

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0024 of 21 January 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TER LAARE BX XTREME ETA 1 EV/ZL, TER LAARE BX XTREME ETA 1 A4, TER LAARE BX XTREME ETA 1 HCR concrete screw

Mechanical fasteners for use in concrete

TER LAARE VERANKERINGSTECHNIEKEN BV. Elektraweg 5 3144 CB MAASSLUIS NIEDERLANDE

Plant 3

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-20/0024

Page 2 of 22 | 21 January 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z2501.20 8.06.01-348/19

European Technical Assessment ETA-20/0024

Page 3 of 22 | 21 January 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TER LAARE BX EXTREME ETA 1 concrete screw is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements (static and quasi-static loading)	See Annex C 7
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4, C 5 and C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z2501.20 8.06.01-348/19

European Technical Assessment ETA-20/0024

Page 4 of 22 | 21 January 2020

English translation prepared by DIBt

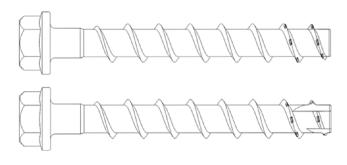
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

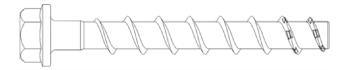
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 21 January 2020 by Deutsches Institut für Bautechnik

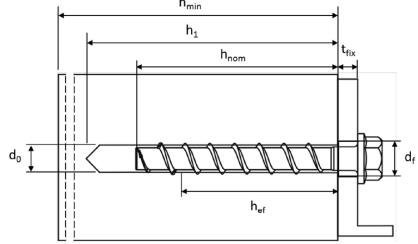
BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Tempel


Z2501.20 8.06.01-348/19


Product in installed condition

TER LAARE BX XTREME ETA 1 concrete screw


- Galvanized carbon steel
- Zinc flakes coated carbon steel

- Stainless steel A4
- Stainless steel HCR

e.g. BX XTREME ETA 1 concrete screw, zinc flakes coated, with hexagon head and fixture h_{min}

