

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0849 of 28 January 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Spitec Oy Injection system Lionfix, Lionfix N for concrete

Bonded fastener for use in concrete

Spitec Oy Kirvesmiehenkatu 6 00880 HELSINKI FINNLAND

Spitec Plant 1

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

European Technical Assessment ETA-19/0849

Page 2 of 31 | 28 January 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-19/0849

Page 3 of 31 | 28 January 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Spitec Oy Injection system Lionfix, Lionfix N for concrete" is a bonded anchor consisting of a cartridge with injection Lionfix or Lionfix N and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1 to C 3, C 5, C 7
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C1, C 4, C 6, C 8
Displacements	See Anne
(static and quasi-static loading)	C 9 to C 11
Characteristic resistance and displacements for seismic	See Anne
performance categories C1	C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed
Durability	See Annex B 1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-19/0849

Page 4 of 31 | 28 January 2020

English translation prepared by DIBt

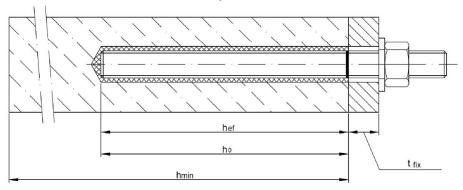
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

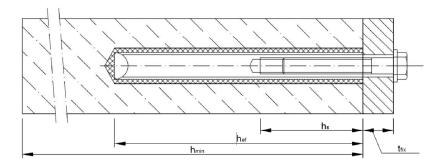
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 28 January 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

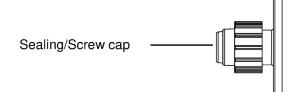
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

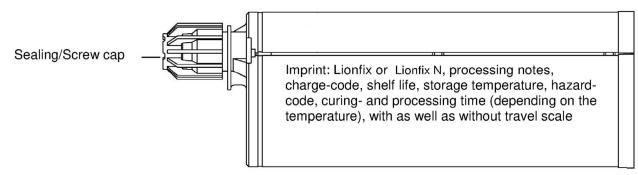
 $t_{\text{fix}} \quad = \quad \text{thickness of fixture}$

 h_{ef} = effective anchorage depth

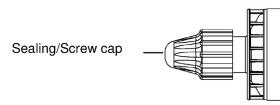
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Product description Installed condition	Annex A 1

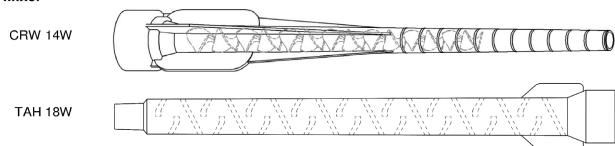

Cartridge: Lionfix or Lionfix N

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: Lionfix or Lionfix N, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

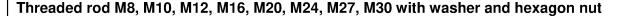
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

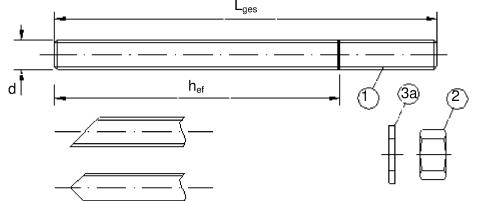


165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: Lionfix or Lionfix N, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

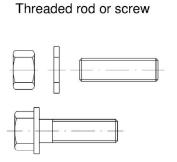
Static Mixer

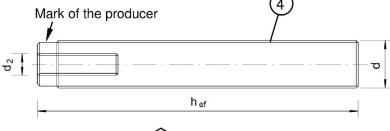

Spitec Oy Injection system Lionfix, Lionfix N for concrete


Product description

Injection system

Annex A 2

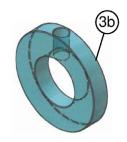


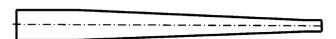


Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc.
 Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Internal threaded anchor rod IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20


Marking: e.g.


Marking Internal thread
Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Spitec Oy Injection system Lionfix, Lionfix N for concrete

Product description

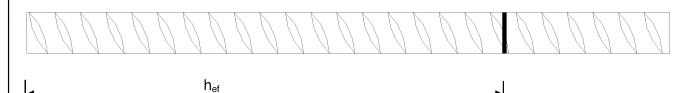
Threaded rod, internal threaded rod and filling washer

