



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

## ETA-18/0974 of 30 November 2020

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Hilti undercut anchor HDA Product family Post-installed fasteners in concrete to which the construction product belongs under fatigue cyclic loading Manufacturer Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Plants This European Technical Assessment 22 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330250-00-0601, Edition 06/2020 issued in accordance with Regulation (EU) No 305/2011, on the basis of ETA-18/0974 issued on 20 June 2019 This version replaces

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



#### European Technical Assessment ETA-18/0974 English translation prepared by DIBt

Page 2 of 22 | 30 November 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 22 | 30 November 2020

#### European Technical Assessment ETA-18/0974 English translation prepared by DIBt

#### Specific Part

#### 1 Technical description of the product

The Hilti undercut anchor HDA consists of a Hilti Cone bolt HDA -P or HDA -T with ring, sleeve, bolt and cap, a Hilti sealing washer, a spherical washer, nut and a lock nut and an injection mortar Hilti HIT-HY 200-A or Hilti HIT-HY 200-R.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                             | Performance              |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Characteristic fatigue resistance under cyclic tension loading (Assessment method A) |                          |  |  |  |  |
| Characteristic steel fatigue resistance                                              |                          |  |  |  |  |
| Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance    | See Annexes<br>C1 and C4 |  |  |  |  |
| Characteristic combined pull- out /concrete cone fatigue resistance                  |                          |  |  |  |  |
| Characteristic fatigue resistance under cyclic shear loading (Assessment method      | A bc                     |  |  |  |  |
| Characteristic steel fatigue resistance                                              | See Annexes              |  |  |  |  |
| Characteristic concrete edge fatigue resistance                                      |                          |  |  |  |  |
| Characteristic concrete pry out fatigue resistance                                   |                          |  |  |  |  |



## European Technical Assessment ETA-18/0974

#### Page 4 of 22 | 30 November 2020

English translation prepared by DIBt

| Essential characteristic                                                                                | Performance           |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Characteristic fatigue resistance under cyclic combined tension and shear loading (Assessment method A) |                       |  |  |  |  |  |
| Characteristic steel fatigue resistance                                                                 | See Annex<br>C5       |  |  |  |  |  |
| Load transfer factor for cyclic tension and shear loading                                               |                       |  |  |  |  |  |
| Load transfer factor                                                                                    | See Annex<br>C1 to C5 |  |  |  |  |  |

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 30 November 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider



# Installed condition Hiti HDA-P installed with Hilti filling set (pre-setting)



#### Hilti undercut anchor HDA

#### Product description Installed condition

Annex A1









## Page 8 of European Technical Assessment ETA-18/0974 of 30 November 2020

English translation prepared by DIBt





#### Table A1: Materials HDA-P and HDA-T and Hilti filling set

| Part | Designation                   | HDA-P / HDA-T (galvanized ≥ 5μm)                                                         |  |  |  |  |  |
|------|-------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1    | Sleeve                        | Machined carbon steel with brazed tungsten carbide tips                                  |  |  |  |  |  |
| 2    | Bolt                          | M10 - M16:Cold formed steel, steel strength 8.8M20:Cone machined, rod steel strength 8.8 |  |  |  |  |  |
| 3    | Coating of bolt<br>and sleeve | Galvanized 5-25µm                                                                        |  |  |  |  |  |
| 4    | Hexagon nut                   | M10 - M16: Class 8, h=1*d, galvanized<br>M20: Class 8, galvanized                        |  |  |  |  |  |
| 5    | Filling washer                | Electroplated zinc coated $\ge 5 \ \mu m$                                                |  |  |  |  |  |
| 6    | Cutting edges                 | Tungsten carbide                                                                         |  |  |  |  |  |
| 7    | Ring                          | Plastic ring                                                                             |  |  |  |  |  |
| 8    | Сар                           | Plastic cap                                                                              |  |  |  |  |  |
| 9    | Spherical washer              | Electroplated zinc coated $\ge 5 \ \mu m$                                                |  |  |  |  |  |
| 10   | Lock nut                      | Electroplated zinc coated $\ge 5 \ \mu m$                                                |  |  |  |  |  |

