

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0542 of 6 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

NIEDAX Bolt Anchor DAZ, DAZ E4, DAZ HCR

Mechanical fasteners for use in concrete

Niedax GmbH & Co. KG Asbacher Straße 144 53545 Linz am Rhein DEUTSCHLAND

NIEDAX

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

ETA-18/0542 issued on 28 April 2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0542 English translation prepared by DIBt

Page 2 of 19 | 6 November 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 6 November 2020

Specific Part

1 Technical description of the product

The NIEDAX Bolt Anchor DAZ is an anchor made of galvanised steel (DAZ) or made of stainless steel (DAZ E4) or high corrosion resistant steel (DAZ HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 4
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

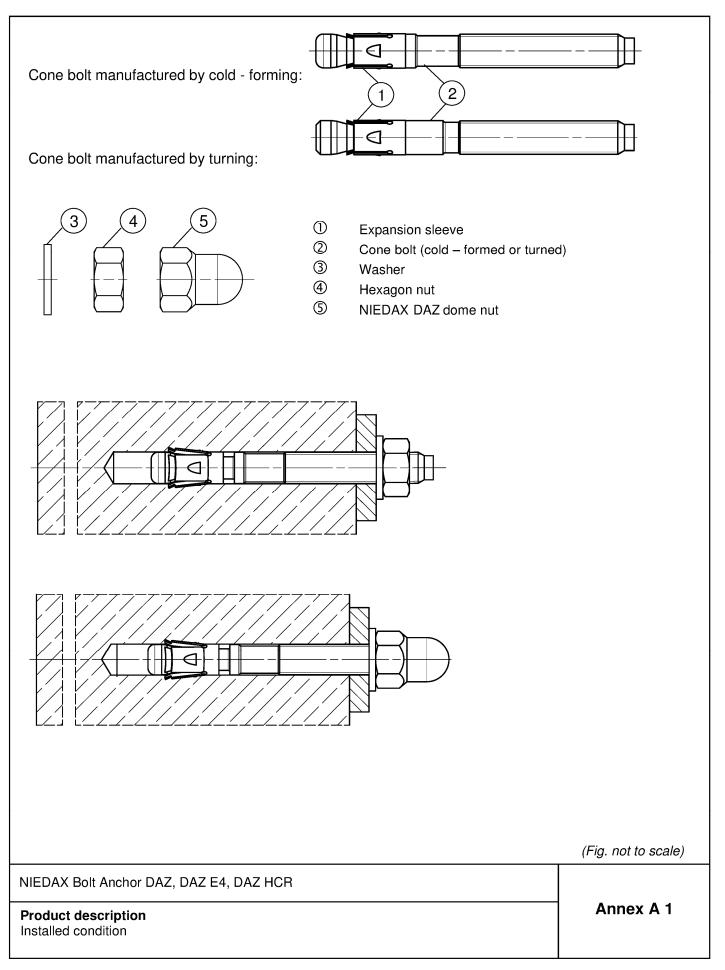
The system to be applied is: 1

European Technical Assessment ETA-18/0542 English translation prepared by DIBt

Page 4 of 19 | 6 November 2020

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

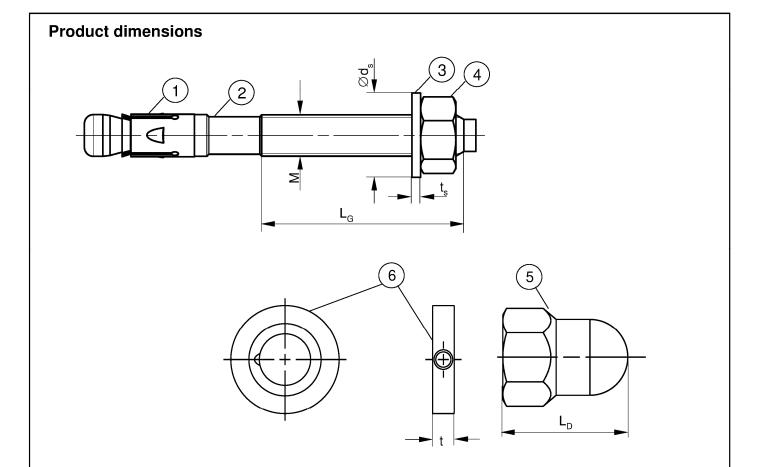
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 6 November 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-18/0542 of 6 November 2020

English translation prepared by DIBt



Produ	ict lab	oel and	d lette	er-cod	e:										
Ma	arking a	ırea 3 -	expans	ion slee	eve										
	ΠT			12/	1				-h		arking a ont side		cone b	olt,	
_		<u> 2</u> -													
		↓		/	В			⊸└							
	r	Marking	area 2	/ ! - cone	bolt										
Prod	uct lab	el, exar	nple:	<	◯ × F/	AZII 1	2/30 R								
Bran	id type	e of fast	ener	-				hread s	ize / m	ax. thicl	kness o	f the fix	ture (t _{fi} ,)	
place	ed at m	arking a	area 2 d	or mark	ing area	a 3	id	lentifica	tion R o	or HCR	placed	at mar	king are	ea 2	
FAZ II:	Са	arbon s [.]	teel, ga	lvanize	d										
FAZ II R: FAZ II H		ainless		esistant	steel										
	511. 11	gricori	03101110	201010111	31001										
Table A	\2.1: l	_etter	- code	at ma	arking	area 1	:								
Marking		(a)	(b)	(C)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	()	(K)
Max. t _{fix}	M6	5	10	15	20	5 45	10 50	15 55	20 60	25 65	30 70	35 75	40 80	45 85	50 90
	M8	40	45	-	_	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20 M24			-		105 130	110 135	115 140	120 145	125 150	130 155	135 160	140 165	145 170	150 175
						100	100		145	100	100	100	105	170	175
Marking		(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8 M10	105 120	115 130	125 140	135 150	145 160	165 180	185 200	205 220	225 240	245 260	295 310	345 360	395 410	445 460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	240	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525
				Calcu	lation (existing	n h _e foi	r install	ed fas	teners:					
							-								
				exist	ing h _{ef}	= B _{(acco}	ording to ta	able A2.1)	– exist	ing t _{fix}					
Thi	ckness	of the f	ixture t	_{fix} includ	ding thio	kness	of faste	ner pla	te t anc	le.g. th	ickness	of grou	ut layer	t _{grout}	
						other no				-		-	, (Fig. no		ale)
												1	,, <i>ig.</i> nc)
NIEDAX	Bolt Ar	nchor D	AZ, DA	Z E4, C	AZ HC	R									
Product	descri	ntion										\neg	Ann	ex A	2
Product			^r code												

Table A3.1: Dimensions [mm]

Part	Decignation					DAZ, D)AZ E4, D/	AZ HCR				
Fail	Designation			M6	M8	M10	M12	M16	M20	M24		
1	Expansion sleeve	Sheet thickne	ss	0,8	1,3	1,4	1,6	2,4	4	3,0		
2	Cone bolt	Thread	size M	6	8	10	12	16	20	24		
2		LG		10	19	26	31	40	50	57		
3	Washer	ts ≥		Veeber ts ≥		1	,4	1,8	2,3	2,	7	3,7
3	washer	Ød₅		11	15	19	23	29	36	43		
4 & 5	Hexagon nut / NIEDAX DAZ	Wrench	n size	10	13	17	19	24	30	36		
5	dome nut	LD	2		-	22	27	33		-		
6	NIEDAX filling disc FFD	t	=		(6		7	8	10		