Annex A 3

Page 8 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt

	Designation	Material				
zi ho	ot-ḋip galvanised ≥ 40 μm →	acc. to EN ISO 4042:1999	or and El	,	-AC:2009 or	
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
		acc. to		f _{uk} = 500 N/mm ²		A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	$f_{vk} = 640 \text{ N/mm}^2$	A ₅ ≥ 8%
			4	for threaded rod c	1 3] 3
2	Hexagon nut	acc. to	5	for threaded rod c		
		EN ISO 898-2:2012	8	for threaded rod c	lass 8.8	
3a	Washer	Steel, zinc plated, hot-di (e.g.: EN ISO 887:2006,	EN IS	O 7089:2000, EN I	SO 7093:2000 or E	N ISO 7094:200
3b	Filling washer	Steel, zinc plated, hot-di	ip galva			T
		Property class		Characteristic	Characteristic	Elongation at fracture
4	Internal threaded		F 0	tensile strength $f_{UK} = 500 \text{ N/mm}^2$	yield strength $f_{vk} = 400 \text{ N/mm}^2$	A ₅ > 8%
	anchor rod	acc. to EN ISO 898-1:2013		$f_{uk} = 800 \text{ N/mm}^2$	$f_{vk} = 400 \text{ N/mm}^2$	$A_5 > 8\%$
	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44		67 or 1	.4541, acc. to EN	10088-1:2014)	1 -
Stai	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 n corrosion resistance stee	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456 	67 or 1 62 or 1	.4541, acc. to EN .4578, acc. to EN .	10088-1:2014) 10088-1:2014)	Elongation at
Stai	nless steel A4 (Material 1.44	401 / 1.4404 / 1.4571 / 1.43	667 or 1 862 or 1 5, acc.	.4541, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength	fracture
Stai	nless steel A4 (Material 1.44	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456 Property class	667 or 1 662 or 1 5, acc.	.4541, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	fracture A ₅ ≥ 8%
itai ligh	nless steel A4 (Material 1.44 a corrosion resistance stee	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4569 Property class	667 or 1 662 or 1 5, acc.	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
tai ligh	nless steel A4 (Material 1.44 a corrosion resistance stee	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456 Property class	667 or 1 662 or 1 5, acc.	.4541, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	fracture A ₅ ≥ 8%
tai	Threaded rod ¹⁾³⁾	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4569 Property class acc. to EN ISO 3506-1:2009	50 70 80 50	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
tai	nless steel A4 (Material 1.44 a corrosion resistance stee	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4569 Property class	567 or 1 362 or 1 55, acc. 50 70 80 50 70	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
itai ligh	Threaded rod ¹⁾³⁾	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009	50 70 80 50 70 80 80	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod cofor threaded rod cof	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70 lass 80	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stair High	Threaded rod ¹⁾³⁾	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4	50 70 80 70 80 4307 / 4404 / 5	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod composition for threaded rod composition of the form of th	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_0 \ge 8\%$
itai ligh	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4	50 70 80 70 80 4307 / 1404 / r 1.456	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod composition for threaded rod composition of the form of th	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 8-1: 2014	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $10088-1:2014$ $10088-1:2014$
1 2	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	401 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or	50 70 80 70 80 50 70 80 4307 / 4404 / r 1.456 EN IS	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c .4311 / 1.4567 or 1.4571 / 1.4362 or 5, acc. to EN 10080 O 7089:2000, EN IS	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 8-1: 2014 SO 7093:2000 or E	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $10088-1:2014$ $10088-1:2014$:N ISO 7094:200
1 2 3a	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	A01 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	50 70 80 70 80 50 70 80 4307 / 4404 / r 1.456 EN IS	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN . to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or 1.4571 / 1.4362 or 5, acc. to EN 10080 O 7089:2000, EN IS ion resistance stee Characteristic tensile strength	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm² f _{yk} = 450 N/mm² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 1	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 Elongation at fracture
itai ligh 1 2 3a	Threaded rod 1)3) Hexagon nut 1)3) Washer Filling washer Internal threaded	A01 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High Property class acc. to	50 70 80 70 80 50 70 80 4307 / 4404 / r 1.456 EN IS	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod contracted for threaded rod contracted for threaded rod contracted for the EN 10080 O 7089:2000, EN It ion resistance stee Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength fyk = 210 N/mm² fyk = 450 N/mm² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 8-1: 2014 SO 7093:2000 or E Characteristic yield strength fyk = 210 N/mm²	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 EN ISO 7094:200 Elongation at fracture $A_5 > 8\%$
1 2 3a 4	Threaded rod 1)3) Hexagon nut 1)3) Washer Filling washer	A01 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High Property class acc. to EN ISO 3506-1:2009	50 70 80 70 80 70 80 4307 / 4404 / r 1.456 EN IS corros	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN . to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or 1.4571 / 1.4362 or 1.5, acc. to EN 10086 O 7089:2000, EN IS ion resistance stee Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm² f _{yk} = 450 N/mm² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 8-1: 2014 SO 7093:2000 or E Characteristic yield strength f _{yk} = 210 N/mm² f _{yk} = 450 N/mm²	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 Elongation at fracture