#### Hilti undercut anchor HDA

#### **Product description** Product materials and marking

Annex A4

Electronic copy of the ETA by DIBt: ETA-18/0974



| Eastonar type     | t <sub>fix,max</sub> | Ι <sub>Β</sub> | Length | ls   | l <sub>k</sub> | SW | d <sub>S1</sub> | d <sub>S2</sub> | d <sub>S3</sub> | dc   | dΒ   |
|-------------------|----------------------|----------------|--------|------|----------------|----|-----------------|-----------------|-----------------|------|------|
| rastener type     | [mm]                 | [mm]           | letter | [mm] | [mm]           |    | [mm]            | [mm]            | [mm]            | [mm] | [mm] |
| HDA-P M10x100/20  | 20                   | 150            | I      | 100  | -              | 17 | 19              | 16,8            | 18,5            | 19,5 | 10   |
| HDA-T M10x100/20  | 20                   | 150            | I      | 120  | 17             | 17 | 19              | 16,8            | 18,5            | 19,5 | 10   |
| HDA-P M12x125/30  | 30                   | 190            | L      | 125  | -              | 19 | 21              | 18,8            | 20,5            | 21,4 | 12   |
| HDA-P M12x125/50  | 50                   | 210            | N      | 125  | -              | 19 | 21              | 18,8            | 20,5            | 21,4 | 12   |
| HDA-T M12x125/30  | 30                   | 190            | L      | 155  | 27             | 19 | 21              | 18,8            | 20,5            | 21,4 | 12   |
| HDA-T M12x125/50  | 50                   | 210            | N      | 175  | 47             | 19 | 21              | 18,8            | 20,5            | 21,4 | 12   |
| HDA-P M16x190/40  | 40                   | 275            | R      | 190  | -              | 24 | 29              | 26              | 29              | 29   | 16   |
| HDA-P M16x190/60  | 60                   | 295            | S      | 190  | -              | 24 | 29              | 26              | 29              | 29   | 16   |
| HDA-T M16x190/40  | 40                   | 275            | R      | 230  | 35,5           | 24 | 29              | 26              | 29              | 29   | 16   |
| HDA-T M16x190/60  | 60                   | 295            | S      | 250  | 55,5           | 24 | 29              | 26              | 29              | 29   | 16   |
| HDA-P M20x250/50  | 50                   | 360            | V      | 250  | -              | 30 | 35              | 32              | 35              | 36   | 20   |
| HDA-P M20x250/100 | 100                  | 410            | Х      | 250  | -              | 30 | 35              | 32              | 35              | 36   | 20   |
| HDA-T M20x250/50  | 50                   | 360            | V      | 300  | 45             | 30 | 35              | 32              | 35              | 36   | 20   |
| HDA-T M20x250/100 | 100                  | 410            | Х      | 350  | 95             | 30 | 35              | 32              | 35              | 36   | 20   |

#### Table A2: Fastener dimensions

#### Pre-setting anchor HDA-P (pre-positioning)



#### Through-fastening anchor HDA-T (post-positioning)



#### Hilti undercut anchor HDA

#### **Product description** Fastener dimensions

Annex A5

Z103904.20



| Table A3:        | Hilti filling was      | Hitt filling washer dimensions   |                                   |  |  |  |  |  |  |  |
|------------------|------------------------|----------------------------------|-----------------------------------|--|--|--|--|--|--|--|
| Fastener<br>size | Hilti filling set size | Hilti filling washer             |                                   |  |  |  |  |  |  |  |
|                  |                        | Diameter d <sub>vs</sub><br>[mm] | Thickness h <sub>vs</sub><br>[mm] |  |  |  |  |  |  |  |
| HDA-P M10        | N10                    | 40                               | E                                 |  |  |  |  |  |  |  |
| HDA-T M10        |                        | 42                               | 5                                 |  |  |  |  |  |  |  |
| HDA-P M12        | M10                    | 44                               | E                                 |  |  |  |  |  |  |  |
| HDA-T M12        | 10112                  | 44                               | 5                                 |  |  |  |  |  |  |  |
| HDA-P M16        | M16                    | 52                               | 6                                 |  |  |  |  |  |  |  |
| HDA-T M16        | INTO                   | 52                               | 0                                 |  |  |  |  |  |  |  |
| HDA-P M20        | M20                    | 60                               | 6                                 |  |  |  |  |  |  |  |
| HDA-T M20        | 10120                  |                                  | 0                                 |  |  |  |  |  |  |  |

### Table A3: Hilti filling washer dimensions

#### Hilti filling washer



#### Hilti undercut anchor HDA

**Product description** Filling washer dimensions Annex A6



#### Specifications of intended use

#### Anchorages subject to:

• Fatigue cycling loading. Note: static and quasi-static load according to ETA-99/0009.