(Fia.	not	to	scale)
11 191	1101	.0	00000

NIEDAX Bolt Anchor DAZ, DAZ E4, DAZ HCR

Product description Dimensions

Annex A 3

Table	Fable A4.1: Materials DAZ (ISO 4042:2018/Zn5/An(A2K))									
Part	Designation	Material								
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014								
2	Cone bolt	Cold form steel or free cutting steel								
3	Washer	Cold strip, EN 10139:2016								
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012								

Table A4.2: Materials DAZ E4

Part	Designation	Material
1	Expansion sleeve	
2	Cone bolt	Stainless steel EN 10088:2014
3	Washer	
4	Hexagon nut	Stainless steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

Table A4.3: Materials DAZ HCR

Part	Designation	Material
1	Expansion sleeve	Stainless steel EN 10088:2014
2	Cone bolt	Lligh correction registent steel EN 10099/2014
3	Washer	High corrosion resistant steel EN 10088:2014
4	Hexagon nut	High corrosion resistant steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

(Fig. not to scale)

NIEDAX Bolt Anchor DAZ, DAZ E4, DAZ HCR

Product description Materials

Annex A 4

	Specifica	itions o	of intend	ded use				
Anchorages subject to:								
<u>Ci-o</u>				DAZ, D	AZ E4, D	AZ HCR		
Size		M6	M8	M10	M12	M16	M20	M24
Static and quasi-static loads								
Cracked and uncracked concrete					1			
Fire exposure								
Seismic performance	C1	-				1		
category	C2 ¹⁾		-			1		

Base materials:

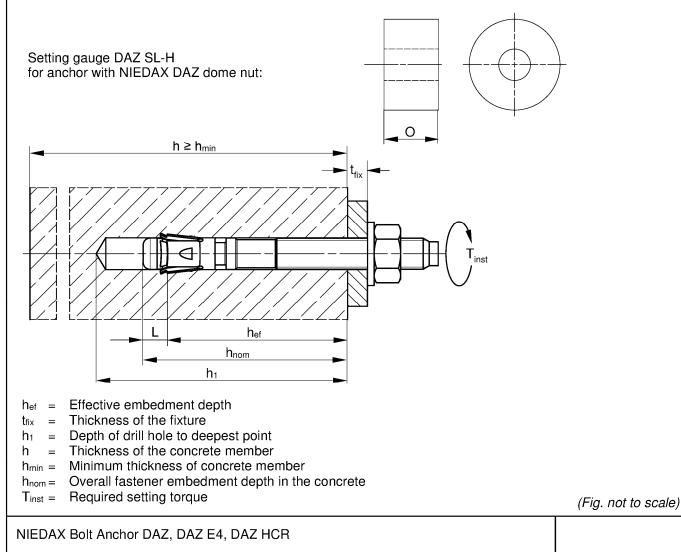
- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206-1:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (DAZ, DAZ E4, DAZ HCR)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (DAZ E4, DAZ HCR)
- Structures subject to external atmospheric exposure and permanently damp internal condition, if other particular aggressive conditions exist (DAZ HCR)
- Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or
 to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055
- For effective embedment depth h_{ef} < 40 mm only statically indeterminate fixings (e.g. light-weight suspended ceilings with internal exposure) are covered by the ETA


Intended Use Specifications Annex B 1

.

Table	B2.1:	Installation	parameters	
		motanation	parametere	

Size					DAZ, DA	AZ E4, D	AZ HCF	2	
Size			M6	M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	d ₀ =		6	8	10	12	16	20	24
Maximum bit diameter with hammer or hollow drilling	d	[mm]	6,40	8,45	10.45	12,5	16,5	20,55	24,55
Maximum bit diameter with diamond drilling	- d _{cut,max}		-	8,15	10,45	12,25	16,45	20,50	24,40
Overall fastener embedment depth in the concrete	h _{nom} ≥ (L)	· · · · · · · · · · · · · · · · · · ·	46,5 (6,5)	44,5 (9,5)	52,0 (12)	63,5 (13,5)	82,5 (17,5)	120 (20)	148,5 (23,5)
Concrete		[mm]	Existing $h_{ef} + L = h_{nom}$						
Depth of drill hole to deepest point	$h_1 \geq$				h _{nom} + 5	1		h _{nom}	+ 10
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14	18	22	26
Required setting torque	T _{inst} =	[Nm]	8	20	45	60	110	200	270
Excess length after hammering-in the cone bolt (for NIEDAX dome nut applications according to Annex B6)	0 =	[mm]		-	12	16	20		-

Installation parameters

Annex B 2

Electronic copy of the ETA by DIBt: ETA-18/0542

Qi			DAZ, DAZ E4, DAZ HCR								
Size			M6	M8	M10	M12	M16	M20	M24		
Minimum edge distance				-		-			-		
Uncracked concrete	Cmin		45 40	45	55	65	95	135			
Cracked concrete	Cmin			40	-10	55	05	85	100		
Corresponding spacing	s	[mm]			acco	rding to A	Annex B4				
Minimum thickness of concrete member	h _{min}	[]	80			100	140	160	200		
Thickness of concrete member	h≥			max. {h _{mi}	n; h1 ¹⁾ + 3	0}	max. { h_{min} ; h_1^{1} + 2 ·				
Minimum spacing											
Uncracked concrete			35	40	40	50	65	95	100		
Cracked concrete	Smin		55	35	40	50	05	95	100		
Corresponding edge distance	С	[mm]	according to Annex B4								
Minimum thickness of concrete member	h _{min}			80		100	140	160	200		
Thickness of concrete member	h ≥			max. {h _{mi}	n; h1 ¹⁾ + 3	0}	max. {	h _{min} ; h ₁ 1)	- 2 · d₀}		
Minimal splitting area											
Uncracked concrete	•	[·1000	5,1	18	37	54	67	100	117,5		
Cracked concrete	— A _{sp,req}	mm ²]	1,5	12	27	40	50	77	87,5		

¹⁾ h₁ according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the her

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

 $A_{sp,req} < A_{sp,ef}$

 $A_{sp,req}$ = required splitting area $A_{sp,ef}$ = effective splitting area (according to Annex B4)