Spitec Oy Injection system Lionfix, Lionfix N for concrete

Product description
Materials threaded rod and internal threaded rod

Annex A 4

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range $0.05d \le h \le 0.07d$ (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: **Materials**

Part	Designation	Material					
Reinf	Reinforcing bars						
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Electronic copy of the ETA by DIBt: ETA-19/0849

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Product description	Annex A 5
Materials reinforcing bar	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Intended Use Specifications	Annex B 1

Page 11 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod											
Anchor size		М8	M10	M12	M16	M20	M24	M27	M30		
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30		
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35		
Effective embedment death	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120		
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33		
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37		
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200		
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30	0 mm ≥ 1	00 mm			$h_{ef} + 2d_0$				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150		
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150		

Table B2: Installation parameters for rebar

Rebar size	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Enective embedinent depth	$h_{ef,max}$ [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member		30 mm 0 mm	h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	$d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Lifective embedment depth	$h_{ef,max}$ [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	kness of member h_{min} [mm] $h_{ef} + 30 \text{ mm}$ $\geq 100 \text{ mm}$			h _{ef} +	- 2d ₀		
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Intended Use	Annex B 2
Installation parameters	

Table B4:	Table B4: Parameter cleaning and setting tools										
	and the second to the second			- mmm							
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d _t Brush		d _{b,min} min. Brush - Ø	Piston plug	Installation direction and us of piston plug			
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1	
M8			10	RBT10	12	10,5					
M10	8	IG-M6	12	RBT12	14	12,5		No piston p	lua require	,d	
M12	10	IG-M8	14	RBT14	16	14,5		NO PISION P	nug require	,u	
	12		16	RBT16	18	16,5					
M16	14	IG-M10	18	RBT18	20	18,5	VS18		'		
	16		20	RBT20	22	20,5	VS20				
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h _{ef} >	h _{ef} >		
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	all	
M27	25		32	RBT32	34	32,5	VS32	250 mm			
M30	28	IG-M20	35	RBT35	37	35,5	VS35				
	32		40	RBT40	41,5	40,5	VS40				

MAC - Hand pump (volume 750 ml)Drill bit diameter (d_0) : 10 mm to 20 mm
Drill hole depth (h_0) : < 10 d_{nom} Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

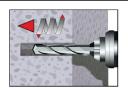
Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush RBTDrill bit diameter (d₀): all diameters

Spitec Oy Injection system Lionfix, Lionfix N for concrete

Intended Use

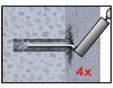
Cleaning and setting tools


Annex B 3

Z4841.20

Installation instructions

Drilling of the bore hole

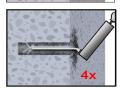


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.

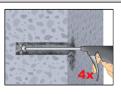
In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump 1) (Annex B 3) a minimum of four times.


2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

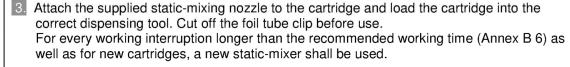
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

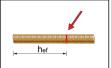
Spitec Oy Injection system Lionfix, Lionfix N for concrete

Intended Use

Installation instructions

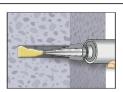
Annex B 4

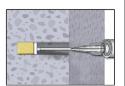

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

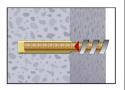

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

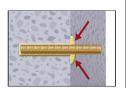
Installation instructions (continuation)



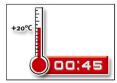

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

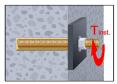
6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Spitec Oy Injection system Lionfix, Lionfix N for concrete	A D. 5
Intended Use Installation instructions (continuation)	Annex B 5

Electronic copy of the ETA by DIBt: ETA-19/0849

Deutsches Institut für **Bautechnik**

English translation prepared by DIBt

Table B5:		aximum work onfix	working time and minimum curing time								
Concre	te temp	perature	Gelling- / working time	Minimum curing time in dry concrete 1)							
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾							
-5 °C	to	-1°C	90 min	14 h							
0 °C	°C to +4°C		45 min	7 h							
+5 °C	to	+9°C	25 min	2 h							
+ 10 °C	to	+19°C	15 min	80 min							
+ 20 °C	to	+29°C	6 min	45 min							
+ 30 °C	to	+34°C	4 min	25 min							
+ 35 °C	to	+39°C	2 min	20 min							
	+ 40 °C	;	1,5 min	15 min							
Cartrido	ge temp	erature	+5°C to	+40°C							

In wet concrete the curing time must be doubled.