#### **Base material:**

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and uncracked concrete.

#### Use conditions (environmental conditions):

· Structures subject to dry internal conditions.

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under fatigue cycling loading are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 061:2020-01.

#### Installation:

- Drilling technique: hammer drilling with Hilti stop drill bit.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastener installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools (hammer drill, setting tool, stop drill bit, filling set).
- The drill hole is realized with the specified Hilti stop drill bit by hammer drilling technique.
- The fastener is inserted in the cleaned drill hole by hand.
- With the specified setting tool and hammer drill, the fastener is expanded in the drill hole until the marking of the setting tool matches with the surface of the concrete (HDA-P) or with the surface of the fixture (HDA-T).
- The fastener is completely expanded, if the coloured ring of the rod exceeds beyond the upper end of the sleeve. In case the coloured ring is not visible yet out of the sleeve, the setting must be continued.
- After the complete expansion of the fastener, the recess of the sleeve with respect to the concrete surface (HDA-P) or to the surface of the fixture (HDA-T) shall be in the range specified in Table B3, Annex B4.
- Application of the torque moment given in Table B3, Annex B4 using a calibrated torque wrench.

#### Hilti undercut anchor HDA

Intended use Specifications



| Fastener                              | Stop dri               | Nominal<br>Working<br>length | Drill bit<br>diameter |                   |
|---------------------------------------|------------------------|------------------------------|-----------------------|-------------------|
|                                       | TE-C<br>connection end | TE-Y<br>connection end       | t<br>[mm]             | <b>d₀</b><br>[mm] |
| HDA-P M10x100/20                      | TE-C-HDA-B 20x100      | TE-Y-HDA-B 20x100            | 107                   | 20                |
| HDA-T M10x100/20                      | TE-C-HDA-B 20x120      | TE-Y-HDA-B 20x120            | 127                   | 20                |
| HDA-P M12x125/30<br>HDA-P M12x125/50  | TE-C HDA-B 22x125      | TE-Y HDA-B 22x125            | 133                   | 22                |
| HDA-T M12x125/30                      | TE-C HDA-B 22x155      | TE-Y HDA-B 22x155            | 163                   | 22                |
| HDA-T M12x125/50                      | TE-C HDA-B 22x175      | TE-Y HDA-B 22x175            | 183                   | 22                |
| HDA-P M16x190/40<br>HDA-P M16x190/60  | -                      | TE-Y HDA-B 30x190            | 203                   | 30                |
| HDA-T M16x190/40                      | -                      | TE-Y HDA-B 30x230            | 243                   | 30                |
| HDA-T M16x190/60                      | -                      | TE-Y HDA-B 30x250            | 263                   | 30                |
| HDA-P M20x250/50<br>HDA-P M20x250/100 | -                      | TE-Y HDA-B 37x250            | 266                   | 37                |
| HDA-T M20x250/50                      | -                      | TE-Y HDA-B 37x300            | 316                   | 37                |
| HDA-T M20x250/100                     | -                      | TE-Y HDA-B 37x350            | 366                   | 37                |



#### Hilti undercut anchor HDA

Intended use Required stop drill bits



| Table B2:         Required setting tools and hammer drills for the setting of HDA |                    |         |                |              |                     |           |             |                                                |                    |                                                      |                     |                                                |                     |
|-----------------------------------------------------------------------------------|--------------------|---------|----------------|--------------|---------------------|-----------|-------------|------------------------------------------------|--------------------|------------------------------------------------------|---------------------|------------------------------------------------|---------------------|
| Fastener                                                                          | Setting tool       |         |                | Hammer drill |                     |           |             |                                                |                    |                                                      |                     |                                                |                     |
|                                                                                   |                    | Ød [mm] | Connection end | TE 24        | TE 25 <sup>1)</sup> | TE 30-A36 | TE 40 (AVR) | TE 56 <sup>2)</sup><br>TE 56-ATC <sup>2)</sup> | TE 60<br>TE 60-ATC | TE 70 <sup>2) 3)</sup><br>TE 70-ATC <sup>2) 3)</sup> | TE 75 <sup>2)</sup> | TE 76 <sup>2)</sup><br>TE 76-ATC <sup>2)</sup> | TE 80 -ATC<br>(AVR) |
|                                                                                   | TE-C-HDA-ST 20-M10 | 20      | TE-C           |              |                     |           |             |                                                |                    |                                                      |                     |                                                |                     |
| HDA-P/T MITUXT00/20                                                               | TE-Y-HDA-ST 20-M10 | 20      | TE-Y           |              |                     |           |             |                                                |                    |                                                      |                     |                                                |                     |
| HDA-P/T M12x125/30                                                                | TE-C-HDA-ST 22-M12 | 22      | TE-C           |              |                     |           |             |                                                |                    |                                                      |                     |                                                |                     |
| HDA-P/T M12x125/50                                                                | TE-Y-HDA-ST 22-M12 | 22      | TE-Y           |              |                     |           |             | •                                              |                    |                                                      |                     |                                                |                     |
| HDA-P/T M16x190/40<br>HDA-P/T M16x190/60                                          | TE-Y-HDA-ST 30-M16 | 30      | TE-Y           |              |                     |           |             |                                                |                    |                                                      |                     | •                                              |                     |
| HDA-P/T M20x250/50<br>HDA-P/T M20x250/100                                         | TE-Y-HDA-ST 37-M20 | 37      | TE-Y           |              |                     |           |             |                                                |                    |                                                      |                     |                                                |                     |