d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

df = clearance hole diameter

h_{min} = minimum thickness of member

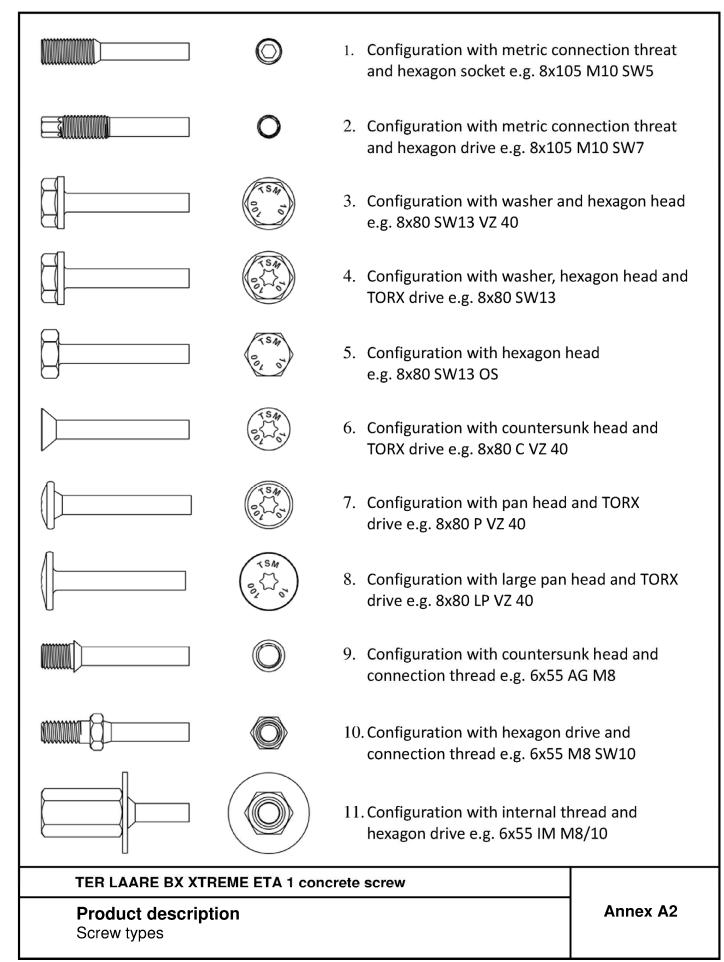
h_{nom} = nominal embedment depth

 h_1 = drill hole depth

h_{ef} = effective embedment depth

TER LAARE BX XTREME ETA 1 concrete screw

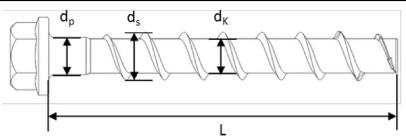
Product description


Product in installed condition

Annex A1

Z2499.20

English translation prepared by DIBt


Table 1: Material

Part	Product name	Material
	BX XTREME ETA 1 EV BX XTREME ETA 1 ZL	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5μm)
types	BX XTREME ETA 1 A4	1.4401; 1.4404; 1.4571; 1.4578
	BX XTREME ETA 1 HCR	1.4529

		Nominal chara	Rupture			
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]		
	BX XTREME ETA 1 EV / ZL					
all types	BX XTREME ETA 1 A4	560	700	≤8		
types	BX XTREME ETA 1 HCR					

Table 2: Dimensions

Anchor size			6 8					10			12			14		
Nominal embedment h _{nom}		h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth		[mm]	40	40 55 45 55 65 55 75 85 65 85					85	100	75	100	115			
Screw length	≤L	[mm]	500													
Core diameter	d _k	[mm]	5,	5,1 7,1 9,1 11,1 13,1												
Thread outer diameter	d _s	[mm]	7,	7,5 10,6				12,6			14,6			16,6		
Shaft diameter	d _p	[mm]	5,	,7		7,9			9,9			11,7	7		13,7	·

Marking:

BX XTREME ETA 1 EV / ZL

Screw type: TSM
Screw size: 10
Screw length: 100

BX XTREME ETA 1 A4

Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

BX XTREME ETA 1 HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

TER LAARE BX XTREME ETA 1 concrete screw

Product description

Material, Dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

Screw size		6 8				10			12			14			
Nominal embedment		h_{nom1}	h _{nom2}	h_{nom1}	h_{nom2}	h _{nom3}	h_{nom1}	h _{nom2}	h _{nom3}	h_{nom1}	h _{nom2}	h _{nom3}	h_{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static load	s					-:	s and all embedment depths								
Fire exposure					AII	sizes	and	all en	nbea	ment	аері	.ns			
C1 category - seismic															
C2 category – seismic (A4 and HCR unsuitable)		,	(,	K	ok	×	(ok	>	(ok	>	<	ok

Base materials:

- Reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 - Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

TER LAARE BX XTREME ETA 1 concrete screw	
Intended use	Annex B1
Specification	

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
 The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling; hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personnal and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar IM FAST ETA 1 or IM PURE HX ETA 1.
- Adjustability according to Annex B6 for sizes 8-14, all embedment depths, but not for seismic loading
- Cleaning of borehole is not necessary, if using a hollow drill

TER LAARE BX XTREME ETA 1 concrete screw	
Intended use Specification continuation	Annex B2