Maximum working time and minimum curing time Table B6: Lionfix N

Concrete temperature			Gelling- / working time	Minimum curing time in dry concrete 1)				
-20 °C	to	-16°C	75 min	24 h				
-15 °C	to	-11°C	55 min	16 h				
-10 °C	to	-6°C	35 min	10 h				
-5 °C	to	-1°C	20 min	5 h				
0 °C	to	+4°C	10 min	2,5 h				
+5 °C	to	+9°C	6 min	80 Min				
+ 10 °C			6 min	60 Min				
Cartrido	ge tem	perature	-20°C to +10°C					

In wet concrete the curing time must be doubled.

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Intended Use Curing time	Annex B 6

Cartridge temperature must be at min. +15°C.

English translation prepared by DIBt

Si	ze			М8	M10	M12	M16	M20	M24	M27	M30	
	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561	
Characteristic tension resistance, Steel failure 1)												
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281	
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	1	-	
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-	
С	haracteristic tension resistance, Partial facto	or ²⁾										
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)				
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,5	5				
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6				
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]				1,8	7				
St	ainless steel A4 and HCR, class 80	Y _{Ms,N}	[-]				1,6	3				
С	haracteristic shear resistance, Steel failure	1)	1									
Ε	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
r arm	Steel, Property class 5.6 and 5.8	$V^{U}_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168	
eve	Steel, Property class 8.8	$V_{\text{Bk.s}}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Ħ	Stainless steel A2, A4 and HCR, class 50	$V^{U}_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	-	-	
3	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	-	-	
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797	
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125	
Vith	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-	
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-	
С	haracteristic shear resistance, Partial factor	2)										
Steel, Property class 4.6 and 5.6 $\gamma_{Ms,V}$ [-] 1,67												
	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2					
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]	2,38								
Stainless steel A2, A4 and HCR, class 70 Y _{Ms,V} [-] 1,56												
C+	Stainless steel A2, A4 and HCR, class 70 Y _{Ms,V} [-] 1,56 Stainless steel A4 and HCR, class 80 Y _{Ms,V} [-] 1,33											

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
²⁾ in absence of national regulation

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: C	Characteristic values	for Concrete	cone failure	and Splitting with all kind of action
Anchor size				All Anchor types and sizes
Concrete cone fa	ailure		1	· ·
Non-cracked con	crete	k _{ucr,N}	[-]	11,0
Cracked concrete)	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		·		
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	•	s _{cr,sp}	[mm]	2 c _{cr,sp}

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Electronic copy of the ETA by DIBt: ETA-19/0849

Page 18 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt

Table	C3:	Characte	eristic values of	tension load	ls under st	atic ar	nd qua	si-stat	ic acti	on						
		e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure Characteristic tension resistance N _{Rk,s} [kN]								A _s ⋅ f _{uk} (or see Table C1)								
Partial factor Y _{Ms,N} [-]								see Table C1								
Combi	ned	pull-out and	concrete failure		•											
Charac	teris		ance in non-crack	ked concrete C	20/25	I	1	1		1	I					
a >	1:	40°C/24°C				10	12	12	12	12	11	10	9			
Temperature range	<u>II:</u>	80°C/50°C	Dry, wet concrete			7,5	9	9	9	9	8,5	7,5	6,5			
ture	III:	120°C/72°C		τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0			
ıperal	<u>l:</u>	40°C/24°C		Thk,uci	[14//////	7,5	8,5	8,5	8,5		l- Df					
Terr	II:	80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	1	lo Perfo ssesse					
	III:	120°C/72°C				4,0	5,0	5,0	5,0			•	•			
Charac	teris	stic bond resist	ance in cracked o	concrete C20/2	25	ı	ı	ı	ı	1						
ø.	<u> </u> :	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5			
range	<u>II:</u>	80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5			
ure	111:	120°C/72°C			[N/mm²] ·	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5			
Temperature range	l:	40°C/24°C		[−] τ _{Rk,cr}		4,0	4,0	5,5	5,5	No Performance Assessed (NPA)						
Tem	II:	80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0							
	III:	120°C/72°C				2,0	2,5	3,0	3,0							
Redukt	tion 1	factor ψ ⁰ sus in	cracked and nor	n-cracked cond	rete C20/25		•	•	•	•						
re	l:	40°C/24°C	Dry wet			0,73										
Temperature range	II:	80°C/50°C	Dry, wet concrete and flooded bore	$\Psi^0_{ m sus}$	[-]	0,65										
Tem		120°C/72°C	hole			0,57										
				C25/30		1,02										
Increas	eina :	factors for con	crete	C30/37 C35/45						04 07						
Ψ _c	onig	lactors for con	crete	C40/50						07 08						
. 0				C45/55		1,09										
Canar	-t	ana failura		C50/60					1,	10						
		cone failure arameter							see Ta	ıble C2						
Splittir	ng															
		arameter n factor							see Ta	ble C2						
		wet concrete				1,0				1,2						
for flooded bore hole			γinst	[-]		1	,4			N	PA					
Spited	: Oy	Injection syste	em Lionfix, Lionfi	x N for concre	te					Γ						
Perfor Charac			nsion loads under	static and quas	si-static action	n				_	Anne	x C 3				

