

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0619 of 26 February 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR

Mechanical fasteners for use in concrete

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

21 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601

European Technical Assessment ETA-19/0619

Page 2 of 21 | 26 February 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z87231.19 8.06.01-280/19

European Technical Assessment ETA-19/0619

Page 3 of 21 | 26 February 2020

English translation prepared by DIBt

Specific part

1 Technical description of the product

The Wedge anchor BZ3 / BZ3 A4 / BZ3 HCR is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Minimum edge distances and spacing	see Annex B3
Characteristic resistance to tension load (static and quasi-static loading)	see Annex C1, C2
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C3
Characteristic resistance for seismic performance categories C1 and C2	see Annex C4
Displacements	see Annex C6, C7
Durability	see Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C5

Z87231.19 8.06.01-280/19

European Technical Assessment ETA-19/0619

Page 4 of 21 | 26 February 2020

English translation prepared by DIBt

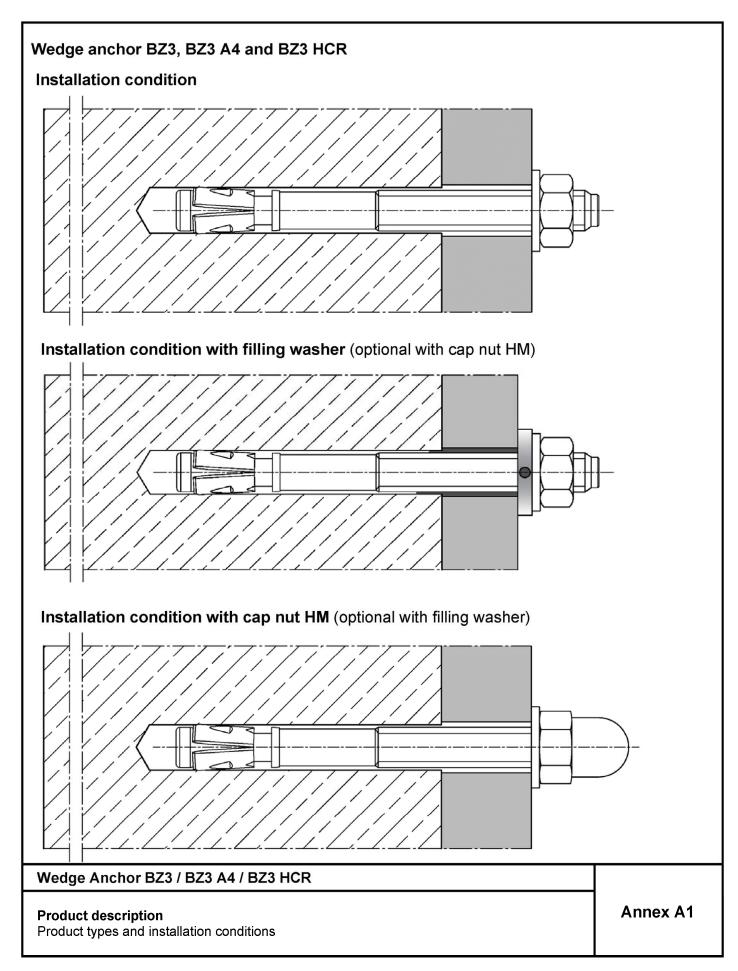
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: 1996/582/EC.

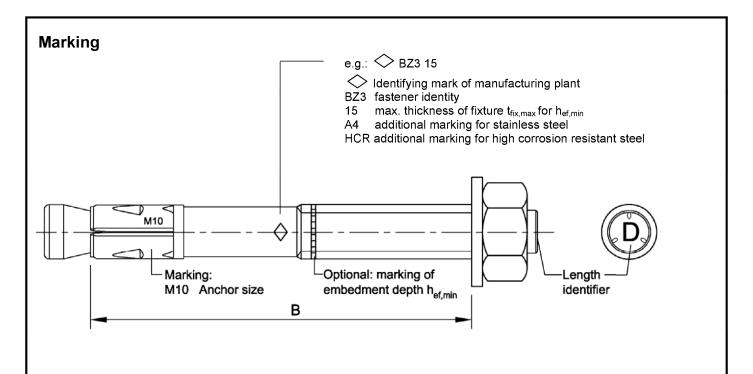
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin 26 February 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


*beglaubigt:*Ziegler

Z87231.19 8.06.01-280/19

Usable length: $B = h_{ef} + t_{fix}$

h_{ef}: (existing) effective anchorage depth

t_{fix}: fixture thickness (including e.g. levelling layers or other non-load-bearing layers or additional filling washer)

Table A1: Length identification

Length identifier	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
Usable length B ≥	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105
			,	,					,			,			