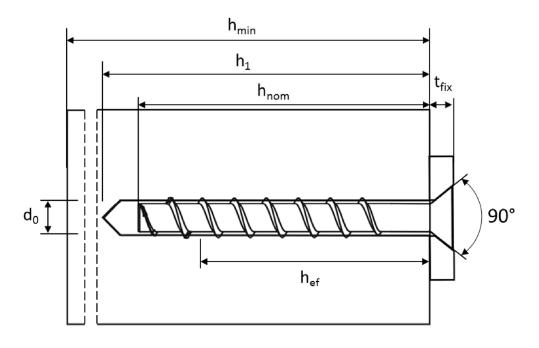
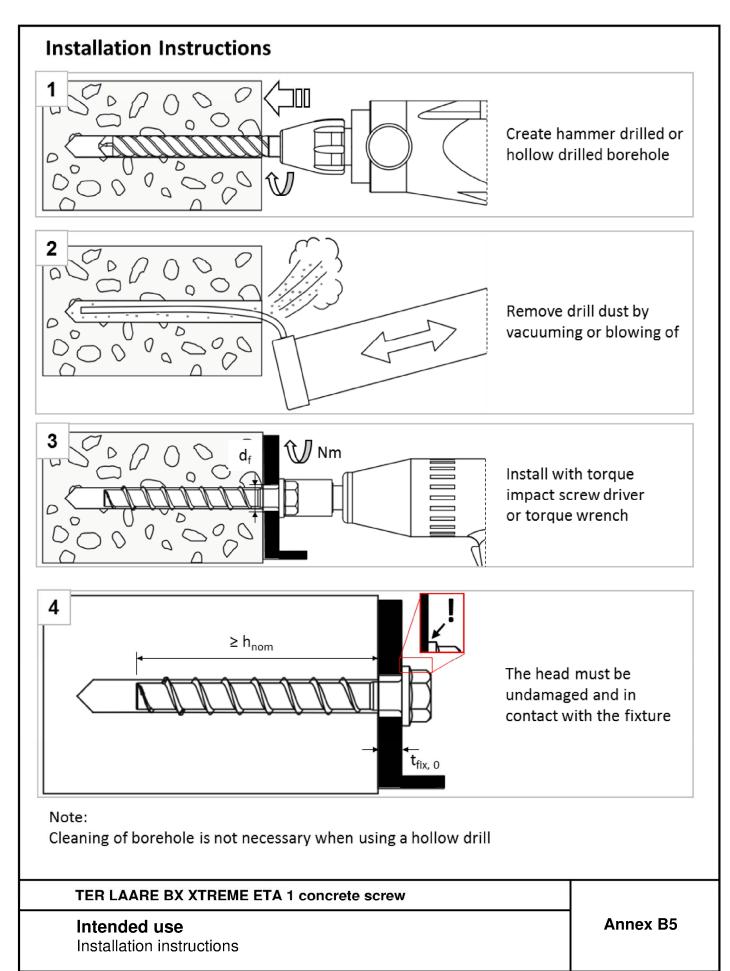
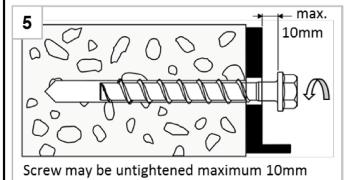

Concrete screw size			(5		8			10		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}	
		[mm]	40	55	45	55	65	55	75	85	
Nominal drill hole diameter	d ₀	[mm]	6	5		8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,			8,45			10,45		
Drill hole depth	h ₁ ≥	[mm]	45	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]	8	3		12			14		
Installation torque (version with connection thread)	T _{inst}	[Nm]	1	0		20			40		
Torque impact screw driver		[Nm]		k. torque 50	e accord	ling to r 300	nanufac	turer's	instruct 400	ions	
Concrete screw size			1	2			1	4			
		h _{nom}	h _{nom1}	h _{nor}	_{n2} h	nom3	h _{nom1}	h _{nor}	_{m2}	1 _{nom3}	
Nominal embedment depth		[mm]	65	85	+		75	10	0	115	
Nominal drill hole diameter d ₀ [12					1	.4		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12	,50			14,50			
Drill hole depth	h ₁ ≥	[mm]	75	95 110			85	110	0	125	
Clearance hole diameter d _f ≤		[mm]		16				18			
Installation torque (version with connection thread)				6		80					
Torque impact coroux driver		[MIM]	Max	k. torqu	turer's instructions						
Torque impact screw driver		[Nm]	650						650		
l 			h_{min}								
			h_1			1					
				h _{nom}		→t	fix				
		•		··nom		—	→				
d₀				h _e	of.			$\int_{\mathbf{q}}^{\mathbf{q}} d_{f}$			
TER LAARE BX XTRE	ME ET	А 1 со	ncrete s	screw				,			
Intended use Installation parameters Annex E											

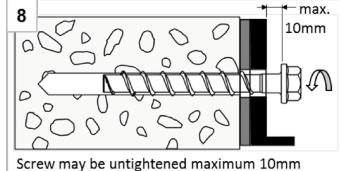
Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