NIEDAX Bolt Anchor DAZ, DAZ E4, DAZ HCR

Intended Use

Minimum thickness of member, minimum spacing and edge distance

Annex B 3

	1,5°c s 1,5°c		
	Asper		
Single anchor and group of anchors with s > 3 · c	$A_{\rm sp,ef} = (6 \cdot c) \cdot (h_{\rm ef} + 1, 5 \cdot c)$	[mm ²]	with c ≥ c _{min}
Group of anchors with $s \le 3 \cdot c$	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm ²]	with $c \ge c_{min}$ and $s \ge s_m$
able B4.2 : Effective splittin	g area A _{sp,ef} with member thickne	əss h ≤ h _{ef} + 1,5	o∵c and h≥h _{min}
Table B4.2: Effective splittin	g area A _{sp,ef} with member thickne	ess h ≤ h _{ef} + 1,5	ō · c and h ≥ h _{min}
Fable B4.2: Effective splittin Image: splittin splittin	<u>1,5°c s 1,5°c</u>	ess h ≤ h _{ef} + 1,5	5 · c and h ≥ h _{min}
Single anchor and	1,5 c s 1,5 c		$b \cdot c$ and $h \ge h_{min}$
Single anchor and group of anchors with $s > 3 \cdot c$ Group of anchors with $s \leq 3 \cdot c$	$A_{sp,ef} = 6 \cdot c \cdot existing h$ $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$		
Single anchor and group of anchors with $s > 3 \cdot c$ Group of anchors with $s \leq 3 \cdot c$	$A_{sp,ef} = 6 \cdot c \cdot existing h$ $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$	[mm ²]	with c ≥ c _{min}
Fable B4.2 : Effective splittin Image: splittin state Single anchor and group of anchors with $s > 3 \cdot c$ Group of anchors with $s < 3 \cdot c$ Edge distance and axial spacing state NIEDAX Bolt Anchor DAZ, DAZ E	$A_{sp,ef} = 6 \cdot c \cdot existing h$ $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$ shall be rounded to at least 5 mm	[mm ²]	with $c \ge c_{min}$ with $c \ge c_{min}$ and $s \ge s_{min}$

Installation instructions:

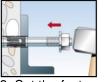
- Anchor installation carried out by appropriately gualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor Exception: NIEDAX DAZ dome nut.
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids
- Hammer, hollow or diamond drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application
- It must be ensured that in case of fire local spalling of the concrete cover does not occur
- Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure

Installation instructions: Drilling and cleaning the hole

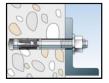
		Types of drills and cleaning	
Hammer drill	#*************************************	1: Drill the hole	2: Clean the hole
Hollow drill		1: Drill the hole with automatic cleaning	_
Diamond drill, for non seismic applications only and ≥ drill Ø 8		1: Drill the hole	2: Clean the hole

Intended Use

Installation instructions


Annex B 5

Electronic copy of the ETA by DIBt: ETA-18/0542


HEXAGON NUT:

3: Set the fastener

4: Apply Tinst

5: Installed fastener

NIEDAX DAZ DOME NUT:

Option 1: Push through installation with setting gauge SL-H:

washer and NIEDAX DAZ dome nut

6: Apply Tinst


7: Installed fastener

3: Set the fastener using setting gauge

4: Check offset

Option 2: Push through installation with hexagon nut:

3: Set the fastener

- 4: check setting position: Visible one turn of a thread

4.1: Remove nut

NIEDAX FILLING DISC FFD optional for seismic C2 application or minimizing the annular gap:

	Optional	The gap between bolt and fixture may be filled with mortar (compressive strength \ge 50 N/mm ² e.g. fischer FIS SB) after step 7 (for eliminating the annular gap). The filling disc is additional to the standard washer. The thickness of the filling disc must be considered for definition of t_{fix} Countersunk of the filling disc in direction to the anchor plate.	
--	----------	--	--

NIEDAX Bolt Anchor DAZ, DAZ E4, DAZ HCR

Intended Use

Installation instructions

Annex B 6

						DAZ, DA	AZ E4, D	AZ HC	R	
Size			M6	M	3	M10	M12	M16	M20	M24
Steel failure										
Characteristic resistance DAZ E4/HCR	$N_{Rk,s}$	[kN]	7,6 11,4	16, 17,	-	28,3 29,0	43,2 44,3	67,0 70,6	123,3 124,9	176, 183,
Partial factor for steel failure	γ _{Ms} 1)	[-]					1,5			
Pullout failure	·									
Effective embedment depth for calculation	h _{ef}	[mm]	40	35 - < 45	45	40 - 60	50 - 70	65 - 85	100	125
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	1,5	5,5	8	13	20	27,0	34,4	48,1
Characteristic resistance in uncracked concrete C20/25	і чнк,р		10,5	14	-	20	22	38,6	49,2	68,8
	-	C25/30					1,12			
	-	C30/37					1,22			
Increasing factors for N _{Rk,p} for	Ψc ⁻	C35/45					1,32			
cracked and uncracked concrete	֥	C40/50					1,41			
	-	C45/55					1,50			
		C50/60					1,58			
Installation factor	γinst	[-]					1,0			
Concrete cone and splitting failure	k		1				11 02)			
Factor for uncracked concrete	kucr,N	[-]					11,0 ²⁾ 7,7 ²⁾			
Factor for cracked concrete	K _{cr,N}						3 · h _{ef}			
Characteristic spacing	Scr,N	[mm]								
Characteristic edge distance	Ccr,N						2 · C _{cr,sp}			
Spacing Edge distance for h = 80	Scr,sp			241	<u> </u>	2·h _{ef}	Z Ccr,sp			
-				2,4·I	let		2∙h _{ef}			
Edge distance for $h = 100$ Edge distance for $h = 120$		[mm]				2,4·h _{ef}	2.1.ef 2,1.h _{ef}		inadmiss	ible
Edge distance for $h = 140$	Ccr,sp	[mm]	40	2∙h			Z, I'llef		1	
Edge distance for $h = 160$				2.0	ef	1,9·h _{ef}	1,5∙h _{ef}	2∙h _{ef}		
<u> </u>							1,3 Tief	Zillet	2,4 h _{ef}	2,2·h
Edge distance for h = 200 Characteristic resistance to splitting	N ⁰ Rk,sp	[kN]					N ⁰ Rk,c; N	n. 13)		2,211
1 0		[κιν]				mm {	IN°Rk,c, IN	lRk,p } ℃		
 ¹⁾ In absence of other national regulation ²⁾ Based on concrete strength as cylinde ³⁾ N⁰_{Rk,c} according to EN 1992-4:2018 		h								
NIEDAX Bolt Anchor DAZ, DAZ E4, DAZ	Z HCR								Annex	 C 1

Characteristic values of resistance under tension loads

0					D	AZ, DA	Z E4, D	AZ HC	R	
Size				M6	M8	M10	M12	M16	M20	M24
Steel failure without lever arm	n									
Characteristic resistance	DAZ DAZ E4/HCR	$V^{0}_{Rk,s}$	[kN]	5,9 8,8	13,6 16,8	21,4 26,5	30,6 38,3	55,0 69,8	81,4 106,3	110, ⁻ 148,9
Partial factor for steel failure		γ _{Ms} 1)		0,0	. 0,0	,0	1,25	00,0	,.	, .
Factor for ductility		k7	[-]				1,0			
Steel failure with lever arm an	nd Concrete pryou		3				.,.			
Effective embedment depth for			[mm]	40	45	60	70	85	100	125
Characteristic bending resistance	DAZ DAZ E4/HCR	M ⁰ Rk,s	[Nm]	11,4 10,7	26 29	52 59	92 100	233 256	513 519	865 898
Factor for pryout failure	BALLEMMONT	k ₈	[-]	2,6	2,8		,2	3,0	2,6	2,4
Effective embedment depth for	calculation		[mm]	, -	35 - < 45	40 - < 60	50 - < 70	65 - < 85	, -	,
Characteristic bending resistance	DAZ DAZ E4/HCR	M ⁰ Rk,s	[Nm]	_2)	20 21	44 45	92 100	184 193	-	2)
Factor for pryout failure		k ₈	[-]		2,5	2,6	3,1	3,2		
Partial factor for steel failure		γMs ¹⁾			,	,	1,25	,		
Factor for ductility		 k7	[-]				1,0			
Concrete edge failure										
Effective embedment depth for	calculation	l _f =	[mm]				hef			
Outside diameter of a fastener		d _{nom}		6	8	10	12	16	20	24
 ¹⁾ In absence of other national re ²⁾ Performance not declared 	egulations									