Length identifier	Р	Q	R	S	Т	U	٧	w	Х	Y	Z	AA	ВВ	СС	DD
Usable length B ≥	110	115	120	125	130	135	140	145	150	160	170	180	190	200	210

Length identifier	EE	FF	GG	нн	II	JJ	KK	LL	
Usable length B ≥	220	230	240	250	260	270	280	290	[

Dimensions in mm

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR

Product description Marking

Annex A2

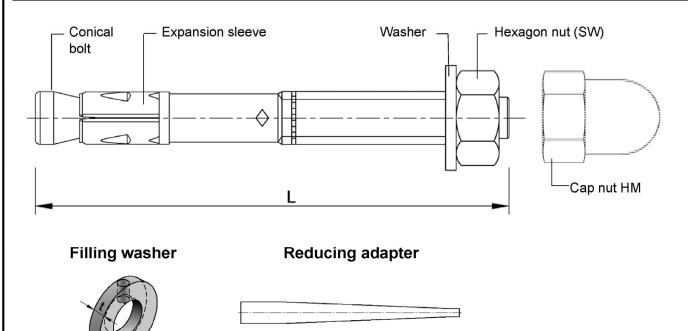


Table A2: Material

	BZ3	BZ3 A4	BZ3 HCR		
Part	Steel, zinc plated	Stainless steel	High corrosion resistant steel		
Conical bolt	Steel, galvanized $\geq 5 \mu m$, fracture elongation $A_5 \geq 8\%$	Stainless steel, fracture elongation $A_5 \ge 8\%$	High corrosion resistant steel, fracture elongation $A_5 \ge 8\%$		
Expansion sleeve	Stainless steel	Stainless steel	Stainless steel		
Washer					
Filling washer	Steel, galvanized	Stainless steel	High corrosion resistant		
Hexagon nut	≥ 5 µm	Otalilic33 Steel	steel		
Cap nut					

Table A3: Fastener dimensions

Fastener size			BZ3 / BZ3 A4 / BZ3 HCR						
rasteller size	M8	M10	M12	M16					
Width across hexagon nut / cap nut	SW	[mm]	13	17	19	24			
Length of fastener	L	[mm]	h _{ef} + t _{fix} + 18,0	h _{ef} + t _{fix} + 21,5	h _{ef} + t _{fix} + 26,0	h _{ef} + t _{fix} + 33,0			
Thickness of filling washer	t	[mm]	5						

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR

Product description
Material and dimensions

Annex A3

Specifications of intended use

Wedge Anchor	BZ3 / BZ3 A4 / BZ3 HCR							
Wedge Anthor	M8	M10	M12	M16				
Static or quasi-static action	✓							
Seismic performance categories C1 and C2	✓							
Fire exposure	R30 / R60 / R90 / R120							
Variable, effective anchorage depth	35 mm to 90 mm	40 mm to 100 mm	50 mm to 125 mm	65 mm to 160 mm				

Base materials:

- Cracked or uncracked concrete
- Reinforced or unreinforced normal weight concrete according to EN 206: 2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206: 2013 + A1:2016

Use conditions (Environmental conditions):

Structures subject to dry internal conditions:

BZ3, BZ3 A4, BZ3 HCR

• For all other conditions according to EN 1993-1-4:2015-10 corresponding to corrosion resistance classes:

o according to Annex A, Table A.3: CRC I - III

BZ3 A4, BZ3 HCR

o according to Annex A, Table A.3: CRC IV, V

BZ3 HCR

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.)
- Design method EN 1992-4:2018 and Technical Report TR 055

Installation:

- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener (exception: when using the cap nut HM)
- Optionally, the annular gap between fixture and stud of the BZ3 can be filled to reduce the hole clearance. For this purpose, the filling washer (annex A3) must be used in addition to the supplied washer. For filling use high-strength mortar with compressive strength ≥ 40N/mm².

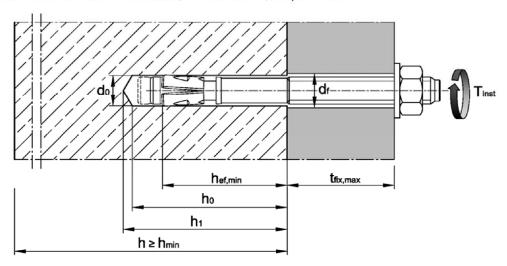
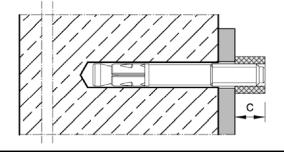

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Intended use Specifications	Annex B1

