⁾	8	3)	
			10				5,0 ⁶⁾	2,5 ⁶⁾			
Kalksand-		1,8	20	H ¹⁾ 240	Querschnitt bis 15%	1,5	1,5	1,5	1,5		
vollstein Ks	NF		10			H ¹⁾ 240	durch Lochung	1,2	1,2	1,2	1,2
	(240x115x71)		20				senkrecht	6,0 ⁶⁾	4,0 ⁶⁾	9,0 5)	6,0 ⁵⁾
			10				Lagerfläche reduziert	5,0 ⁶⁾	3,0 ⁶⁾	6,0 ⁵⁾	4,0 ⁵⁾
Kalksand- vollstein Ks EN 771-	2DF		20	H ¹⁾		Querschnitt bis 15% durch	4,0 6,0 ⁴⁾	4,0	4,5 9,0 ⁵⁾	4,5 9,0 ⁵⁾	
2:2011	(240x115x112) 2,0	10	П	115	Lochung senkrecht zur Lagerfläche reduziert	3,0 4,5 ⁴⁾	3,0	3,0 6,0 ⁵⁾	3,0 6,0 ⁵⁾		
Leichtbeton Vollstein Vbl EN 771-3:2011	8DF (497x115x249)	2,0	12	H ¹⁾	115		3,0	1,5	8	3)	
Teilsicherheitsbei	wert 3)					γ_{Mm}		2	,5		

- 1) Hammerbohren
- ²⁾ Drehbohren
- 3) Wenn keine nationalen Regelungen vorhanden
- ⁴⁾ Gilt nur für Randabstand c ≥ 150 mm
- ⁵⁾ Gilt nur für Randabstand c ≥ 200 mm
- ⁶⁾ Gilt nur für Randabstand c ≥ 120 mm
- 7) Geschnittener Stein für Leibungen
- 8) Keine Leistung bewertet

TOX Fassadendübel Fassad 10 und Fassad XL 14	Anhang C 2
Leistungen Charakteristische Tragfähigkeit in Vollsteinmauerwerk	Ailliang C 2

Tabelle C5: Charakteristische Tragfähigkeit F_{RK} in [kN] in Loch- und Hohlsteinmauerwerk (Nutzungskategorie "c")

Veranke- rungsgrund	Min. Format oder min. Größe (L x B x H)	Ro h- dicht e	Mindest- druck- festigkeit	Bohr- ver- fahre	Bau- teil- dicke	Bemer- kungen		arakteris ragfähig F _{Rk} [k	gkeit
		ŭ					1	0	14
	[mm]	ρ [kg/dm³]	f _b [N/mm²]		h [mm]		24/40 °C	50/80 °C	24/40 50/80 °C °C
Hochlochziegel Hlz EN 771-1:2011	2DF (240x115x115)	1,0	12	R ²⁾	115	Stein Nr. 1	1,5	0,75	8)
Hochlochziegel Hlz EN 771-1:2015	12DF (248x365x249)	0,75	10	R ²⁾	365	Stein Nr. 2 z.B. Schlagmann Poroton S8	0,3	0,1	8)
Hochlochziegel Hlz EN 771-1:2015	12DF (248x365x249)	0,85	12	R ²⁾	365	Stein Nr. 3 z.B. Schlagmann Poroton S9	0,5	0,2	8)
Hochlochziegel Hlz EN 771-1:2015	12DF (248x365x249)	0,75	10	R ²⁾	365	Stein Nr. 4 z.B. Schlagmann Poroton FZ9	1,2	0,6	8)
Deckenziegel Hlz DIN EN 15037- 3:2011-07	(250x530x210)	0,8	10	R ²⁾	210	Stein Nr 5 z.B. Wienerberger Deckeneinhän ge-ziegel	0,9	0,4	8)
Kalksand- lochstein KSL EN 771-2:2011	8DF (250x240x237)	1,4	12	R ²⁾	115 ⁷⁾	Stein Nr. 6	1,2	0,6	8)
Deckenhohl- blockstein Hbl DIN EN 15037- 2:2011-07	(250x550x180)	1,4	2	R ²⁾	180	Stein Nr. 7 z.B. Schnuch SB-Baustoffe GmbH	0,4	0,2	8)
Hohlblockstein Hbl EN 771- 3:2011	16 DF (497x240x249)	0,8	2	R ²⁾	240	Stein Nr. 8 z.B. Jakob Stockschädler GmbH & Co. Kg	0,6	0,3	8)
Teilsicherheitsbeiwer	t ³⁾	· · ·				$\gamma_{\sf Mm}$		2,5	

- 1) Hammerbohren
- ²⁾ Drehbohren
- 3) Wenn keine nationalen Regelungen vorhanden
- ⁴⁾ Gilt nur für Randabstand c≥ 150 mm
- ⁵⁾ Gilt nur für Randabstand c≥ 200 mm
- 6) Gilt nur für Randabstand c≥ 120 mm
- 7) Geschnittener Stein für Leibungen
- 8) Keine Leistung bewertet