NIEDAX Bolt Anchor DAZ, DAZ E4, DAZ HCR

Performances Characteristic values of resistance under shear loads

Annex C 2

Size Characteristic resistance Characteristic resistance Characteristic resistance Characteristic resistance Characteristic resistance NRk,c,fi — Characteristic resistance NRk,p,fi — Characteristic resistance NRk,p,fi — Characteristic resistance NRk,p,fi — Characteristic Characteristic resistance NRk,p,fi — Characteristic Characteristic NRk,p,fi — Characteristic Size DAZ, DAZ E4, DAZ HCR M6 M10 M12 M16 Size DAZ, DAZ E4, DAZ HCR M6 40 100 100 125 1 Characteristic Characteristic Characteristic NRK,p,fi — Char	hef ≥ [mi] R30 R60 R90 R120 R30 - R90 R120 [k] R30 R60 R90 [k] R120 [k] R120 [k] R120 [k] R120 [k] R00 [k] R120 [k] R00 [k] R120 [k] VRk,s,fi,30 [k] 0,6 ¹⁾ / 0,9 1,8 6,3 11,7 18,2 26,3	[(((((((((((((((((((R30 M ⁰ _{Rk,s} , 0,5 ¹⁾ 3,6 7 1 1 3 3	7,7 · he 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,3 / 1,6	2,2 / 3,3 1,7 / 2,6 er fire ex	⁵ · h _{ef} / 200 3,0 / 5,0 2,4 / 4,0 kposure k,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	R60	8,6 6,9 ⁰ Rk,s,fi,60 [I 0,3 ¹⁾ / 0,1 <u>1,2</u> 3,0 6,4 16,3	_	
resistance N _{Rk,s,fi} − steel failure $-$ Characteristic resistance $N_{Rk,c,fi}$ − Concrete cone failure $-$ Characteristic resistance $N_{Rk,p,fi}$ − pullout failure $-$ Table C3.2: Characteristic $N_{Rk,p,fi}$ − pullout failure $-$ Table C3.2: Characteristic $N_{Rk,p,fi}$ − - $N_{Rk,p,fi}$ $-$ - $N_{Rk,p,fi}$ $-$ - - - - - - -	R30 R60 R90 R120 R30 - R90 [kh R120 R30 R30 R60 R90 R120 Values of s V _{Rk,s,fi,30} [k 0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	[(((((((((((((((((((0,6 ¹⁾ / 0,9 ²⁾ 0,4 ¹⁾ / 0,9 ²⁾ 0,3 ¹⁾ / 0,9 ²⁾ 0,2 ¹⁾ / 0,7 ²⁾ 0,2 ¹⁾ / 0,7 ²⁾ 0,4 0,4 0,3 ar resistar R30 0,5 ¹⁾ 1 3,6 7 1 3,6 7 1 3,6	1,4 1,2 0,9 0,8 7,7 · 7,7 · het 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / / 0,2 ²⁾ 1,4	2,8 2,3 1,9 1,6 hef ^{1,5} · (20) ^{0,} 2,2 / 3,3 1,7 / 2,6 er fire ex	5,0 4,1 3,2 2,8 0) ^{0,5} · h _{ef} / 2 5 · h _{ef} / 200 3,0 / 5,0 2,4 / 4,0 xposure k,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	9,4 7,7 6,0 5,2 200 / 1000 0 / 1000 · 0 4,5 / 6,8 3,6 / 5,4 R60 M	14,7 12,0 9,4 8,1 9,8 8,6 6,9 ⁰ _{Rk,s,fi,60} [I 0,3 ¹⁾ /0,1 1,2 3,0 6,4 16,3	21, 17,; 13,; 11,; 12,; 9,6	
resistance N _{Rk,s,fi} − steel failure − Characteristic resistance N _{Rk,c,fi} − Concrete cone failure − Characteristic resistance N _{Rk,p,fi} − pullout failure − Table C3.2: Characteristic N Size A, DAZ E4, DAZ HCR − M6 40 40 M8 35 40 M10 hef ≥ 50 40 M12 hef ≥ 50 100 M12 100 125 40	R60 R90 R120 R30 - R90 R120 R30 R120 R30 R120 R30 R120 R30 R60 R90 R120 values of \$ VRk,s,fi,30 [k 0,6 ¹⁾ / 0,9 1,8 6,3 11,7 18,2	(() () () () () () () () () () () () ()	0,4 ¹⁾ / 0,9 ²⁾ 0,3 ¹⁾ / 0,9 ²⁾ 0,2 ¹⁾ / 0,7 ²⁾ 0,2 ¹⁾ / 0,7 ²⁾ 0,4 0,4 0,3 ar resistar R30 M ⁰ _{Rk,s,} 0,5 ¹⁾ 3,6 1 3,6	1,2 0,9 0,8 7,7 · 7,7 · her 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / 0,2 ²⁾ 1,4	2,3 1,9 1,6 h _{ef} ^{1,5} · (20) ^{0,} 2,2 / 3,3 1,7 / 2,6 er fire e :	4,1 3,2 2,8 0) ^{0,5} · h _{ef} / 2 ⁵ · h _{ef} / 200 3,0 / 5,0 2,4 / 4,0 xposure k,s,fi,60 [kN] 4 ¹ / 0,9 ²) 1,6 2,9 4,9 9,1	7,7 6,0 5,2 200 / 1000 0 / 1000 · 0 4,5 / 6,8 3,6 / 5,4 R60 M	12,0 9,4 8,1 9,8 8,6 6,9 ⁰ _{Rk,s,fi,60} [[0,3 ¹)/0,1 1,2 3,0 6,4 16,3	17, 13, 11, 11, 12, 9,6	