Table B1: Installation parameters


Amahanaisa					BZ3 / BZ3 A	4 / BZ3 HCR	
Anchor size				M8	M10	M12	M16
Nominal drill hole diame	ter	d ₀	[mm]	8	10	12	16
Cutting diameter of drill b	oit	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5
Minimum effective ancho	h _{ef,min}	[mm]	35	40	50	65	
Maximum effective anchorage depth		$h_{\text{ef},\text{max}}$	[mm]	90	100	125	160
Double of dell hole		h₀≥	[mm]	h _{ef} + 8	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14
Depth of drill hole	•	h₁≥	[mm]	h _{ef} + 10	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17
Diameter of clearance ho	ole in the fixture 1)	$d_f \le$	[mm]	9	12	14	18
Projection after anchor has been inserted for installing with cap nut HM (according to Annex B5)		С	[mm]	10,5	12,5	16,0	19,5
Installation torque	BZ3	T_{inst}	[Nm]	15	40	60	110
Installation torque	BZ3 A4 / HCR	T_{inst}	[Nm]	15	40	55	100

¹⁾ For larger diameters of clearence hole in the fixture, see EN 1992-4, chapter 6.2.2.2

Setting gauge for installation with cap nut HM

C [mm]:
Projection after anchor has been inserted for installing with cap nut HM or height of setting gauge (see Table B1 and Annex B6).

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR

Intended use Installation parameters **Annex B2**

Table B2: Minimum thickness of concrete member, minimum spacings, edge distances and required area

				BZ3 / BZ3 A4 / BZ3 HCR						
				M8	M10	M12	M16			
Minimum member thickness depending on h _{ef}		h _{min} ≥	[mm]	max (1, <i>§</i>	5·h _{ef} ;80)	max (1,5·h _{ef} ;100)	max (1,5·h _{ef} ;120)			
listances a	and spacings									
istance		C _{min}	[mm]	40	45	55	65			
Minimum spacings s			[mm]	35	40	50	65			
ed area A	pr,req									
70	cracked concrete	$A_{pr,req}$	[mm²]	13 900	23 700	31 500	42 300			
BZ3	uncracked concrete	$A_{pr,req}$	[mm²]	22 500	34 700	41 300	50 200			
Z3 A4,	cracked concrete	$A_{pr,req}$	[mm²]	16 900	25 900	29 800	44 300			
Z3 HCR	uncracked concrete	$A_{pr,req}$	[mm²]	19 700	35 700	35 300	54 800			
is Z	stance is ed area A _p Z3	za A4, Za HCR Cracked uncracked concrete uncracked concrete uncracked concrete uncracked concrete uncracked concrete uncracked uncracked	stance c_{min} Is s_{min} ed area $A_{pr,req}$ Z3 $c_{pr,req}$ uncracked concrete $c_{pr,req}$ cracked concrete $c_{pr,req}$ cracked concrete $c_{pr,req}$ Z3 A4, Z3 HCR uncracked $c_{pr,req}$	stance c_{min} [mm] [mm] s s_{min} [mm] c_{min} [mm] c_{min} [mm] c_{min} [mm] c_{min} [mm] c_{min} [mm] c_{min} c_{min} [mm] c_{min} c_{min} [mm] c_{min} c_{min} c_{min} [mm] c_{min} c_{min} [mm] c_{min} c_{min} c_{min} [mm] c_{min} c_{min} c_{min} [mm] c_{min} c_{mi	stance c_{min} [mm] 40 Is s_{min} [mm] 35 Red area $A_{pr,req}$ The concrete c_{min} [mm] 35 The concrete c_{min} [mm] 13 900 The concrete c_{min} [mm] 13 900 The concrete c_{min} [mm] 16 900 The concrete c_{min} [mm] 16 900 The concrete c_{min} [mm] 19 700	stance c_{min} [mm] 40 45 Is s_{min} [mm] 35 40 23 cracked concrete doncrete concrete $A_{pr,req}$ [mm²] 13 900 23 700 uncracked concrete concrete doncrete d	Stance Cmin [mm] 40 45 55 55 55 55 55 55			

anchorage depths and member thicknesses, the following equation must be fulfilled:

 $A_{pr,req} \leq A_{pr,ef}$

Projected required area

Projected effective area (acc. to Table B4)