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Leistungen	Anhang C 3
Charakteristische Tragfähigkeit in Loch- und Hohlsteinmauerwerk	

Tabelle C6: Verschiebung unter Zuglast und Querlast in Beton

Тур		Zuglast			Querlast		
	F ¹⁾ [kN]	δ _{NO} [mm]	δ _{ν∞} [mm]	F ¹⁾ [kN]	δ _{vo} [mm]	δ _{√∞} [mm]	
10	1,98	0,2	0,4	2,98	1,0	1,5	
14	2,98	0,4	0,6	6,11	3,0	4,5	

¹⁾ Zwischenwerte dürfen interpoliert werden

Tabelle C7: Verschiebung unter Zuglast und Querlast in Vollstein-, Loch- und Hohlsteinmauerwerk

Тур	Ausgangsmaterial 1)	F	Verschiebungen [mm]				
		[kN]	Zugl	ast	Querlast		
			δ_{NO}	δ _{N∞}	δ_{VO}	δ_{ee}	
	Mauerziegel Mz EN 771-1:2011	1,71	0,2	0,4	1,4	2,1	
	Kalksandvollstein KS-NF EN 771-2:2011	0,43	0,2	0,4	0,4	0,5	
	Kalksandvollstein KS-2DF EN 771-2:2011	1,71	0,2	0,4	1,4	2,1	
	Leichtbetonvollstein Vbl EN 771-3:2011	0,86	0,2	0,4	0,7	1,1	
10	Hochlochziegel HLz EN 771-1:2011	0,43	0,1	0,2	0,9	1,3	
	Hochlochziegel HLz S8 EN 771-1:2011	0,09	0,03	0,1	0,1	0,1	
	Hochlochziegel HLz S9 EN 771-1:2011	0,14	0,1	0,1	0,1	0,2	
	Hochlochziegel HLz FZ9 EN 771-1:2011	0,34	0,1	0,1	0,3	0,4	
	Deckeneinhängeziegel HLz DIN EN 15037-3:2011-07	0,26	0,1	0,2	0,2	0,3	
	Kalksandlochstein KSL EN 771-2:2011	0,34	0,2	0,4	0,7	1,0	
	Deckenstein VBL DIN EN 15037-2:2011-07		0,1	0,1	0,1	0,1	
	Hohlblockstein Hbl 2 EN 771-3:2011	0,17	0,1	0,2	0,1	0,2	
	Mauerziegel Mz EN 771-1:2011	2,14	0,2	0,4	1,8	2,7	
14	Kalksandvollstein KS-NF EN 771-2:2011	0,43	0,1	0,2	0,4	0,5	
	Kalksandvollstein KS-2DF EN 771-2:2011	2,57	0,1	0,2	2,1	3,2	
	Kalksandvollstein KS EN 771-2:2011	2,57	1,1	2,2	2,1	3,2	

¹⁾ Informationen zum Ausgangsmaterial: siehe Anhang C2, Tabelle C4 und Anhang C3, Tabelle C5

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Leistungen	Anhang C 4
Verschiebung unter Zuglast und Querlast in Beton, Vollsteinmauerwerk, Loch- und	
Hohlsteinmauerwerk	

Tabelle C8: Charakteristische Tragfähigkeit F_{RK} in [kN] in Porenbeton (Nutzungskategorie "d")

Тур	Verankerungsgrund	Rohdichte	Mindestdruck- festigkeit	Bohr- verfahren		ihigkeit	
		ρ [kg/m³]	f₅ [N/mm²]		F _F [kl 24/40 °C		
10	Ungerissener Porenbeton (Porenbetonblöcke) EN 771-4:2011	≥ 350	1,8	R ²⁾	0,9	0,75	
		≥ 650	5,4	R ²⁾	2,5	2,5	
	Teilsicherheitsbeiwert 1)	У м,аас			2,0		

¹⁾ Wenn keine nationalen Regelungen vorhanden

Tabelle C9: Verschiebung unter Zuglast und Querlast in Porenbeton

Тур	Verankerungsgrund	Zuglast			Querlast		
		F ¹⁾ [kN]	δ _{νο} [mm]	δ _{ν∞} [mm]	F ¹⁾ [kN]	δ _{vo} [mm]	δ _{√∞} [mm]
	f _b ≥ 1,8 N/mm²	0,3	0,2	0,4	0,3	0,6	1,0
10	f _b ≥ 5,4 N/mm²	0,9	0,2	0,4	0,9	1,8	2,7

¹⁾ Bestimmung der Zwischenwerte durch lineare Interpolation

TOX Fassadendübel Fassad 10 und Fassad XL 14	
Leistungen	Anhang C 5
Charakteristische Tragfähigkeit in Porenbeton	
Verschiebung unter Zuglast und Querlast in Porenbeton	

²⁾ Drehbohren