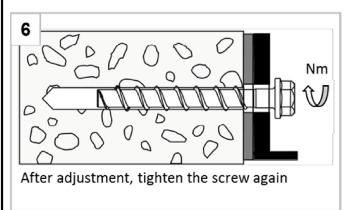

Concrete screw size			(5		8		10		
Naminal ambadment denth			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment de	Nominal embedment depth [mi		40	55	45	55	65	55	75	85
Minimum thickness of member	h _{min}	[mm]	10	00	100		0 120		100 130	
Minimum edge distance	C _{min}	[mm]	40		40	40 5		0		
Minimum spacing	Smin	[mm]	4	.0	40 50		0)		

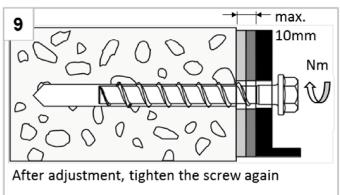
Concrete screw size				12		14			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Normal embedment d	ерип	[mm]	65	85	100	75	100	115	
Minimum thickness of member	h _{min}	[mm]	120	130	150	130	150	170	
Minimum edge distance	C _{min}	[mm]	50		70	50	70		
Minimum spacing	S _{min}	[mm]	50		70	50	70		

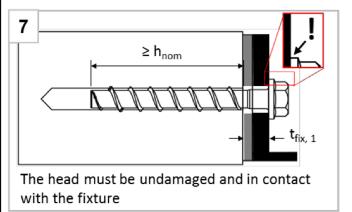
TER LAARE BX XTREME ETA 1 concrete screw	
Intended use Minimum thickness of member, minimum edge distance and minimum spacing	Annex B4

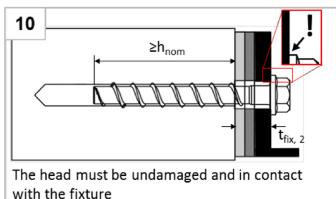





Installation Instructions – Adjustment


1. Adjustment



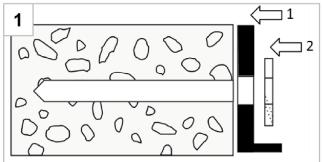

2. Adjustment

Notes:

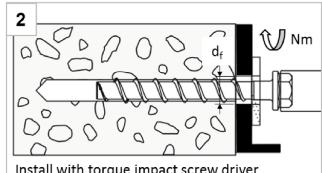
- 1. Adjustment for seismic loading is not allowed
- 2. The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