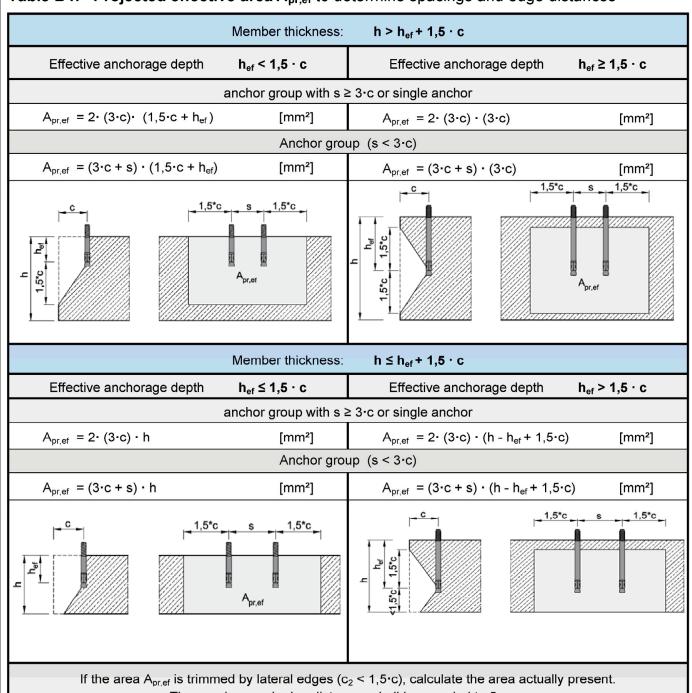
Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance c_{cr,sp}

Anchor size	Anchor size					M12	M16		
Applicable concrete thickness	BZ3 BZ3 A4, BZ3 HCR	h _{sp}	[kN]	$\min(h; h_{ef} + 1.5 \cdot c \cdot \sqrt{2})$					
Area to determine $c_{cr,sp}^{\ \ 1)}$	BZ3	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 - 2,573}{0,000436}$	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$		
	BZ3 A4, BZ3 HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 4,177}{0,000862}$	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^0 + 11,415}{0,000742}$		