resistance N _{Rk,s,fi} − steel failure − Characteristic resistance N _{Rk,c,fi} − Concrete cone failure − Characteristic resistance N _{Rk,p,fi} − pullout failure − Table C3.2: Characteristic N Size A, DAZ E4, DAZ HCR − M6 40 40 M8 35 40 M10 hef ≥ 50 40 M12 hef ≥ 50 100 M16 65 100 M24 125 4	R90 R120 R30 - R90 [kl R120 R30 R30 R30 R30 R40 R30 R40 R30 R40 R40 <td>3hea</td> <td>0,3¹⁾ / 0,9²⁾ 0,2¹⁾ / 0,7²⁾ 0,4 0,4 0,3 ar resistar R30 M⁰_{Rk,s}, 0,5¹⁾ 3,6 7 3,6 7 1 3,6</td> <td>0,9 0,8 7,7 · 7,7 · het 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / 0,2²⁾ 1,4</td> <td>1,9 1,6 h_{ef}^{1,5} · (20)^{0,} 2,2 / 3,3 1,7 / 2,6 er fire e2</td> <td>3,2 2,8 0)^{0,5} · h_{ef} / 2 ⁵ · h_{ef} / 200 3,0 / 5,0 2,4 / 4,0 xposure k,s,fi,60 [kN] 4¹⁾ / 0,9²⁾ 1,6 2,9 4,9 9,1</td> <td>6,0 5,2 200 / 1000 0 / 1000 · 0 4,5 / 6,8 3,6 / 5,4 R60 M</td> <td>9,4 8,1 9,8 8,6 6,9 ⁰_{Rk,s,fi,60} [I 0,3¹⁾/0,1 1,2 3,0 6,4 16,3</td> <td>13,: 11, 12, 9,6</td>	3 hea	0,3 ¹⁾ / 0,9 ²⁾ 0,2 ¹⁾ / 0,7 ²⁾ 0,4 0,4 0,3 ar resistar R30 M ⁰ _{Rk,s} , 0,5 ¹⁾ 3,6 7 3,6 7 1 3,6	0,9 0,8 7,7 · 7,7 · het 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / 0,2 ²⁾ 1,4	1,9 1,6 h _{ef} ^{1,5} · (20) ^{0,} 2,2 / 3,3 1,7 / 2,6 er fire e 2	3,2 2,8 0) ^{0,5} · h _{ef} / 2 ⁵ · h _{ef} / 200 3,0 / 5,0 2,4 / 4,0 xposure k,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	6,0 5,2 200 / 1000 0 / 1000 · 0 4,5 / 6,8 3,6 / 5,4 R60 M	9,4 8,1 9,8 8,6 6,9 ⁰ _{Rk,s,fi,60} [I 0,3 ¹⁾ /0,1 1,2 3,0 6,4 16,3	13,: 11, 12, 9,6	
steel failureCharacteristic resistanceNRk,c,fiCharacteristic resistanceNRk,p,fipullout failureSizeDAZ, DAZ E4, DAZ HCRM6 40 M8 35 M10 40 M6 40 M6 65 M10 100 M20 100 M24 125	R120 R30 - R90 [kN R120 R30 R60 R90 R120 Values of s V _{Rk,s,fi,30} [k 0,6 ¹ /0,9 1,8 6,3 11,7 18,2	shea	0,2 ¹⁾ / 0,7 ²⁾ 0,4 0,3 ar resistar R30 M ⁰ _{Rk,s,} 0,5 ¹⁾ 3,6 7 3,6 7 3,6 7 3,6 7 3,6	0,8 7,7 · her 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / 0,2 ²⁾ 1,4 7,8 9,9	1,6 h _{ef} ^{1,5} · (20 2,2 / 3,3 1,7 / 2,6 er fire e 2	2,8)) ^{0,5} · h _{ef} / 2 ⁵ · h _{ef} / 20(3,0 / 5,0 2,4 / 4,0 k ,s,fi,60 [k N] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	5,2 200 / 1000 0 / 1000 · 0 4,5 / 6,8 3,6 / 5,4 R60 M	8,1 9,8 8,6 6,9 0 _{Rk,s,fi,60} [I 0,3 ¹⁾ / 0,1 1,2 3,0 6,4 16,3	11, 12, 9,6	
resistance N _{Rk,c,fi} _ Concrete cone failure $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	R30 - R90 [kN R120 R30 R60 R90 R120 Values of s V _{Rk,s,fi,30} [k 0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	ال shea	0,4 0,3 ar resistar R30 M ⁰ _{Rk,s} , 0,5 ¹) 3,6 7 1 3,6 7 1 3,6	7,7 · het 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / / 0,2 ²⁾ 1,4 7,8 9,9	hei ^{1,5} · (20) ^{0,} 2,2 / 3,3 1,7 / 2,6 er fire e :	b) ^{0,5} · h _{ef} / 2 ⁵ · h _{ef} / 200 3,0 / 5,0 2,4 / 4,0 xposure k ,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	200 / 1000 0 / 1000 · 0 4,5 / 6,8 3,6 / 5,4 R60 M	⁰ ,8 8,6 6,9 ⁰ _{Rk,s,fi,60} [I 0,3 ¹⁾ / 0,1 1,2 3,0 6,4 16,3	12, 9,6 Nm]	
resistance N _{Rk,c,fi} _ Concrete cone failure $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	R90 [kh R120 R30 R60 R90 R120 R120 values of s VRk,s,fi,30 [k 0,6 ¹⁾ / 0,9 1,8 6,3 11,7 18,2 18,2	shea	0,3 ar resistar R30 M ⁰ _{Rk,s} , 0,5 ¹⁾ 3,6 7 1 3,6 7 1 3,6	7,7 · het 0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / 0,2 ²⁾ 1,4 7,8 9,9	2,2 / 3,3 1,7 / 2,6 er fire ex	⁵ · h _{ef} / 200 3,0 / 5,0 2,4 / 4,0 kposure k,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	0 / 1000 · 0 4,5 / 6,8 3,6 / 5,4 R60 M	8,6 6,9 ⁰ Rk,s,fi,60 [I 0,3 ¹⁾ / 0,1 <u>1,2</u> 3,0 6,4 16,3	9,6 Nm]	
Concrete cone failureCharacteristic resistance \neg pullout failure \neg Table C3.2: CharacteristicSize DAZ, DAZ E4, DAZ HCRM6 M8 M10 40 M6 M12 M16 M20 40 $A0$ 65 M20 M24 100 Size DAZ, DAZ E4, DAZ HCR	R120 R30 R60 R90 R120 Values of s V _{Rk,s,fi,30} [k 0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	shea	0,3 ar resistar R30 M ⁰ _{Rk,s} , 0,5 ¹⁾ 3,6 7 1 3,6 7 1 3,6	0,9 / 2,0 0,8 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / 0,2 ²⁾ 1,4 7,8 9,9	2,2 / 3,3 1,7 / 2,6 er fire ex	3,0 / 5,0 2,4 / 4,0 kposure k,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	4,5 / 6,8 3,6 / 5,4 R60 M	8,6 6,9 ⁰ Rk,s,fi,60 [I 0,3 ¹⁾ / 0,1 <u>1,2</u> 3,0 6,4 16,3	9,6 Nm]	