Page 19 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt

Table C4: Characteristic values	s of shea	ar loads	s under	static	and qu	asi-stat	ic actio	n			
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm				•			•	•			
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8 V ⁰ _{Rk,s} [kN] 0,6 • A _s • f _{uk} (or see Table C1)											
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)								
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1			
Ductility factor k ₇ [-]				1,0							
Steel failure with lever arm	•										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • '	W _{el} • f _{uk}	(or see	Table C	(1)		
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874	
Partial factor	γ _{Ms,V}	[-]	see Table C1								
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]	1,0								
Concrete edge failure											
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300mm)$						300mm)		
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27 30						30		
Installation factor	γ _{inst}	[-] 1,0									

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Page 20 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt

Table C5: Characteris	tic values of t	ension	loads ui	nder stat	ic and qu	asi-static	action			
Anchor size internal threade	d anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure ¹⁾										
Characteristic tension resistant	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength class 5.	8 and 8.8	γ _{Ms,N}	[-]			1	,5			
Characteristic tension resistant Steel A4 and HCR, Strength cl	ce, Stainless	N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor		γ _{Ms,N}	[-]			1,87			2,86	
Combined pull-out and conc	rete cone failu	re								
Characteristic bond resistance	in non-cracked	concret	e C20/25							
n I: 40°C/24°C	Dry wot			12	12	12	12	11	9	
<u>∃</u> <u>II: 80°C/50°C</u>	Dry, wet concrete			9	9	9	9	8,5	6,5	
HI: 80°C/50°C HI: 80°C/50°C HI: 80°C/50°C	Concrete	π	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0	
<u>မို့</u> ဖြွ				8,5	8,5	8,5				
Б	flooded bore			6,5	6,5	6,5	No Performance A (NPA)		ssessed	
⊢ III: 120°C/72°C	hole			5,0	5,0	5,0				
Characteristic bond resistance	in cracked con	crete C2	20/25			1 -,-				
I: 40°C/24°C				5,0	5,5	5,5	5,5	5,5	6,5	
II: 80°C/50°C	Dry, wet			3,5	4,0	4,0	4,0	4,0	4,5	
Till: 120°C/72°C	concrete			2,5	3,0	3,0	3,0	3,0	3,5	
1: 40°C/50°C		^τ Rk,cr	[N/mm ²]	4,0	5,5	5,5	0,0	0,0	0,5	
II: 80°C/50°C	flooded bore			3,0	4,0	4,0	No Perfe	ssessed		
III: 120°C/72°C	hole			2,5	3,0	3,0		(NPA)		
Reduktion factor ψ ⁰ sus in crac	ked and non-cr	acked c	oncrete C		0,0	0,0				
1: 40°C/24°C	Dry, wet			0,73						
II: 40°C/24°C III: 80°C/50°C III: 120°C/72°C	concrete and flooded bore	ψ^0_{sus}	[-]	0,65						
မြ III: 120°C/72°C	hole			0,57						
			5/30				02			
			0/37				04			
Increasing factors for concrete			5/45				07			
Ψ_{C}			0/50				08			
			5/55				09			
Occupate comp failure		C5	0/60			1,	10			
Concrete cone failure Relevant parameter			1			500 T	able C2			
Splitting failure						SEE 13	IDIE UZ			
Relevant parameter						200 T	able C2			
Installation factor						3 00 18	ADIC OZ			
						4	,2			
for dry and wet concrete for flooded bore hole		γ _{inst}	[-]		1,4	I	, <u>c</u>	NPA		
1) Footonings (incl. put and was							<u> </u>			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Page 21 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt

Table C6: Characteristic	values	of shear	loads	under sta	itic and q	uasi-stat	ic action		
Anchor size for internal threade	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹⁾)				'				1
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	ınd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor Y _{Ms,V} [-] 1,56						2,38			
Ductility factor		k ₇ [-] 1,0							
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	ınd 8.8	γ _{Ms,V}	[-]	1,25					
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]		2,38				
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure									
Effective length of fastener		I _f	[mm]	minin 12 • A 1				min (h _{ef} ; 300mm	
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γinst	[-]	1,0					
Factor Installation factor Concrete edge failure Effective length of fastener Outside diameter of fastener	10		I	1,0 I _{nom})	24	(h _{ef} ; 30			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