¹⁾ with N⁰_{Rk,sp} in kN

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR

Intended use

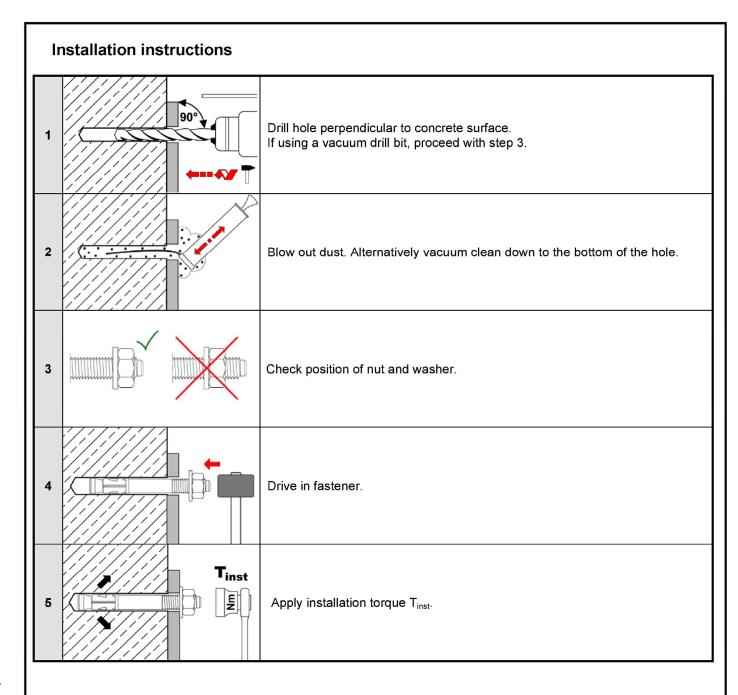

Minimum spacings and edge distances

Required area and applicable concrete thickness

Annex B3

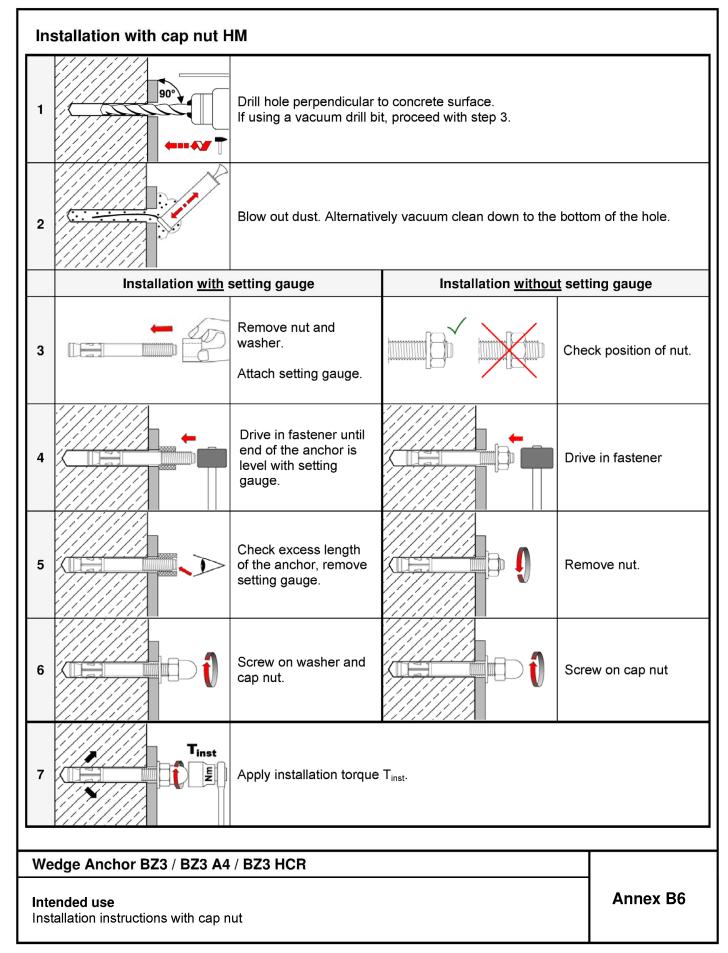
Table B4: Projected effective area A_{pr,ef} to determine spacings and edge distances

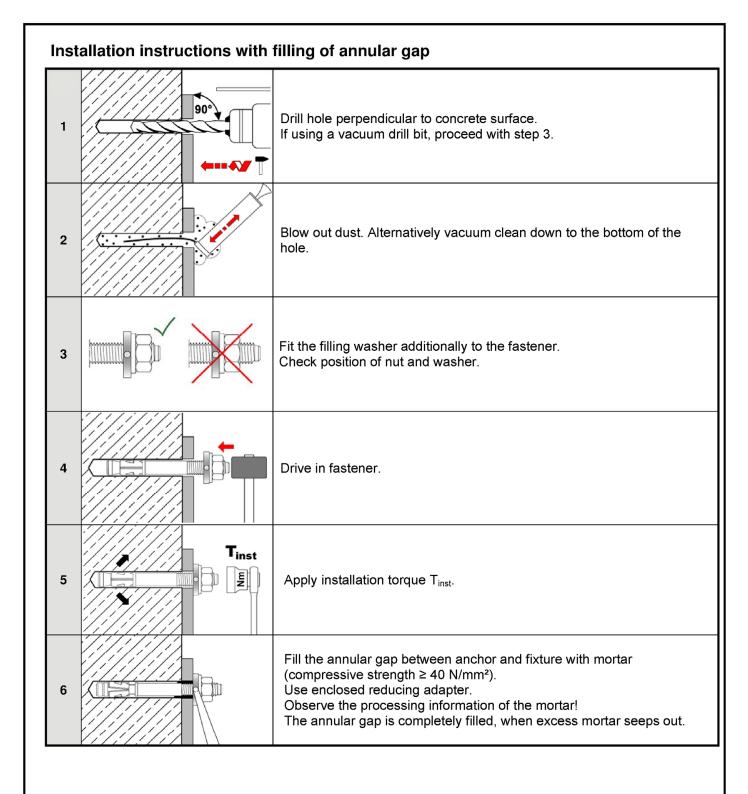
The spacings and edge distances shall be rounded to 5 mm.


Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR

Intended use

Projected effective area to determine spacings and edge distances


Annex B4



Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Intended use Installation instructions	Annex B5

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Intended use Installation instructions with filling of annular gap	Annex B7

Table C1: Characteristic values for tension loads under static and quasi-static action, BZ3 zinc plated

Factorial			BZ3 (zp)						
Fastener size	М8	M8 M10 M12 M1							
Installation factor	γ _{inst}	[-]		1	,0				
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	19,8	30,4	44,9	79,3			
Modulus of elasticity	Es	[N/mm²]		210	.000				
Partial factor	γ̃Ms	[-]		1	,5				
Pull-out									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p,cr}$	[kN]	9,5	15	22	30			
Increasing factor for N _{Rk,p,cr}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,439}$	$\left(\frac{f_{ck}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$			
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p,ucr}$	[kN]	14	24	30	50			
Increasing factor for N _{Rk,p,ucr}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,489}$	$\left(\frac{f_{ck}}{20}\right)^{0,448}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$			
Splitting									
Characteristic resistance	N ⁰ _{Rk,sp}	[kN]		min (N _{Rk,p}	; N ⁰ _{Rk,c} ³⁾)				
Characteristic edge distance ²⁾	C _{cr,sp}	[mm]		$\frac{A_{sp} + 0.8 \cdot }{(3.41 \cdot h_{sp} - $	$\frac{(h_{sp} - h_{ef})^2}{-0.59 \cdot h_{ef})}$				
Characteristic spacing	S _{cr,sp}	[mm]		2 · (C _{cr,sp}				
Concrete cone failure									
Minimum, effective anchorage depth	h _{ef,min}	[mm]	35 ¹⁾	40	50	65			
Maximum, effective anchorage depth	h _{ef,max}	[mm]	90	100	125	160			
Characteristic edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}						
Characteristic spacing	S _{cr,N}	[mm]	2 · C _{cr,N}						
Factor k ₁ cracked concrete	k _{cr,N}	[-]		7	,7				
uncracked concrete	k _{ucr,N}	[-]		11	1,0				