resistance $N_{Rk,p,fi}$ − pullout failure − Table C3.2: Characteristic $N_{Rk,p,fi}$ − Size DAZ, DAZ E4, DAZ HCR − Size DAZ, DAZ E4, DAZ HCR −	R60 R90 R120 Values of s V _{Rk,s,fi,30} [k 0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	:N]	0,3 ar resistar R30 M ⁰ _{Rk,s} , 0,5 ¹⁾ 3,6 7 1 3,6 7 1 3,6	0,8 / 2,0 0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / / 0,2 ²⁾ 1,4 7,8 9,9	1,7 / 2,6 er fire e x	2,4 / 4,0 kposure k ,s,fi,60 [k N] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	3,6 / 5,4 R60 M	⁰ _{Rk,s,fi,60} [I 0,3 ¹⁾ /0,1 1,2 3,0 6,4 16,3	9,6 Nm]	
resistance NRk,p,fi pullout failure - Table C3.2: Characteristic V DAZ, DAZ E4, DAZ HCR 40 M6 40 40 M8 35 40 M10 40 40 40 M12 hef ≥ 50 1 M20 100 125 1 Size DAZ, DAZ E4, DAZ HCR 40 40	R90 R120 values of s V _{Rk,s,fi,30} [k 0,6 ¹⁾ / 0,9 1,8 6,3 11,7 18,2	:N]	0,3 ar resistar R30 M ⁰ _{Rk,s} , 0,5 ¹⁾ 3,6 7 1 3,6 7 1 3,6	0,5 / 2,0 0,3 / 1,6 nce unde fi,30 [Nm] / 0,2 ²⁾ 1,4 7,8 9,9	1,7 / 2,6 er fire e x	2,4 / 4,0 kposure k ,s,fi,60 [k N] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	3,6 / 5,4 R60 M	⁰ _{Rk,s,fi,60} [I 0,3 ¹⁾ /0,1 1,2 3,0 6,4 16,3	9,6 Nm]	
pullout failure	R120 values of s V _{Rk,s,fi,30} [k 0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	:N]	ar resistar R30 M ⁰ _{Rk,s} 0,5 ¹⁾ 3,6 7 1 3,6 1 3,6	0,3 / 1,6 nce unde fi,30 [Nm] / 0,2 ²⁾ 1,4 7,8 9,9	er fire e x	kposure k,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	R60	⁰ _{Rk,s,fi,60} [I 0,3 ¹⁾ / 0,1 <u>1,2</u> 3,0 <u>6,4</u> 16,3	Nm]	
Size	values of s V _{Rk,s,fi,30} [k 0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	:N]	ar resistar R30 M ⁰ _{Rk,s} 0,5 ¹⁾ 3,6 7 1 3,6 1 3,6	nce unde ^{ff,30} [Nm] / 0,2 ²⁾ 1,4 7,8 9,9	er fire e x	kposure k,s,fi,60 [kN] 4 ¹⁾ / 0,9 ²⁾ 1,6 2,9 4,9 9,1	R60	⁰ _{Rk,s,fi,60} [I 0,3 ¹⁾ / 0,1 <u>1,2</u> 3,0 <u>6,4</u> 16,3	Nm]	
Size	V _{Rk,s,fi,30} [k 0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	:N]	R30 M ⁰ _{Rk,s} , 0,5 ¹⁾ 3,6 7 1 1 3 3	^{fi,30} [Nm] / 0,2 ²⁾ I,4 7,8 9,9	VR	k,s,fi,60 [kN] 4 ¹⁾ /0,9 ²⁾ 1,6 2,9 4,9 9,1	R60	0,3 ¹⁾ / 0,1 1,2 3,0 6,4 16,3		
DAZ, DAZ E4, DAZ HCR 40 M6 40 M8 35 M10 40 M12 40 M16 50 M20 100 M24 125	0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	:N]	M ⁰ _{Rk,s,} 0,5 ¹⁾ 3,6 1 3,6 3,6 3,6	7,8 9,9		4 ¹⁾ /0,9 ²⁾ 1,6 2,9 4,9 9,1	М	0,3 ¹⁾ / 0,1 1,2 3,0 6,4 16,3		
M6 40 M8 35 M10 40 M12 40 M16 50 M20 65 M24 125	0,6 ¹⁾ /0,9 1,8 6,3 11,7 18,2	-	0,5 ¹⁾ 3,6 1 3,7	7,8 9,9		4 ¹⁾ /0,9 ²⁾ 1,6 2,9 4,9 9,1		0,3 ¹⁾ / 0,1 1,2 3,0 6,4 16,3		
M8 35 M10 40 M12 50 M16 65 M20 100 M24 125	1,8 6,3 11,7 18,2	<u>1</u> 2)	3,6 7 1 3	1,4 7,8 9,9	0,	1,6 2,9 4,9 9,1		1,2 3,0 6,4 16,3	1 ²⁾	
M10 40 M12 hef ≥ 50 M16 65 100 M20 125 125 Size DAZ, DAZ E4, DAZ HCR	6,3 11,7 18,2		3,6 7 1 3	7,8 9,9		2,9 4,9 9,1		3,0 6,4 16,3		
M12 hef ≥ 50 M16 65 100 M20 125 125 Size	11,7 18,2		1 3	9,9		4,9 9,1		6,4 16,3		
M16 65 M20 100 M24 125 Size DAZ, DAZ E4, DAZ HCR	11,7 18,2		1	9,9		9,1		16,3		
M20 100 M24 125 Size	18,2		3	,		· ·				
M24 125 Size DAZ, DAZ E4, DAZ HCR				9.0				21 0		
Size DAZ, DAZ E4, DAZ HCR	26,3		<i>[</i>		_	14,2		31,8		
DAZ, DAZ E4, DAZ HCR			0	7,3		20,5		55,0		
			R90				R120			
M6 40	V _{Rk,s,fi,90} [k	_		fi,90 [Nm]		k,s,fi,120 [kN]		⁰ Rk,s,fi,120		
	0,31)/0,9	2)		/0,12)	0,	21)/0,72)		$0,2^{1}/0,1$	2)	
<u>M8</u> <u>35</u>	1,3			<u>1,0</u>	_	1,2		0,8		
M10 40	2,2			2,4		1,9		2,1		
M12 h _{ef} ≥ <u>50</u>	<u>3,5</u> 6,6			5,0	_	2,8 5,3		4,3		
<u>M16</u> <u>65</u> M20 100	10,3			<u>2,6</u> 4,6		<u> </u>		<u>11,0</u> 21,4		
M20 100 100 M24 125	10,3			<u>4,0</u> 2,6		<u> </u>		37,0		
Concrete pryout failure according Table C3.3: Minimum spaci for tension and	ings and n	ninin		e distanc	es of ar	nchors ur	nder fire	exposi	ure	
Size	MG		MO			DAZ HCR	MOO		04	
Spacing Smin	<u>M6</u>		M8	M10	M12 Annex E	M16	M20	<u> IVI.</u>	24	
Edge distance c _{min} [mr	m]				c _{min} = 2 ·	h _{ef} ,				
¹⁾ DAZ		ŤĊ	or fire expo	sure from	more that	n one side	C _{min} ≥ 300	mm		
²⁾ DAZ E4 / HCR NIEDAX Bolt Anchor DAZ, DAZ E		D								