<sup>1)</sup> TE25: first gear only.

<sup>2)</sup> TE56 (-ATC), TE70 (-ATC), TE75, TE76 (-ATC): use with max. impact energy.

 $^{3)}$  TE70: only with concrete member thickness  $h_{\text{min}} \geq 300$  mm.



#### Hilti undercut anchor HDA

#### Intended use Required setting tools and hammer drills for the setting



| Table D3. Installation parameters         |                       |      |                        |                   |                        |         |                        |         |                        |         |  |
|-------------------------------------------|-----------------------|------|------------------------|-------------------|------------------------|---------|------------------------|---------|------------------------|---------|--|
| Fastener type                             | Fastener type         |      |                        | HDA M10           |                        | HDA M12 |                        | HDA M16 |                        | HDA M20 |  |
| Pre-setting / Through-setti               | ng                    |      | Р                      | Т                 | Р                      | Т       | Р                      | Т       | Р                      | Т       |  |
| Nominal diameter of drill bit             | d <sub>0</sub>        | [mm] | 20                     |                   | 2                      | 22      |                        | 0       | 37                     |         |  |
| Cutting diameter of drill bit             | $d_{\text{cut}} \leq$ | [mm] | 20                     | ,55               | 22                     | ,55     | 30                     | ,55     | 37                     | ,70     |  |
| Depth of drill hole                       | h1                    | [mm] | 107                    | ≥107              | 133                    | ≥133    | 203                    | ≥203    | 266                    | ≥266    |  |
| Diameter of clearance hole in the fixture | df                    | [mm] | 12                     | 21                | 14                     | 23      | 18                     | 32      | 22                     | 40      |  |
| Minimum fixture thickness                 | t <sub>fix,min</sub>  | [mm] | 10                     | 15                | 10                     | 20      | 10                     | 20      | 10                     | 20      |  |
| Maximum fixture thickness                 | t <sub>fix,max</sub>  | [mm] | see Table A2, Annex A5 |                   |                        |         |                        |         |                        |         |  |
| Sleeve recess <sup>1)</sup>               | hs                    | [mm] | 2 ≤ ł                  | n <sub>S</sub> ≤6 | 2 ≤ h <sub>S</sub> ≤ 7 |         | 2 ≤ h <sub>S</sub> ≤ 8 |         | 2 ≤ h <sub>S</sub> ≤ 8 |         |  |
| Installation torque                       | Tinst                 | [Nm] | 5                      | 0                 | 80                     |         | 120                    |         | 300                    |         |  |

#### Table R3. Installation parameters

<sup>1)</sup> sleeve recess after setting of the fastener:

a) Pre-setting anchor HDA-P:

distance from surface of the concrete member to top edge of the anchor sleeve, see Annex A1.

b) Through-fastening anchor HDA-T:

distance from top edge of the fixture to top edge of the anchor sleeve, see Annex A1.