Fastenings with anchorage depth h_{ef} < 40mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance $c_{cr,sp}$ according to Table B3 $N^0_{Rk,c}$ according to EN 1992-4:2018

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Performance Characteristic values for tension loads	Annex C1

Table C2: Characteristic values for tension loads under static or quasi-static action, BZ3 A4 and BZ3 HCR

Fastanavaira		BZ3 A4 and BZ3 HCR						
Fastener size			M8	M10	M12	M16		
Installation factor	γ̃inst	[-]		1	,0			
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	19,8	30,4	44,9	74,6		
Modulus of elasticity - BZ3 A4	Es	[N/mm²]		200	.000			
Modulus of elasticity - BZ3 HCR	Es	[N/mm²]		195	.000			
Partial factor	γ̃Ms	[-]		1	,5			
Pull-out								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p,cr}$	[kN]	9,5	17	22	35		
Increasing factor for N _{Rk,p,cr}	Ψς	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,488}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,350}$		
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p,ucr}$	[kN]	20	25	42	50		
Increasing factor for N _{Rk,p,ucr}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,240}$	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,196}$		
Splitting								
Characteristic resistance	N ⁰ _{Rk,sp}	[kN]		min (N _{Rk,p}	; N ⁰ _{Rk,c} 3)			
Characteristic edge distance ²⁾	C _{cr,sp}	[mm]		$\frac{A_{sp} + 0.8 \cdot }{(3.41 \cdot h_{sp} - $	$\frac{(h_{sp} - h_{ef})^2}{-0.59 \cdot h_{ef})}$			
Characteristic spacing	S _{cr,sp}	[mm]		2 · 0	C _{cr,sp}			
Concrete cone failure								
Minimum, effective anchorage depth	h _{ef,min}	[mm]	35 ¹⁾	40	50	65		
Maximum, effective anchorage depth	h _{ef,max}	[mm]	90	100	125	160		
Characteristic edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}					
Characteristic spacing	S _{cr,N}	[mm]	2 · c _{cr,N}					
Factor k ₁ cracked concrete	k _{cr,N}	[-]		7	,7			
uncracked concrete	k _{ucr,N}	[-]		11,0				

¹⁾ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

 $^{^{3)}}$ N 0 _{Rk,c} according to EN 1992-4:2018

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Performance Characteristic values for tension loads	Annex C2

 $^{^{2)}}$ Applicable concrete thickness h_{sp} and area A_{sp} according to Table B3 to determine characteristic edge distance $c_{cr,sp}$

Table C3: Characteristic values for shear loads under static and quasi-static action

					BZ3 / BZ3 A	4 / BZ3 HCR	
Fastener size	M8	M10	M12	M16			
Installation factor		γinst	[-]		1	,0	
Steel failure without leve	er arm						
Characteristic resistance	BZ3	$V^0_{Rk,s}$	[kN]	15,7	26,8	38,3	60,0
Characteristic resistance	BZ3 A4 / HCR	$V^0_{Rk,s}$	[kN]	16,8	27,8	39,8	69,5
Partial factor		γ̃Ms	[-]		1,	25	
Ductility factor		k ₇	[-]		1	,0	
Steel failure with lever arm							
Characteristic bending	BZ3	$M^0_{Rk,s}$	[Nm]	30	60	105	240
resistance	BZ3 A4 / HCR	M ⁰ _{Rk,s}	[Nm]	27	55	99	223
Partial factor		γ̃Ms	[-]		1,	25	
Concrete pry-out failure							
Dec. and factor	BZ3	k ₈	[-]	2,8	3,1	3,0	3,6
Pry-out factor	BZ3 A4 / HCR	k ₈	[-]	2,7	2,8	3,3	3,4
Concrete edge failure							
Effective length of fastene	I _f	[mm]		h _e	1) ef		
Outside diameter of faster	ner	d _{nom}	[mm]	8	10	12	16