0'					DAZ, DA	AZ E4, D	AZ HCR		
Size			M6	M8	M10	M12	M16	M20	M24
Length of anchor	L _{max}			167	186	221	285	394	477
Effective embedment depth	h _{ef}	[mm]	_2)	45	40 - 60	50 - 70	65 - 85	100	125
With filling of the annular gap	$lpha_{ ext{gap}}$	[-]			00	1,0	00		
Steel failure				1			1	•	
Characteristic resistance tension load C1	NRk,s,eq,C1	[kN]	_2)	16,0	27,0	41,0	66,0	111,0	150,0
Partial factor for steel failure	γMs,eq,C1 ¹⁾	[-]				1	,5		
Pullout failure				1	1	1			
Characteristic resistance tension load in cracked concrete C1	NRk,p,eq,C1	[kN]	_2)	4,6	8,0	16,0	28,2	36,0	50,3
Installation factor	γinst	[-]				1,	,0	I	1
Steel failure without lever arm				•					
Characteristic resistance shear load C1	V _{Rk,s,eq,C1}	[kN]	_2)	11	17	27	47	56	69
Partial factor for steel failure	γ Ms,eq,C1 ¹⁾	[-]	/			1,:	25		
Table C4.2: Characteristic values category C2	of tensio	n and	l shea						
Size					DAZ, DA	Z E4, D/	AZ HCR1)	•
			M6	M8	M10	M12	M16	M20	M24
Length of anchor	L _{max}	[mm]	-	.3)	186	221	285	394	_3)
With filling of the annular gap	lphagap	[-]				1,0			
Steel failure					07				
Characteristic resistance tension load C2 Partial factor for steel failure		[kN]	-	.3)	27	41	66	111	_3)
	γMs,eq,C2 ²⁾	[-]				I	,5		
Pullout failura		[mm]			60	70	85	100	
Pullout failure	h _{ef}					,,,			_3)
						7.4	21.5	30.7	
Pullout failure Characteristic resistance tension load in cracked concrete C2	N _{Rk,p,eq,C2}	[kN]		.3)	5,1	7,4 50-69	21,5 65-84	30,7	
Characteristic resistance tension load in	N _{Rk,p,eq,C2}	[kN] [mm]		.3)	5,1 40-59	50-69	65-84		3)
Characteristic resistance tension load in cracked concrete C2	N _{Rk,p,eq,C2} h _{ef} N _{Rk,p,eq,C2}	[kN] [mm] [kN]		.3)	5,1	50-69 4,4			3)
Characteristic resistance tension load in cracked concrete C2 Installation factor	N _{Rk,p,eq,C2}	[kN] [mm]	_	3)	5,1 40-59	50-69	65-84		3)
Characteristic resistance tension load in cracked concrete C2 Installation factor	N _{Rk,p,eq,C2} h _{ef} N _{Rk,p,eq,C2}	[kN] [mm] [kN] [-]		.3)	5,1 40-59	50-69 4,4	65-84		
Characteristic resistance tension load in cracked concrete C2 Installation factor Steel failure without lever arm	NRk,p,eq,C2 hef NRk,p,eq,C2 γinst	[kN] [mm] [kN] [-] [mm]			5,1 40-59 2,7	50-69 4,4 1,0	65-84 16,4	-	3) 3)
Characteristic resistance tension load in cracked concrete C2 Installation factor	NRk,p,eq,C2 hef NRk,p,eq,C2 γinst	[kN] [mm] [kN] [-] [mm]		3)	5,1 40-59 2,7 60	50-69 4,4 1,0 70	65-84 16,4 85	- 100 39,9	_3)
Characteristic resistance tension load in cracked concrete C2 Installation factor Steel failure without lever arm	NRk,p,eq,C2 hef NRk,p,eq,C2 γinst hef VRk,s,eq,C2	[kN] [mm] [kN] [-] [mm] 2 [kN]			5,1 40-59 2,7 60 10,0	50-69 4,4 1,0 70 17,4	65-84 16,4 85 27,5	- 100 39,9	
Characteristic resistance tension load in cracked concrete C2 Installation factor Steel failure without lever arm Characteristic resistance shear load C2	NRk,p,eq,C2 hef NRk,p,eq,C2 γinst hef VRk,s,eq,C2 hef	[kN] [mm] [kN] [-] [mm] [kN] [mm]			5,1 40-59 2,7 60 10,0 40-59	50-69 4,4 1,0 70 17,4 50-69	65-84 16,4 85 27,5 65-84	- 100 39,9	_3)
Characteristic resistance tension load in cracked concrete C2 Installation factor Steel failure without lever arm Characteristic resistance shear load C2 Partial factor for steel failure ¹⁾ DAZ HCR: Only valid for cold-formed ve ²⁾ In absence of other national regulations	NRk,p,eq,C2 hef NRk,p,eq,C2 γinst NRk,s,eq,C2 NRk,s,eq,C2 NRk,s,eq,C2 γMs,eq,C2	[kN] [mm] [kN] [-] [mm] [kN] [mm] [kN] [-]		.3)	5,1 40-59 2,7 60 10,0 40-59	50-69 4,4 1,0 70 17,4 50-69 12,7	65-84 16,4 85 27,5 65-84	- 100 39,9	_3)
Characteristic resistance tension load in cracked concrete C2 Installation factor Steel failure without lever arm	N _{Rk,p,eq,C2} h _{ef} N _{Rk,p,eq,C2} γinst h _{ef} V _{Rk,s,eq,C2} γ _{Ms,eq,C2} γ _{Ms,eq,C2} ² ersion (acc	[kN] [mm] [kN] [-] [mm] [kN] [mm] [kN] [-]		.3)	5,1 40-59 2,7 60 10,0 40-59	50-69 4,4 1,0 70 17,4 50-69 12,7	65-84 16,4 85 27,5 65-84	- 100 39,9	_3)