English translation prepared by DIBt

	size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel fail			TNI						· · ·	1)			
	ristic tension resi	stance	N _{Rk,s}	[kN]					s · f _{uk}		I		
	ction area		A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial fac			γMs,N	[-]					1,4 ²⁾				
	ed pull-out and o												
	ristic bond resista	ance in non-c	racked cond	crete C20/2									
<u>e</u> 1		Dry, wet			10	12	12	12	12	12	11	10	8,5
e aft	I: 80°C/50°C	concrete			7,5	9	9	9	9	9	8,0	7,0	6,0
nperatı range 	II: 120°C/72°C : 40°C/24°C		τ _{Rk.ucr}	[N/mm ²]	5,5 7,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
έs †	1: 40 C/24 C	flooded	,	-	7,5 5,5	8,5 6,5	8,5 6,5	8,5 6,5	8,5 6,5	N	lo Perfo	ormano	е
ii: 80°C/50°C bo		bore hole			4,0	5,0	5,0	5,0	5,0	A	ssesse	ed (NPA	١)
	ristic bond resista	l ance in crack	ed concrete	C20/25	4,0	5,0	5,0	5,0	5,0				
ı				020/20	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
e i	II: 80°C/50°C Dry, wet	Dry, wet			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
	II: 120°C/72°C	concrete	_	FN 1 / OT	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
စို့ हि	£1	TRk,cr	[N/mm ²]	4,0	4,0	5,5	5,5	5,5	No Performance Assessed (NPA)				
_ e	II: 80°C/50°C flooded			2,5	3,0	4,0	4,0	4,0					
Ι Τ	II: 120°C/72°C	bore hole			2,0	2,5	3,0	3,0	3,0	Assessed (I		a (NP)	\)
Reduktion	n factor ψ ⁰ sus in	cracked and	non-cracke	d concrete	C20/2	5							
	: 40°C/24°C	Dry, wet	<u></u>	[-]	0,73								
Temperature range 	I: 80°C/50°C	concrete and	ψ^0_{sus}		0,65								
Tem I R	II: 120°C/72°C	flooded bore hole			0,57								
			C25	5/30	1,02								
			C30						1,04				
Increasin	g factors for cond	crete	C35		1.07								
Ψ_{C}			C40						1,08				
			C45						1,09				
			C50						1,10				
Concrete	cone failure		1										
Relevant	parameter							see	Table	C2			
Splitting													
Relevant	parameter							see	Table	C2			
Installati	on factor												
Installati for dry an	on factor ad wet concrete		γ _{inst}	[-]	1,2				1	,2			

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Electronic copy of the ETA by DIBt: ETA-19/0849

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

Electronic copy of the ETA by DIBt: ETA-19/0849

Table C8: Characteristic value	s of shear	loads u	nder s	static a	nd qua	asi-sta	tic act	ion			
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•		•			•			
Characteristic shear resistance	V ⁰ Rk,s	[kN]		0,50 • A _s • f _{uk} ¹⁾							
Cross section area	A _s	[mm²]	50 79 113 154 201 314 491 616			804					
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			•		1,5 ²⁾	•			
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300mm)$					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

English translation prepared by DIBt

Table C9: Displacements under tension load ¹⁾ (threaded rod)											
Anchor size thread	led rod		M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-stati	c action								
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05			0,1	05			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70			
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219		0,170						
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$ τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ (threaded rod) Table C10:

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concrete C20/25 under static and quasi-static action											
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete C	20/25 under	static and quasi-station	action								
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	

^1) Calculation of the displacement $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V; \qquad V\text{: action shear load} \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances	Annex C 9
Displacements (threaded rods)	

Table C11: Dis	Table C11: Displacements under tension load ¹⁾ (Internal threaded anchor rod)										
Anchor size Interna	al threaded an	chor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049			
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119			
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172			
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119			
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172			
Cracked concrete C	20/25 under sta	atic and quasi-st	atic action								
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,090			0,070					
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,105			0,105					
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170					
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255	0,245							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170					
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255			0,245					

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \quad \cdot \ \tau;$

Displacements under shear load¹⁾ (Internal threaded anchor rod) Table C12:

Anchor size Inte	ernal threaded	anchor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Non-cracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} &\cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} &\cdot V; \end{split}$$

V: action shear load

Electronic copy of the ETA by DIBt: ETA-19/0849

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances	Annex C 10
Displacements (Internal threaded anchor rod)	