¹⁾ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR

Performance
Characteristic values for shear loads

Annex C3

Table C4: Characteristic values for seismic loading, performance category C1

					BZ3 / BZ3 A4 / BZ3 HCR									
Fastener size				M	М8		M10		M12		M16			
Effective and	horage	edepth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85		
Tension load	t													
Installation fa	ctor		γinst	[-]				1,	,0					
Steel failure														
Characteristic		BZ3	$N_{Rk,s,C1}$	[kN]	19	19,8 30,4		,4	44	,9	79),3		
resistance		BZ3 A4 / HCR	$N_{Rk,s,C1}$	[kN]	19	,8	30	,4	44	,9	74,6			
Pull-out														
Characteristic	2	BZ3	$N_{Rk,s,C1}$	[kN]	9	9,1		15,0		15,0 22,0		2,0	30,0	
resistance		BZ3 A4 / HCR	$N_{Rk,s,C1}$	[kN]	9	9,0		17,0		22,0		5,0		
Shear load														
Steel failure	witho	ut lever arm												
Characteristic	3	BZ3	$V_{Rk,s,C1}$	[kN]	11,7	13,4	22,5	24,4	30,0	33,8	48,8	52,3		
resistance		BZ3 A4 / HCR	$V_{Rk,s,C1}$	[kN]	11,0	12,7	20,6	22,2	33,2	33,2	61,1	64,3		
Factor for	Factor for with annular gap		$lpha_{\sf gap}$	[-]				0	,5					
anchorages without annular gap			$lpha_{\sf gap}$	[-]	1,0									

Table C5: Characteristic values for seismic loading, performance category C2

Fastener size			BZ3 / BZ3 A4 / BZ3 HCR									
rasteller size					M	M8 M10		10	M12		M16	
Effective and	horage c	lepth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Tension load	d											
Installation fa	ctor		γinst	[-]				1	,0			
Steel failure												
Characteristi	c <u>E</u>	3Z3	$N_{Rk,s,C2}$	[kN]	19	9,8	30),4	44	1,9	79),3
resistance	E	3Z3 A4 / HCR	$N_{Rk,s,C2}$	[kN]	19,8		30),4	44,9		74,6	
Pull-out												
Characteristi	c <u>E</u>	3Z3	$N_{Rk,s,C2}$	[kN]	2,8	3,6	7,3	12,5	10,7	19,0	19,8	35,2
resistance	E	3Z3 A4 / HCR	$N_{Rk,s,C2}$	[kN]	2,3	3,2	5,0	7,7	8,0	13,8	19,0	29,4
Shear load												
Steel failure	without	lever arm										
Characteristi	c E	3Z3	$V_{Rk,s,C2}$	[kN]	7,3	11,3	15,4	19,0	18,3	28,0	39,4	43,3
resistance	E	3Z3 A4 / HCR	$V_{Rk,s,C2}$	[kN]	7,5	8,6	12,5	15,9	22,4	25,6	42,7	46,1
Factor for	with an	nular gap	$lpha_{\sf gap}$	[-]	0,5							
		t annular gap	$lpha_{\sf gap}$	[-]				1	,0			

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Performance Characteristic resistance for seismic loading	Annex C4

English translation prepared by DIBt

Table C6: Characteristic values for tension and shear load under fire exposure

Factores size				BZ3 / BZ3 A4 / BZ3 HCR						
Fastener size				М8	M10	M12	M16			
Tension load										
Steel failure										
	R30			1,2	2,6	4,6	7,7			
Characteristic resistance	R60	- NI	FI-NIT	1,0	1,9	3,3	5,6			
Characteristic resistance	R90	$ N_{Rk,s,fi}$	[kN]	0,7	1,3	2,1	3,5			
	R120	_		0,6	1,0	1,5	2,5			
Shear load										
Steel failure without lever	arm									
	R30		[kN]	4,0	7,5	12,3	20,7			
Charactaristic resistance	R60			2,7	5,1	8,5	14,2			
Characteristic resistance	R90	$ V_{Rk,s,fi}$		1,4	2,7	4,6	7,7			
	R120	_		0,8	1,6	2,7	4,5			
Steel failure with lever ar	m									
	R30			4,1	9,6	19,1	43,8			
Charactariatia registeres	R60	- na0	[NI-ma]	2,8	6,6	13,1	30,1			
Characteristic resistance	R90	$ M^0_{Rk,s,fi}$	[Nm]	1,5	3,5	7,2	16,4			
	R120	_		0,8	2,0	4,2	9,6			

 $N_{\text{Rk,p,fi}}$ according to EN 1992-4:2018

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Performance Characteristic values under fire exposure	Annex C5