#### **Pre-setting anchor** HDA-P (pre-positioning)

## ò h. t, $\mathbf{h}_{0}$ h

#### Through-setting anchor HDA-T (post-positioning)



#### Hilti undercut anchor HDA

#### Intended use Installation parameters



#### Table B4: Minimum thickness of concrete member, HDA-P

| Fastener type                           |                  |      | HDA-P M10 | HDA-P M12 | HDA-P M16 | HDA-P M20 |
|-----------------------------------------|------------------|------|-----------|-----------|-----------|-----------|
| Minimum thickness<br>of concrete member | h <sub>min</sub> | [mm] | 180       | 200       | 270       | 350       |

#### Table B5: Minimum thickness of concrete member, HDA-T

| Fastener type                        |                                |      | HDA-T M10            | HDA-                 | T M12                | HDA-                 | T M16                | HDA-                 | т м20                |
|--------------------------------------|--------------------------------|------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Maximum fixture<br>thickness         | t <sub>fix,max</sub> 1)        | [mm] | 20                   | 30                   | 50                   | 40                   | 60                   | 50                   | 100                  |
| Minimum thickness of concrete member | h <sub>min</sub> <sup>2)</sup> | [mm] | 200-t <sub>fix</sub> | 230-t <sub>fix</sub> | 250-t <sub>fix</sub> | 310-t <sub>fix</sub> | 330-t <sub>fix</sub> | 400-t <sub>fix</sub> | 450-t <sub>fix</sub> |

<sup>1)</sup> t<sub>fix,max</sub> maximum fastenable thickness, see Table B3, Annex B4.

 $^{2)}$   $h_{\text{min}}$  is dependent on the actual fixture thickness  $t_{\text{fix}}$  (use of a stop drill bit).

e.g. HDA-T 22-M12x125/50:  $t_{fix} = 20mm \rightarrow h_{min} = 250-20 = 230mm$ 

 $t_{fix} = 50mm \rightarrow \ h_{min} = 250\text{-}50 = 200mm$ 

#### Table B6: Minimum spacing and minimum edge distances of fasteners

| HDA-P / HDA-T            |      |      | M10 | M12 | M16 | M20 |
|--------------------------|------|------|-----|-----|-----|-----|
| Cracked concrete         |      |      |     |     |     |     |
| Minimum spacing 1)       | Smin | [mm] | 100 | 125 | 190 | 250 |
| Minimum edge distance 2) | Cmin | [mm] | 80  | 100 | 150 | 200 |
| Uncracked concrete       |      |      |     |     |     |     |
| Minimum spacing 1)       | Smin | [mm] | 100 | 125 | 190 | 250 |
| Minimum edge distance 2) | Cmin | [mm] | 80  | 100 | 150 | 200 |

<sup>1)</sup> ratio  $s_{min} / h_{ef} = 1,0$ 

<sup>2)</sup> ratio  $c_{min} / h_{ef} = 0.8$ 

#### Hilti undercut anchor HDA

#### Intended use

Minimum concrete thickness, minimum spacing and minimum edge distance

Annex B5

Electronic copy of the ETA by DIBt: ETA-18/0974





#### Installation instructions: HDA-T (post-positioning)



#### Hilti undercut anchor HDA

Intended use Installation instructions



.

1

Tinst

HIT-HY 200-A

HIT-HY200 -4



#### Table B7: Maximum working time and minimum curing time HY 200-A

| Temperature in the base<br>material T | Maximum working time<br>t <sub>work</sub> | Minimum curing time<br>t <sub>cure</sub> |
|---------------------------------------|-------------------------------------------|------------------------------------------|
| > 0 °C to 5 °C                        | 25 min                                    | 2 hours                                  |
| > 5 °C to 10 °C                       | 15 min                                    | 75 min                                   |
| > 10 °C to 20 °C                      | 7 min                                     | 45 min                                   |
| > 20 °C to 30 °C                      | 4 min                                     | 30 min                                   |
| > 30 °C to 40 °C                      | 3 min                                     | 30 min                                   |

#### Table B8: Maximum working time and minimum curing time HY 200-R

| Temperature in the base material T | Maximum working time<br>t <sub>work</sub> | Minimum curing time<br>t <sub>cure</sub> |  |  |
|------------------------------------|-------------------------------------------|------------------------------------------|--|--|
| > 0 °C to 5 °C                     | 1 hour                                    | 4 hours                                  |  |  |
| > 5 °C to 10 °C                    | 40 min                                    | 2,5 hours                                |  |  |
| > 10 °C to 20 °C                   | 15 min                                    | 1,5 hours                                |  |  |
| > 20 °C to 30 °C                   | 9 min                                     | 1 hour                                   |  |  |
| > 30 °C to 40 °C                   | 6 min                                     | 1 hour                                   |  |  |