TER LAARE BX XTREME ETA 1 concrete screw

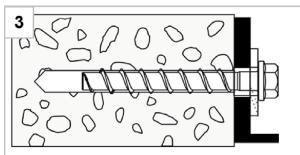
Intended use

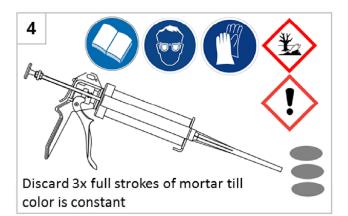

Installation instructions - Adjustment

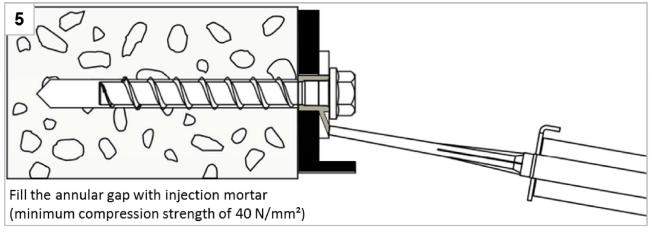
Annex B6



Installation Instructions – Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

TER LAARE BX XTREME ETA 1 concrete screw

Intended use

Installation instructions - Filling annular gap

Annex B7

Concrete scr	ew size			(5		8			10	
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
Nominal emb	edment depth		[mm]	40	55	45	55	65	55	75	85
Steel failure	for tension and	d shear	loadin	g							
Characteristic	tension load	N _{Rk,s}	[kN]	14	1,0		27,0			45,0	
Partial factor	tension load	γ _{Ms,N}	[-]				1,	,5			
Characteristic	shear load	$V_{Rk,s}$	[kN]	7	,0	13	3,5	17,0	22,5	34	.,0
Partial factor	shear load	γ _{Ms,V}	[-]				1,	25			
Ductility facto	or	k ₇	[-]				0,	,8			
Characteristic	bending load	ing load M ⁰ _{Rk,s} [Nm] 10,9 26,0						56,0			
Pull-out failu	ire										
Character-	cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥N	O _{Rk,c}
istic tension load C20/25	uncracked	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,
	C25/30				1,12						
Increasing	C30/37] _W					1,	22			
factor for N _{Rk,p}	C40/50	Ψς	[-]				1,	41			
						1,	58				
 Concrete fail	ure: Splitting f	ailure, d	concret	e cone	failure	and pr	y-out fa	ailure			
Effective embedment depth hef			[mm]	31	44	35	43	52	43	60	68
k-factor	cracked	k ₁ =k _{cr}	[-]			7,7					
K-Iactor	uncracked	k ₁ =k _{ucr}	[-]				11	.,0			
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]				1,5	x h _{ef}			
Splitting	spacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	21
failure	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	10
Factor for pry	k ₈	[-]			1,	,0			2,	.0	
Installation factor γ _{inst}							1,	,0			
Concrete ed	ge failure										
Effective length in concrete $I_f = h_e$			[mm]	31	44	35	43	52	43	60	68
Nominal oute screw	d _{nom}	[mm]	6 8 10								
TEDIA	AARE BX XTRE	ME ET	A 1 cor	ncrete s	screw						
IER LA			Performances								

Concrete scr	ew size				12		I	14			
Nominal emb	edment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
			[mm]	65	85	100	75	100	115		
Steel failure	for tension and she	ear loadin	g								
Characteristic	tension load	$N_{Rk,s}$	[kN]		67,0			94,0			
Partial factor	tension load	γ _{Ms,N}	[-]			1,	,5				
Characteristic	shear load	$V_{Rk,s}$	[kN]	33,5	42	2,0		56,0			
Partial factor	shear load	γ _{Ms,V}	[-]			1,	25				
Ductility factor	or	k ₇	[-]			0,	,8				
Characteristic	M ⁰ _{Rk,s}	[Nm]		113,0			185,0				
Pull-out failu	ıre										
Characteristic	N _{Rk,p}	[kN]	12,0	NIO							
tension load C20/25	uncracked	N _{Rk,p}	[kN]	16,0	$\geq N^0_{Rk,c}$						
	C25/30					1,:	12				
Increasing C30/37		Ψ_{c}	_{[1} [1,:	22				
factor for N _{Rk}	P C40/50	¹ c	[-]		1,41						
	C50/60					1,	58				
Concrete fai	lure: Splitting failur	e, concre	te con	e failure	and pry	-out failı	ıre				
Effective emb	edment depth	h _{ef}	[mm]	50	67 80		58	79	92		
k-factor	cracked	$k_1 = k_{cr}$	[-]		7,7						
K-IdCtOI	uncracked	k ₁ =k _{ucr}	[-]			11	.,0				
Concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}				
cone failure	edge distance	C _{cr,N}	[mm]			1,5	x h _{ef}				
Splitting	spacing	S _{cr,Sp}	[mm]	150	210	240	180	240	280		
failure	re edge distance c _{cr,Sp} [mm] 75 105 120		120	90	120	140					
Factor for pry	k ₈	[-]	1,0	2,	,0	1,0	2	,0			
Installation fa	ctor	γinst	[-]			1,	,0				
Concrete ed	ge failure										
Effective leng	th in concrete	I _f = h _{ef}	[mm]	50	67	80	58	79	92		
Nominal oute	er diameter of screw	d _{nom}	[mm]		12			14			

TER LAARE BX XTREME ETA 1 concrete screw

Performances

Characteristic values for static and quasi-static loading, sizes 12-14

Annex C2

Concrete screw size			8	10	12	14		
Naminal ambadment denth		h _{nom}		om3				
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension and shea	r load							
Characteristic load N _{Rk,s,eq}			27,0	45,0	67,0	94,0		
Partial factor tension load	γMs	[-]		1	,5			
Characteristic load	$V_{Rk,s,eq}$	[kN]	8,5	15,3	21,0	22,4		
Partial factor shear load	γMs	[-]		1,25				
With filling of the annular gap ¹⁾	$\alpha_{\sf gap}$	[-]		1,0				
Without filling of the annular gap	α_{gap}	[-]		0,5				
Pull-out failure								
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,eq}	[kN]	12,0	≥ N ⁰ _{Rk,c}				
Concrete cone failure								
Effective embedment depth	h _{ef}	[mm]	52	68 80 92				
Edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}				
Spacing	S _{cr,N}	[mm]	3 x h _{ef}					
Installation safety factor	γinst	[-]	1,0					
Concrete pry-out failure								
Factor for pry-out failure	k ₈	[-]	1,0		2,0			
Concrete edge failure								
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92		
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14		