Table C7: Displacements under tension load, BZ3 zinc plated

		BZ3 (zp)									
Fastener size		M8 M10						12	M16		
Displacements under static or quas	i-static acti	ion									
$\delta_{N0} = \delta_{N0\text{-factor}} \cdot N$ N: acting	ig tension loa	ad									
$\delta_{N^{\infty}} = \delta_{N^{\infty}\text{-factor}} ^{\star} N$											
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	50		65		
Cracked concrete											
Factor for displacement	$\delta_{\text{N0-factor}}$	[mm/kN]	0,13		0,05		0,04		0,03		
Factor for displacement	δ _{N∞-factor}	[mm/kN]	0,:	0,29		0,20		0,15		11	
Uncracked concrete											
	$\delta_{ ext{N0- factor}}$	[mm/kN]	0,0	0,03 0,01		0,004		0,005			
Factor for displacement	δ _{N∞- factor}	[mm/kN]	0,0	03	0,03		0,03		0,03		
Displacement under seismic action C2											
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	
Displacements for DLS	$\delta_{\text{N, C2(DLS)}}$	[mm]	3,9	4,9	2,8	4,7	2,4	4,2	2,5	4,5	
Displacements for ULS	$\delta_{\text{N, C2(ULS)}}$		11,3	14,3	9,4	16,1	7,3	12,9	7,2	12,8	

Table C8: Displacements under tension load, BZ3 A4 and BZ3 HCR

Fastener size				BZ3 A4 / BZ3 HCR									
rastener size			M8 M10 M12 I				М	16					
Displacements under static or qua	si-static acti	on											
$\delta_{N0} = \delta_{N0\text{-factor}} \cdot N$ N: acting tension load													
$\delta_{N^{\circ\circ}} = \delta_{N^{\circ\circ}\text{-factor}} * N$													
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	5	0	6	55			
Cracked concrete													
Costor for displacement	$\delta_{ ext{N0-factor}}$	[mm/kN]	0,11		0,06		0,05		0,02				
Factor for displacement	$\delta_{N_{\infty ext{-}factor}}$	[mm/kN]	0,27		0,17		0,16		0,08				
Uncracked concrete				·		·		·					
Factor for displacement	$\delta_{\text{N0- factor}}$	[mm/kN]	0,02		0,00		0,001		0,00				
Factor for displacement	$\delta_{N^{\infty\text{-}}factor}$	[mm/kN]	0,	05 0,05		0,05		0,05					
Displacement under seismic action	1 C 2												
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85			
Displacements for DLS	$\delta_{\text{N, C2(DLS)}}$	[mm]	2,0	2,9	2,6	4,1	3,3	5,7	3,3	5,1			
Displacements for ULS	$\delta_{\text{N, C2(ULS)}}$	[mm]	7,7	11,1	10,8	16,8	10,4	18,0	9,0	13,9			

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Performance Displacements under tension load	Annex C6

Table C9: Displacements under shear load, BZ3 zinc plated

Fastener size		BZ3 (zp)									
Fasterier size			M	18	M10		M12		M16		
Displacements under static or quas	i-static acti	on									
$\delta_{V0} = \delta_{V0\text{-factor}} \cdot V$	V: acting shear load										
$\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-factor}^*} V$											
Effective anchorage depth	h _{ef} ≥	[mm]	35 40			50		65			
Factor for displacement	$\delta_{\! extsf{V0-factor}}$	[mm/kN]	0,15		0,09		0,09		0,07		
Factor for displacement	δ _{V∞- factor}	[mm/kN]	0,22		0,13		0,14		0,11		
Displacement under seismic action	C2 1)										
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,8	2,7	3,0	3,1	3,4	3,7	3,4	3,8	
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,1	5,0	5,0	5,5	6,3	9,9	6,0	9,6	

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account

Table C10: Displacements under shear load, BZ3 A4 and BZ3 HCR

Fastener size		BZ3 A4 / BZ3 HCR									
Fasterier Size				18	М	10	M12		M16		
Displacements under static or quas	i-static acti	on									
$\delta_{V0} = \delta_{V0\text{-factor}} \cdot V$	V: acting shear load										
$\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-factor}} V$											
Effective anchorage depth	h _{ef} ≥	[mm]	35 40				50		65		
Factor for displacement	$\delta_{\! ext{V0- factor}}$	[mm/kN]	0,	0,26 0,14		0,12		0,09			
racioi foi displacement	δ _{V∞- factor}	[mm/kN]	0,39		0,20		0,17		0,14		
Displacement under seismic action	C2 1)										
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,8	3,0	3,4	3,5	3,5	4,2	3,8	4,4	
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,2	5,1	7,0	8,4	7,5	11,8	7,8	11,1	

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account

Wedge Anchor BZ3 / BZ3 A4 / BZ3 HCR	
Performance Displacements under shear load	Annex C7