#### Hilti undercut anchor HDA

## Intended use

Installation instructions of the filling set



# Table C1:Essential characteristics under tension fatigue load in concrete(design method I acc. to TR 061)

| HDA-P / HDA-T                            |                 |                     | M10                 | M10 M12 M16 |              |      |  |
|------------------------------------------|-----------------|---------------------|---------------------|-------------|--------------|------|--|
| Steel failure                            |                 |                     |                     |             |              |      |  |
| Characteristic resistance [kN]           |                 |                     | ∆ <b>N</b> Rk.s.0,n |             |              |      |  |
|                                          |                 | ≤ 10 <sup>5</sup>   | 15,4                | 20,3        | 48,3         | 64,9 |  |
| Number of such s                         |                 | ≤ 3·10 <sup>5</sup> | 12,3                | 17,9        | 34,8         | 49,5 |  |
| Number of cycles                         | n               | ≤ 10 <sup>6</sup>   | 10,4                | 16,8        | 26,5         | 38,0 |  |
|                                          |                 | ×                   | 9,2                 | 16,3        | 22,7         | 26,7 |  |
| Partial factor                           | γMs,N,fat       | [-]                 |                     | acc. to TR  | 061, Eq. (3) | •    |  |
| Concrete failure                         |                 |                     |                     |             |              |      |  |
| Effective embedment depth                | h <sub>ef</sub> | [mm]                | 100                 | 125         | 190          | 250  |  |
| Reduction factor <sup>1)</sup>           |                 | [-]                 |                     | ηk,c,       | N,fat,n      | •    |  |
|                                          |                 | ≤ 10 <sup>5</sup>   | 0,64                |             |              |      |  |
| NL school of a school                    |                 | ≤ 3·10 <sup>5</sup> | 0,64                |             |              |      |  |
| Number of cycles                         | n               | ≤ 10 <sup>6</sup>   |                     | 0,          | 64           |      |  |
|                                          |                 | ×                   |                     | 0,64        |              |      |  |
| Partial factor                           | γMc,fat         | [-]                 | 1,5                 |             |              |      |  |
| Load transfer factor for fastener groups | Ψεν             | [-]                 |                     | 0,          | 77           |      |  |

 $\label{eq:nonlinear} \begin{tabular}{l} 1 \end{tabular} \Delta N_{\text{Rk},(c,\text{sp},\text{cb}),0,n} = \eta_{k,c,N,fat,n} \cdot N_{\text{Rk},(c,\text{sp},\text{cb})} \mbox{ with } N_{\text{Rk},(c,\text{sp},\text{cb})} \mbox{ according to ETA-99/0009.} \end{tabular}$ 

#### Hilti undercut anchor HDA

#### Performances

Essential characteristics under tension fatigue load in concrete (design method I acc. to TR 061)



# Table C2:Essential characteristics under shear fatigue load in concrete(design method I acc. to TR 061)

| HDA-P                                    |                  | M10                 | M12                         | M16        | M20      |      |  |
|------------------------------------------|------------------|---------------------|-----------------------------|------------|----------|------|--|
| Steel failure                            |                  |                     |                             |            |          | •    |  |
| Characteristic resistance [kN]           |                  |                     |                             | $\Delta V$ | Rk,s,0,n |      |  |
|                                          |                  | ≤ 10 <sup>5</sup>   | 5,0                         | 8,8        | 14,9     | 29,1 |  |
| Number of evolop                         | n                | ≤ 3·10 <sup>5</sup> | 3,3                         | 6,7        | 11,2     | 22,4 |  |
|                                          | 11               | ≤ 10 <sup>6</sup>   | 2,6                         | 6,1        | 9,6      | 18,9 |  |
|                                          |                  | $\infty$            | 2,5                         | 6,0        | 9,0      | 17,5 |  |
| Partial factor                           | γMs,V,fat        | [-]                 | [-] acc. to TR 061, Eq. (3) |            |          |      |  |
| Concrete failure                         |                  |                     |                             |            |          |      |  |
| Effective length of<br>fastener          | lf               | [mm]                | 70                          | 88         | 90       | 120  |  |
| Effective outside diameter of fastener   | d <sub>nom</sub> | [mm]                | 19                          | 21         | 29       | 35   |  |
| Reduction factor <sup>1)</sup>           |                  | [-]                 | <br>ηk,c,V,fat,n            |            |          |      |  |
|                                          |                  | ≤ 10 <sup>5</sup>   | 0,55                        |            |          |      |  |
| Number of evolop                         | n                | ≤ 3·10 <sup>5</sup> |                             | 0          | ,55      |      |  |
|                                          | 11               | ≤ 10 <sup>6</sup>   |                             | 0          | ,55      |      |  |
|                                          |                  | 8                   | 0,55                        |            |          |      |  |
| Partial factor                           | γMc,fat          | [-]                 | 1,5                         |            |          |      |  |
| Load transfer factor for fastener groups | ΨΕν              | [-]                 | 0,83                        |            |          |      |  |

 $^{1)}$   $\Delta V_{\text{Rk},(c,cp),0,n} = \eta_{k,c,V,\text{fat},n} \cdot V_{\text{Rk},(c,cp)}$  with  $V_{\text{Rk},(c,cp)}$  according to ETA-99/0009.