Z96964.20

<u> </u>				Ī	DAZ, DA	AZ E4, [DAZ HC	R	
Size			M6	M8	M10	M12	M16	M20	M2 4
Displacement – fa	ctor for tensile load ¹⁾		<u> </u>	L	L	-			_
δ _{N0} - factor	 in cracked concrete 		0,13	0,22	0,12	0,09	0,08	0,07	0,05
δN∞ - factor		[mm/kN	1,00	0,78	0,40	0,19		09	0,07
δ _{N0} - factor	 in uncracked concrete 	-	- 0,16	0,07	0,05		06	0,05	0,04
δN∞ - factor			0,24	0,29	0,21	0,14	0,10	0,06	0,05
Table C5.2: Dis	placements under st	tatic and quasi	static s	hear lo	bads	DAZ			
Size			M6	M8	M10	M12	M16	M20	M2 4
Displacement – fa	ctor for shear load ²⁾		1110					MILO	
δv0 – factor			0,6	0,35	0,37	0,27	0,10	0,09	0,0
δV_∞ - factor			0,9	0,52	0,55	0,40	0,14	0,15	0,1
	 in cracked and uncracked concrete 	[mm/kN]			DAZ	E4, DA	Z HCR		
δ V0 - factor			0,6	0,23	0,19	0,18	0,10	0,11	0,0
δv_∞ - factor			0,9	0,27	0,22	0,16	0,11	0,05	0,09
¹⁾ Calculation of effe $\delta_{N0} = \delta_{N0} - f_{actor} \cdot N$ $\delta_{N\infty} = \delta_{N\infty} - f_{actor} \cdot N$ (N _{ED} : Design valu	ED	δ	alculatio v0 = δv0 - v∞ = δv∞ - / _{ED} : Desi	factor · V	ED	applied	shear fc	orce)	
$\begin{array}{l} \delta_{N0} = \delta_{N0} - {\rm factor} \cdot N \\ \delta_{N\infty} = \delta_{N\infty} - {\rm factor} \cdot N \\ (N_{ED} \colon Design \; valu \end{array}$	led Ned	δ force) (\	νο = δνο - ν∞ = δν∞ - /εD: Desi	_{factor} · Vi gn value	e of the				8
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N \\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N \\ (N_{ED}: Design valu \end{split}$	led Ned le of the applied tension	δ force) (\	νο = δνο - ν∞ = δν∞ - /εD: Desi	factor · Vi gn value	e of the 2 for al	l embe 2 E4, D A	edment		8
$\begin{array}{l} \delta_{N0} = \delta_{N0} - {\rm factor} \cdot N \\ \delta_{N\infty} = \delta_{N\infty} - {\rm factor} \cdot N \\ (N_{ED} \colon Design \; valu \end{array}$	led Ned le of the applied tension	force) (\ ension loads fo	$v_0 = \delta v_0 - v_\infty = \delta v_\infty - V_{ED}$: Desi	factor · Vi gn value	e of the 2 for al	l embe	edment		S M24
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N \\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N \\ (N_{ED}: Design valu \end{split}$	led Ned le of the applied tension	force) (\ ension loads fc	vo = δvo - v∞ = δv∞ - /ED: Desi or categ	factor · Vi gn value ory C2 D4 M8 I	e of the 2 for al	l embe 2 E4, D A	edment Z HCR M16	depths	M24
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N\\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N\\ (N_{ED}: Design valu) \end{split}$	led Ned le of the applied tension placements under t e δ _{N,eq.}	force) (\ ension loads fo	$v_0 = \delta v_0 - v_\infty = \delta v_\infty - V_{ED}$: Desi	n value	e of the 2 for al AZ, DAZ 10 2,7	l embe 2 E4, DA M12	edment Z HCR M16	depths	
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N\\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N\\ (N_{ED}: Design value) \end{split}$ $\begin{aligned} \textbf{Table C5.3: Dis}\\ Size\\ Displacement DLS\\ Displacement ULS\\ \end{table C5.4: Dis} \end{split}$	led Ned le of the applied tension placements under t e δ _{N,eq.}	force) (N	vo = δvo - v∞ = δv∞ - /ED: Desi or categ M6 1 _1) catego	ry C2 f	2 for al Z , DAZ M10 2,7 11,5 or all e	I embe 2 E4, DA M12 4,4 13,0 2 mbedi 2 E4, DA	edment Z HCR M16 12,3 ment d	M20 5,6 14,4 epths	M24 _1)
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N\\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N\\ (N_{ED}: Design value) \end{split}$ $\begin{aligned} \textbf{Table C5.3: Dis}\\ Size\\ \hline Displacement DLS\\ \hline Displacement ULS\\ \hline 1) Performance not \hline \end{split}$	led Ned le of the applied tension placements under te δ _{N,eq,} δ _{N,eq,} declared	force) (N	vo = δvo - v∞ = δv∞ - /ED: Desi or categ M61) catego	ry C2 f	2 for al Z , DAZ M10 2,7 11,5 or all e	I embe 2 E4, DA M12 4,4 13,0	edment Z HCR M16 12,3 ment d	M20 5,6 14,4	M24 _1)
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N\\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N\\ (N_{ED}: Design value) \end{split}$ $\begin{aligned} \textbf{Table C5.3: Dis}\\ Size\\ Displacement DLS\\ Displacement ULS\\ \end{table C5.4: Dis} \end{split}$	led Ned le of the applied tension placements under te δ _{N,eq,} δ _{N,eq,} declared	force) (N	vo = δvo - v _∞ = δv _∞ - / _{ED} : Desi or catego M6 1 M6 1	ry C2 f	2 for al Z , DAZ M10 2,7 11,5 or all e	I embe 2 E4, DA M12 4,4 13,0 2 mbedi 2 E4, DA	edment Z HCR M16 12,3 ment d	M20 5,6 14,4 epths	M24
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N\\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N\\ (N_{ED}: Design value) \\ \end{split}$ $\begin{aligned} \textbf{Table C5.3: Dis}\\ Size\\ \hline Displacement DLS\\ \hline Displacement ULS\\ \hline Performance not\\ \hline \textbf{Table C5.4: Dis}\\ Size\\ \hline \\ Size \\ \end{aligned}$	led Ned le of the applied tension placements under t e <u>δ_{N,eq}</u> , <u>δ_{N,eq}</u> , declared placements under s	force) (Ν ension loads for <u>C2(DLS)</u> [mm] hear loads for (<u>1</u> <u>12(DLS)</u> [mm]	vo = δvo - v∞ = δv∞ - /ED: Desi or categ M6 1 _1) catego	ry C2 f	2 for al Z , DAZ V10 2,7 11,5 or all e XZ, DAZ M10	l embe 2 E4, DA 4,4 13,0 2 mbedi 2 E4, DA M12	edment XZ HCR M16 12,3 ment d XZ HCR M16	M20 5,6 14,4 epths M20	M24 _1)
$\begin{split} \delta_{N0} &= \delta_{N0} - factor \cdot N\\ \delta_{N\infty} &= \delta_{N\infty} - factor \cdot N\\ (N_{ED}: Design value) \\ \end{split}$ $\begin{aligned} \textbf{Table C5.3: Dis}\\ Size\\ \hline Displacement DLS\\ \hline Displacement ULS\\ \hline 1) Performance not\\ \hline \textbf{Table C5.4: Dis}\\ Size\\ \hline Displacement DLS\\ \hline Size\\ \hline Displacement DLS \\ \end{aligned}$	led Ned le of the applied tension placements under te <u>δN,eq</u> , declared placements under s <u>δv,eq,C</u> <u>δv,eq,C</u>	force) (Ν ension loads for <u>C2(DLS)</u> [mm] hear loads for (<u>1</u> <u>12(DLS)</u> [mm]	vo = δvo - v _∞ = δv _∞ - / _{ED} : Desi or catego M6 1 M6 1	ry C2 f	2 for al Z for al Z , DAZ V10 2,7 11,5 or all e XZ , DAZ M10 4,1	l embe 2 E4, DA 4,4 13,0 2 E4, DA M12 4,7	edment Z HCR M16 12,3 ment d X HCR M16 5,5	depths <u>M20</u> <u>5,6</u> 14,4 epths <u>M20</u> <u>4,8</u>	M24
$\delta_{N0} = \delta_{N0} - factor \cdot N$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot N$ (NED: Design value) Table C5.3: Dis Size Displacement DLS Displacement ULS ¹⁾ Performance not Table C5.4: Dis Size Displacement DLS Displacement ULS ¹⁾ Performance not	led Ned le of the applied tension placements under te <u>δN,eq</u> , declared placements under s <u>δv,eq,C</u> <u>δv,eq,C</u>	force) (Ν ension loads for <u>C2(DLS)</u> [mm] hear loads for (<u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>2 (DLS)</u> [mm]	vo = δvo - v _∞ = δv _∞ - / _{ED} : Desi or catego M6 1 M6 1	ry C2 f	2 for al Z for al Z , DAZ V10 2,7 11,5 or all e XZ , DAZ M10 4,1	l embe 2 E4, DA 4,4 13,0 2 E4, DA M12 4,7	edment Z HCR M16 12,3 ment d X HCR M16 5,5	depths <u>M20</u> <u>5,6</u> 14,4 epths <u>M20</u> <u>4,8</u>	M24