Table C13: Di	Table C13: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked conc	rete C20/25	under static ar	nd quasi	-static a	ction							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90	0,070							
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05				0,105				
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170				
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245				
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170				
range III: 120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,2	255				0,245			· · ·	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-factor }\cdot \tau;$

Displacement under shear load¹⁾ (rebar) Table C14:

Anchor size rein	Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked cond	Non-cracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V^{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
Cracked concrete	C20/25 und	der static and qu	ıasi-stat	ic action	1							
All temperature ranges	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06	
	δ _{V∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10	

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$

V: action shear load

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Displacements (rebar)	Annex C 11

Ancho	r siz	e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa	ailure	9												
Charac	teris	tic tension resi	stance	N _{Rk,s,eq}	[kN]	1,0 • N _{Rk,s}								
Partial	facto	or		γMs,N	[-]	see Table C1								
			concrete failure				_							
Charac			ance in non-crac T	ked and crack	ed concrete									
	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5	
ange	II:	80°C/50°C	Dry, wet concrete			1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
ure r	III:	120°C/72°C			[N]/ma ma 2]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
erati	l:	40°C/24°C		TRk,eq	[N/mm²]	2,5	2,5	3,7	3,7					
Temperature range	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	No Performance Assessed (NPA)				
·	III:	120°C/72°C				1,3	1,6	2,0	2,0					
Redukt	tion f	actor ψ ⁰ sus in	cracked and no	n-cracked con	crete C20/25		1							
ure	l:	40°C/24°C	Dry, wet			0,73								
Temperature range	II:	80°C/50°C	concrete and flooded bore	ψ^0_{sus}	[-]	0,65								
Tem	III:	120°C/72°C	hole						0,	 57				
Increas	sing 1	factors for con	rete Ψ _C	C25/30 to C	50/60				1	,0				
		one failure								, -				
		arameter							see Ta	ıble C2				
Splittir														
		arameter n factor							see 1a	ıble C2				
		wet concrete				1,0				1,2				
		bore hole		-γ _{inst}	[-]	-,,-	1	,4		· , <u>-</u>	NI	-Δ		

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 12

Table C16: Characteristic va (performance ca		loads ι	under	seismic	action	1					
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm				•	•		•	•	•		
Characteristic shear resistance (Seismic C1)	$V_{Rk,s,eq}$	[kN]				0,70) • V ⁰ Rk	,s			
Partial factor	γ _{Ms,V}	[-]				see	Table C	21			
Ductility factor	k ₇	[-]	_				1,0				
Steel failure with lever arm	'										
Characteristic bending moment	M ⁰ Rk,s,eq	[Nm]	No Performance Assessed (NPA)								
Concrete pry-out failure	·										
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	If	[mm]		m	nin(h _{ef} ; 1	2 · d _{noi}	m)		min(h _{ef} ;	300mm)	
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γinst	[-]	1,0								
Factor for annular gap	[-]	0,5 (1,0) ¹⁾									

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 13

Table		eristic value ance catego		n loads u	nder s	eismic	actio	n						
Ancho	r size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel fa	ailure													
Charac	teristic tension resi	stance	N _{Rk,s,eq}	[kN]	$1.0 \cdot A_s \cdot f_{uk}^{1}$									
Cross s	section area		A _s	[mm²]									804	
Partial t	factor		$\gamma_{Ms,N}$	[-]	1,42)									
	ned pull-out and o													
Charac	teristic bond resista	ance in non-c	racked and	cracked co	ncrete	C20/2	5							
lω	I: 40°C/24°C	Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
Temperature range	II: 80°C/50°C	concrete			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
nperati	III: 120°C/72°C	Concrete		[N/mm2]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
lar rar	I: 40°C/24°C	flooded	^τ Rk, eq	[N/mm ²]	2,5	2,5	3,7	3,7	3,7		No Performance			
e, l	II: 80°C/50°C	bore hole			1,6	1,9	2,7	2,7	2,7	Assessed (NPA)				
	III: 120°C/72°C	Dole Hole			1,3	1,6	2,0	2,0	2,0	A3363360 (NLA)				
Redukt	ion factor ψ ⁰ sus in	cracked and	non-cracked	d concrete	C20/2	5								
ture	I: 40°C/24°C	Dry, wet							0,73					
Temperature range	II: 80°C/50°C	and	ψ^0_{sus}	[-]	0,65									
Tem	III: 120°C/72°C	flooded bore hole			0,57									
Increas	ing factors for cond	crete ψ _C	C25/30 to	C50/60					1,0					
Concre	ete cone failure													
Releva	nt parameter							see	Table	C2				
Splittin	ıg													
Releva	Relevant parameter							see	Table	C2				
Installa	tion factor													
for dry	and wet concrete		200	F 1	1,2				1	,2				
for flood	ded bore hole		γ _{inst}	[-]		•	1,4				N	PA		
1) 4 - 4	all bataleas fram th	'6'												