#### Hilti undercut anchor HDA

#### Performances

Essential characteristics under shear fatigue load in concrete (design method I acc. to TR 061)



# Table C3:Essential characteristics under shear fatigue load in concrete(design method I acc. to TR 061)

| HDA-T                                    |                  |                     | M10                         | M12  | M16  | M20  |  |
|------------------------------------------|------------------|---------------------|-----------------------------|------|------|------|--|
| Steel failure                            |                  |                     |                             |      |      |      |  |
| Characteristic resistance [kN]           |                  |                     | $\Delta V_{Rk,s,0,n}$       |      |      |      |  |
|                                          |                  | ≤ 10 <sup>5</sup>   | 15,9                        | 21,8 | 34,2 | 29,1 |  |
| Number of evolge                         | ~                | ≤ 3·10 <sup>5</sup> | 12,6                        | 18,5 | 27,7 | 22,4 |  |
|                                          | r i              | ≤ 10 <sup>6</sup>   | 10,3                        | 16,5 | 24,4 | 18,9 |  |
|                                          |                  | x                   | 8,5                         | 15,0 | 23,0 | 17,5 |  |
| Partial factor                           | γMs,V,fat        | [-]                 | [-] acc. to TR 061, Eq. (3) |      |      |      |  |
| Concrete failure                         |                  |                     |                             |      |      |      |  |
| Effective length of<br>fastener          | lf               | [mm]                | 70                          | 88   | 90   | 120  |  |
| Effective outside diameter of fastener   | d <sub>nom</sub> | [mm]                | 19                          | 21   | 29   | 35   |  |
| Reduction factor <sup>1)</sup>           |                  | [-]                 | ηκ,c,V,fat,n                |      |      |      |  |
|                                          |                  | ≤ 10 <sup>5</sup>   | 0,55                        |      |      |      |  |
| Number of evolge                         | ~                | ≤ 3·10 <sup>5</sup> |                             | 0    | ,55  |      |  |
|                                          | n                | ≤ 10 <sup>6</sup>   |                             | 0    | ,55  |      |  |
|                                          |                  | 8                   | 0,55                        |      |      |      |  |
| Partial factor                           | γMc,fat          | [-]                 | 1,5                         |      |      |      |  |
| Load transfer factor for fastener groups | ΨFV              | [-]                 | 0,83                        |      |      |      |  |

 $^{1)}$   $\Delta V_{\text{Rk},(c,cp),0,n} = \eta_{k,c,V,\text{fat},n} \cdot V_{\text{Rk},(c,cp)}$  with  $V_{\text{Rk},(c,cp)}$  according to ETA-99/0009.

#### Hilti undercut anchor HDA

#### Performances

Essential characteristics under shear fatigue load in concrete (design method I acc. to TR 061)



# Table C4:Essential characteristics under tension fatigue load in concrete(design method II acc. to TR 061)

| HDA-P / HDA-T                            |                        |      | M10  | M12  | M16  | M20  |  |
|------------------------------------------|------------------------|------|------|------|------|------|--|
| Steel failure                            |                        |      |      |      |      |      |  |
| Characteristic resistance                | ∆N <sub>Rk,s,0,∞</sub> | [kN] | 9,2  | 16,3 | 22,7 | 26,7 |  |
| Partial factor                           | γMs,N,fat              | [-]  | 1,35 |      |      |      |  |
| Concrete failure                         |                        |      |      |      |      |      |  |
| Effective embedment depth                | h <sub>ef</sub>        | [mm] | 100  | 125  | 190  | 250  |  |
| Reduction factor <sup>1)</sup>           | ηk,c,N,fat,∞           | [-]  |      | 0,   | 64   | •    |  |
| Partial factor                           | γMc,fat                | [-]  | 1,5  |      |      |      |  |
| Load transfer factor for fastener groups | ΨFN                    | [-]  | 0,77 |      |      |      |  |

<sup>1)</sup>  $\Delta N_{Rk,(c,sp,cb),0,\infty} = \eta_{k,c,N,fat,\infty} \cdot N_{Rk,(c,sp,cb)}$  with  $N_{Rk,(c,sp,cb)}$  according to ETA-99/0009.