1) Filling of the	annular gan	according to	annoy D7	figure E
T) Filling of the	annular gab	according to	annex b/.	. ligure 5

TER LAARE BX XTREME ETA 1 concrete screw	
Performances Seismic category C1 – Characteristic load values	Annex C3

12

14

10

Concrete screw size			8	10	12	14		
	h _{nom}		hno	om3				
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension								
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0		
Partial factor tension load	γMs	[-]	1,5					
With filling of the annular gap	$lpha_{\sf gap}$	[-]	1,0					
Pull-out failure	•							
haracteristic load in N _{Rk,p}		[kN]	2,4	5,4	7,1	10,5		
Steel failure for shear load						r		
Characteristic load	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7		
Partial factor shear load	γMs	[-]	[-] 1,25					
With filling of the annular gap	$lpha_{\sf gap}$	[-]	1,0					
Concrete cone failure								
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}					
Spacing	S _{cr,N}	[mm]	3 x h _{ef}					
Installation safety factor	γinst	[-]	1,0					
Concrete pry-out failure								
Factor for pry-out failure	k ₈	[-]		2,	,0			

1) A4 and HCR not suitabl	1) A4	and	HCR	not	suitab	le
---------------------------	---	------	-----	------------	-----	--------	----

Nominal outer diameter of screw

TER LAARE BX XTREME ETA 1 concrete screw	
Performances Seismic category C2 – Characteristic load values with filled annular gap	Annex C4

 d_{nom}

[mm]

8

able 10: Seismic category C2 1) ccording to annex B7, figure 3		cterist	ic load valu	ues withou	t filled ann	nular gap	
Concrete screw size			8	10	12	14	
Name in all a male a discount of a male		h _{nom}		h _{nc}	om3	•	
Nominal embedment depth		[mm]	65	85	100	115	
Steel failure for tension (hexago	n head t	ype)					
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0	
Partial factor tension load YMS				1,	.5		
Pull-out failure (hexagon head ty	/pe)						
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	2,4 5,4		10,5	
Steel failure for shear load (hexa	gon hea	d type)					
Characteristic load	$V_{Rk,s,eq}$	[kN]	10,3	21,9	24,4	23,3	
Partial factor shear load	γ _{Ms}	[-]		1,25			
Without filling of the annular gap	$lpha_{\sf gap}$	[-]		0,	,5		
Steel failure for tension (counter	sunk he	ad type	2)				
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0			
Partial factor tension load	γMs	[-]	1	,5		-	
Pull-out failure (countersunk hea	ad type)						
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4 5,4		-		
Steel failure for shear load (coun	tersunk	head t	ype)				
Characteristic load	$V_{Rk,s,eq}$	[kN]	3,6	13,7			
Partial factor shear load	γMs	[-]	1,25			-	
Without filling of the annular gap	$lpha_{\sf gap}$	[-]	0	,5			
Concrete cone failure							
Effective embedment depth	h _{ef}	[mm]	52	68	80	92	
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}		
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}		
Installation safety factor	γ _{inst} [-] 1,0						
Concrete pry-out failure							
Factor for pry-out failure	k ₈	[-]		2,	,0		
Concrete edge failure							
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92	
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14	

TER LAARE BX XTREME ETA 1 concrete screw	
Performances Seismic category C2 – Characteristic load values without filled annular gap	Annex C5