 $[\]stackrel{1)}{\text{f}}_{\text{uk}}$ shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 14

Table C18: Characteristic value (performance cate		loads u	nder s	eismic	actio	1							
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure without lever arm													
Characteristic shear resistance	V _{Rk,s,eq}	[kN]				0,3	5 • A _s •	f _{uk} ²⁾					
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804		
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾						
Ductility factor				1,0									
Steel failure with lever arm													
Characteristic bending moment	M ⁰ Rk,s,eq	[Nm]			No P	erforma	ince As	sessec	(NPA)				
Concrete pry-out failure													
Factor	k ₈	[-]					2,0						
Installation factor	γ _{inst}	[-]					1,0						
Concrete edge failure													
Effective length of fastener	I _f	[mm]		mi	n(h _{ef} ; 1	2 • d _{noi}	m)		min(h _{ef} ; 300	mm)		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32		
Installation factor	γinst	[-]	1,0										
Factor for annular gap	$\alpha_{\sf gap}$	[-]				(0,5 (1,0) ³⁾					

Spitec Oy Injection system Lionfix, Lionfix N for concrete Annex C 15 **Performances** Characteristic values of shear loads under seismic action (performance category C1)

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

English translation prepared by DIBt

Anchor size thread		M8	M10	M12	M16	M20	M24	M27	M30			
Cracked and non-c	racked cond	crete C20/25 und	der seis	mic C1	action		•		•		•	
Temperature range	emperature range δ_{N0} -factor [mm/(N/mm ²)]		0,090			0,070						
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,105		0,105						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,219		0,170						
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,255		0,245						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,2	0,219		0,170					
III: 120°C/72°C		[mm/(N/mm²)]		0,255		0,245						
111. 120 0/72 0	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,2	255			0,2	245			
	1112	[mm/(N/mm²)]	n load¹					0,2	245			
Table C20: Dis	splacement	7-	n load ¹ Ø 8			Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Table C20: Dis	splacement	s under tensio	Ø8	⁾ (rebar)) Ø 12	Ø 14	Ø 16			Ø 28	Ø 32	
Table C20: Dis Anchor size reinfo Cracked and non-ci	splacement	s under tensio	Ø 8 der seis	⁾ (rebar)) Ø 12	Ø 14	Ø 16			Ø 28	Ø 32	
Table C20: Dis Anchor size reinfo Cracked and non-ci	splacement rcing bar racked cond	es under tension	Ø 8 der seis	(rebar) Ø 10 mic C1) Ø 12	Ø 14	Ø 16	Ø 20		Ø 28	Ø 32	
Table C20: Dis Anchor size reinfo Cracked and non-ci Temperature range I: 40°C/24°C	splacement reing bar racked conc δ_{No} -factor	erete C20/25 unc	Ø 8 der seis 0,0 0,1	Ø 10 mic C1) Ø 12	Ø 14	Ø 16	Ø 20		Ø 28	Ø 32	
Table C20: Dis Anchor size reinfo Cracked and non-ci Temperature range I: 40°C/24°C	splacement rcing bar racked conc δ_{No} -factor $\delta_{\text{N}\omega}$ -factor	es under tension crete C20/25 und [mm/(N/mm²)] [mm/(N/mm²)]	Ø 8 der seis 0,0 0,1 0,2	Ø 10 mic C1 090 05) Ø 12	Ø 14	Ø 16	Ø 20 0,070 0,105		Ø 28	Ø 32	
Table C20: Dis Anchor size reinfo Cracked and non-ci Temperature range 1: 40°C/24°C Temperature range	splacement reing bar racked conc δ_{N0} -factor δ_{No} -factor δ_{No} -factor	erete C20/25 und [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	Ø 8 der seis 0,0 0,1 0,2 0,2	Ø 10 mic C1 090 05 219) Ø 12	Ø 14	Ø 16	0,070 0,105 0,170		Ø 28	Ø 32	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \tau,$

Table C21: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Cracked and non-cracked concrete C20/25 under seismic C1 action										
All temperature δ_{V0} -factor [mm/kN] 0,12 0,12 0,11 0,10 0,09 0,08 0,08 0									0,07	
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

Table C22: Displacement under shear load¹⁾ (rebar)

Table 022. Displacement arract shear load (rebar)											
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Cracked and non-cracked concrete C20/25 under seismic C1 action											
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad V;$

Spitec Oy Injection system Lionfix, Lionfix N for concrete	
Performances	Annex C 16
Displacements under seismic C1 action (threaded rods and rebar)	