# Table C5:Essential characteristics under shear fatigue load in concrete(design method II acc. to TR 061)

| HDA-P                                       |                                 |          | M10  | M12 | M16 | M20  |  |
|---------------------------------------------|---------------------------------|----------|------|-----|-----|------|--|
| Steel failure                               |                                 |          |      |     |     |      |  |
| Characteristic resistance                   | $\Delta V_{Rk,s,0, \texttt{m}}$ | [kN]     | 2,5  | 6,0 | 9,0 | 17,5 |  |
| Partial factor                              | γMs,V,fat                       | [-]      | 1,35 |     |     |      |  |
| Concrete failure                            |                                 |          |      |     |     |      |  |
| Effective length of<br>fastener             | lf                              | [m<br>m] | 70   | 88  | 90  | 120  |  |
| Effective outside diameter of fastener      | d <sub>nom</sub>                | [m<br>m] | 19   | 21  | 29  | 35   |  |
| Reduction factor <sup>1)</sup>              | ηk,c,V,fat,∞                    | [-]      | 0,55 |     |     |      |  |
| Partial factor                              | γMc,fat                         | [-]      | 1,5  |     |     |      |  |
| Load transfer factor for<br>fastener groups | Ψεν                             | [-]      | 0,83 |     |     |      |  |

<sup>1)</sup>  $\Delta V_{Rk,(c,cp),0,\infty} = \eta_{k,c,V,fat,\infty} \cdot V_{Rk,(c,cp)}$  with  $V_{Rk,(c,cp)}$  according to ETA-99/0009.

#### Hilti undercut anchor HDA

| Performances |  |
|--------------|--|
|--------------|--|

Essential characteristics under tension and shear fatigue load in concrete (design method II acc. to TR 061)



| Table C6:   | Essential characteristics under shear fatigue load in concrete |
|-------------|----------------------------------------------------------------|
| (design met | od II acc. to TR 061)                                          |

| HDA-T                                     |                                                          |          | M10  | M12  | M16  | M20  |  |
|-------------------------------------------|----------------------------------------------------------|----------|------|------|------|------|--|
| Steel failure                             |                                                          |          |      |      |      |      |  |
| Characteristic resistance                 | $\Delta V_{Rk, \mathtt{s}, \mathtt{0}, \mathtt{\infty}}$ | [kN]     | 8,5  | 15,0 | 23,0 | 17,5 |  |
| Partial factor                            | γMs,V,fat                                                | [-]      |      | 1,   | 35   |      |  |
| Concrete failure                          |                                                          |          |      |      |      |      |  |
| Effective length of<br>fastener           | lf                                                       | [m<br>m] | 70   | 88   | 90   | 120  |  |
| Effective outside<br>diameter of fastener | d <sub>nom</sub>                                         | [m<br>m] | 19   | 21   | 29   | 35   |  |
| Reduction factor <sup>1)</sup>            | ηk,c,V,fat,∞                                             | [-]      | 0,55 |      |      |      |  |
| Partial factor                            | γMc,fat                                                  | [-]      | 1,5  |      |      |      |  |
| Load transfer factor for fastener groups  | ΨFV                                                      | [-]      | 0,83 |      |      |      |  |

<sup>1)</sup>  $\Delta V_{\text{Rk},(c,cp),0,\infty} = \eta_{k,c,V,\text{fat},\infty} \cdot V_{\text{Rk},(c,cp)}$  with  $V_{\text{Rk},(c,cp)}$  according to ETA-99/0009.

# Table C7:Essential characteristics for combined fatigue load in concrete(design method I and II acc. to TR 061)

| HDA-P / HDA-T         |     |     | M10 | M12 | M16  | M20 |
|-----------------------|-----|-----|-----|-----|------|-----|
| Exponent for combined | αsn | [-] | 1,0 |     | 1,25 |     |
| fatigue load          | αc  | [-] |     | 1   | ,5   |     |

#### Hilti undercut anchor HDA

| Per | iorm | na | nces |  |
|-----|------|----|------|--|
| _   |      |    |      |  |

Essential characteristics under shear and combined fatigue load in concrete (design method I and II acc. to TR 061)