Concret	e screw	size		(5	8				10			12			14	
Nominal depth	embed	ment	h _{nom}	1 40	2 55	1 45	2 55	3 65	1 55	2 75	3 85	1 65	2 85	3 100	1 75	2 100	3 11
	lure for	tension an									65	05	83	100	/3	100	1
	R30	F _{Rk,s,fi30}	[kN]		0,9		2,4		1 111,5	4,4			7,3			10,3	
	R60	F _{Rk,s,fi60}	[kN]	0	0,8 1,7			3,3			5,8			8,2			
	R90	F _{Rk,s,fi90}	[kN]	0	,6	1,1			2,3			4,2			5,9		
charac- teristic	R120	F _{Rk,s,fi120}	[kN]	0	,4		0,7			1,7			3,4			4,8	
Resis-	R30	M ⁰ Rk,s,fi30	[Nm]	0	,7		2,4		5,9			12,3	3		20,4		
tance	R60	M ⁰ Rk,s,fi60	[Nm]	0	,6		1,8		4,5			9,7			15,9		
	R90	M ⁰ Rk,s,fi90	[Nm]	0	,5		1,2		3,0		3,0 7,0		7,0		11,6		,
	R120	M ⁰ Rk,s,fi120	[Nm]	0,	,3		0,9		2,3		5,7		9,4				
Pull-out	failure																
Charac- teristic	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
Resis- tance	R120	N _{Rk,p,fi}	[kN]	0,4	0,8 1,0 1,8 2,4 1		1,8 3,2 3,9		2,4 3,8 4,9		3,0	4,8	6,				
Concret	e cone	failure															
Charac- teristic	R30- R90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
Resis- tance	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Edge dis	tance																
R30 bis F		C _{cr,fi}	[mm]							2	x he	f					
ln case o	f fire at	tack from mo	ore than	one	side	, the	mini	mun	n edg	ge di:	stand	ce sh	all be	e ≥30(Jmm		
Spacing																	
R30 bis F	R120	S _{cr,fi}	[mm]							4	x he	f					
Pry-out f	ailure	<u> </u>															
R30 bis F	R120	k ₈	[-]			1	,0			2	,0	1,0	2	2,0	1,0	2	,0

TER LAARE BX XTREME ETA 1 concrete screw	
Performances Fire exposure – characteristic values of resistance	Annex C6

Table 12: Di	splacements ui	nder st	atic an	d quasi	-static 1	tension	load				
Concrete so	crew size	6	5		8			10			
Nominal embedment depth			h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nonmar embedment depth		[mm]	40	55	45	55	65	55	75	85	
Cracked	tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6
concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9
Contracte	displacement	$\delta_{\text{N}\infty}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2
l la cas else el	tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9
Uncracked concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0
Concrete	displacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2
Concrete so	Concrete screw size 12 14										
Nominal em	Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{no}	om3	h _{nom1}	h _{nom2}	<u> </u>	n _{om3}
Nominarem			[mm]	65	85	10	00	75	100		115
Cracked	tension load	N	[kN]	5,7	9,4	12	.,3	7,6	12,0		15,1
concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,9	0,5	1,	0	0,5	0,8		0,7
	displacement	$\delta_{\text{N}\infty}$	[mm]	1,0	1,2	1,	2	0,9	1,2		1,0
	tension load	N	[kN]	7,6	13,2	17	,2	10,6	16,9		21,2
Uncracked concrete	displacement	δ_{N0}	[mm]	1,0	1,1	1,	.2	0,9	1,2		0,8
Concrete	displacement	$\delta_{N^{\infty}}$	[mm]	1,0	1,2	1,	2	0,9	1,2		1,0
Table 13: Dis	splacements un	ider sta	atic and	d quasi-	static s	hear lo	ad				
Concrete so	crew size			(5		8			10	
Nominal em	bedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
140mmar em			[mm]	40	55	45	55	65	55	75	85
Crackad	Crasked										

Concrete screw size				6	5	8		10			
Nominal embedment depth h _{no}				h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedinent depth			[mm]	40	55	45	55	65	55	75	85
Cracked	shear load	V	[kN]	3	,3		8,6			16,2	
and $\delta_{ m V0}$		[mm]	1,	55	2,7		2,7				
uncracked concrete	displacement	$\delta_{\text{V}\infty}$	[mm]	3,1		4,1		4,3			

l	Concrete so	crew size				12		14		
l	Nominal embedment depth			h_{nom}	h _{nom1}	h_{nom2}	h _{nom3}	h_{nom1}	h _{nom2}	h_{nom3}
l	Nominal em	beament depth		[mm]	65	85	100	75	100	115
l	Cracked	shear load	٧	[kN]		20,0			30,5	
	and		$\delta_{ extsf{V0}}$	[mm]		4,0			3,1	
	uncracked concrete	displacement	$\delta_{V^{\infty}}$	[mm]		6,0			4,7	

TER LAARE BX XTREME ETA 1 concrete screw	
Performances Displacements under static and quasi-static loads	Annex C7

Concrete screw size			8	10	12	14
Name in all and a slow and slowell		h _n	om3	•		
Nominal embedment depth			65	85	100	115
Displacements under tension	loads (hexa	gon hea	d type)			
Displacement DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Displacements under shear lo	oads (hexago	n head	type with h	ole clearan	ce)	
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27
Concrete corouvisize			0	10	12	11
ccording to annex B7, figu	re 3					
Concrete screw size			8	10	12	14
Concrete screw size Nominal embedment depth		h _{nom}		h _n ,	om3	
Nominal embedment depth		[mm]	65			115
Nominal embedment depth Displacements under tension		[mm] gon hea	65 d type)	h _n ,	om3 100	115
Nominal embedment depth Displacements under tension Displacement DLS	$\delta_{\text{N,eq(DLS)}}$	[mm] gon hea [mm]	65 d type) 0,66	85 0,32	0,57	1,16
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS	$\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$	[mm] gon hea [mm] [mm]	65 d type) 0,66 1,74	0,32 1,36	om3 100	115
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension	$\delta_{N,eq(DLS)} \\ \delta_{N,eq(ULS)} \\ loads (coun$	[mm] gon hea [mm] [mm] tersunk	65 d type) 0,66 1,74 head type)	0,32 1,36	0,57	1,16
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS	$\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$	[mm] gon hea [mm] [mm] tersunk [mm]	65 d type) 0,66 1,74 head type)	0,32 1,36	0,57	1,16
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension	$\delta_{N,eq(DLS)} \\ \delta_{N,eq(ULS)} \\ loads (coun$	[mm] gon hea [mm] [mm] tersunk	65 d type) 0,66 1,74 head type)	0,32 1,36	0,57	1,16
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] gon hea [mm] [mm] tersunk [mm] [mm]	65 d type) 0,66 1,74 head type) 0,66 1,74	0,32 1,36 0,32 1,36	0,57 2,36	1,16
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement DLS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] gon hea [mm] [mm] tersunk [mm] [mm]	65 d type) 0,66 1,74 head type) 0,66 1,74	0,32 1,36 0,32 1,36	0,57 2,36	1,16
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement DLS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ oads (hexago$	[mm] gon hea [mm] [mm] tersunk [mm] [mm] on head	65 d type) 0,66 1,74 head type) 0,66 1,74 type with h	0,32 1,36 0,32 1,36	0,57 2,36	1,16 4,39
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS Displacement ULS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{oads (hexago } \\ \delta_{\text{V,eq(DLS)}} \\ \delta_{\text{V,eq(ULS)}} \end{array}$	[mm] gon hea [mm] [mm] tersunk [mm] [mm] [mm] on head [mm] [mm]	65 d type) 0,66 1,74 head type) 0,66 1,74 type with h 4,21 7,13	0,32 1,36 0,32 1,36 nole clearan 4,71 8,83	0,57 2,36 ce) 4,42 6,95	1,16 4,39 5,60
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS Displacement ULS Displacement ULS Displacement DLS Displacement DLS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{oads (hexago } \\ \delta_{\text{V,eq(DLS)}} \\ \delta_{\text{V,eq(ULS)}} \end{array}$	[mm] gon hea [mm] [mm] tersunk [mm] [mm] [mm] on head [mm] [mm]	65 d type) 0,66 1,74 head type) 0,66 1,74 type with h 4,21 7,13	0,32 1,36 0,32 1,36 nole clearan 4,71 8,83	0,57 2,36 ce) 4,42 6,95	1,16 4,39 5,60

1) A4	and	HCR	not	suitable
---	------	-----	-----	-----	----------

TER LAARE BX XTREME ETA 1 concrete screw	
Performances	Annex C8
Displacements under seismic loads	