

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0456 of 29 June 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Iris KEIL undercut anchor KH

Fastener for thr rear fixing of facade panels of Iris Ceramica Group made of ceramic plates (stoneware) in accordance with EN 14411:2012

PORCELAINGRES GmbH Irisstraße 1 03226 Vetschau DEUTSCHLAND

Plant 1

18 pages including 4 annexes which form an integral part of this assessment

EAD 330030-00-0601, edition 10/2018

European Technical Assessment ETA-20/0456 English translation prepared by DIBt

Page 2 of 18 | 29 June 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 18 | 29 June 2020

European Technical Assessment ETA-20/0456 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Iris KEIL undercut anchor KH is a fastener consisting of a crosswise slotted anchor sleeve with an M6 internal thread, at the upper edge of which a hexagon is formed to it and a respective hexagon screw with a tooth lock washer formed to it. The anchor sleeve and the hexagon screw with a tooth lock washer formed to it are made of stainless steel. Instead of the hexagon screw a grub screw or threated rod made of stainless steel may also be used. The anchor is put into an undercut drill hole and by driving-in the screw it is placed form-fitted and deformation-controlled.

The product description is given in Annex A. The material values, dimensions and tolerances of the components of the fastener not indicated in the annexes shall correspond to the values laid down in the technical documentation¹.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fasteners of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to breakout or pull-out failure under tension load	See Annex C 1
Characteristic resistance to breakout or pull-out failure under shear load	See Annex C 1
Characteristic resistance to breakout or pull-out failure under combined tension and shear load	See Annex C 1
Edge distance and spacing	See Annex C 1
Durability	Corrosion Resistance Class (CRC) III in accordance with EN 1993-1-4:2015
Characteristic resistance to steel failure under tension and shear loads	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

The technical documentation comprises all information of the holder of this ETA necessary for the production, installation and maintenance of the fastener; these are in particular design drawings. The part to be treated confidentially is deposited with Deutsches Institut für Bautechnik and, as far as this is relevant to the tasks of the approved bodies involved in the procedure of attestation of conformity, shall be handed over to the approved body.

1

European Technical Assessment ETA-20/0456

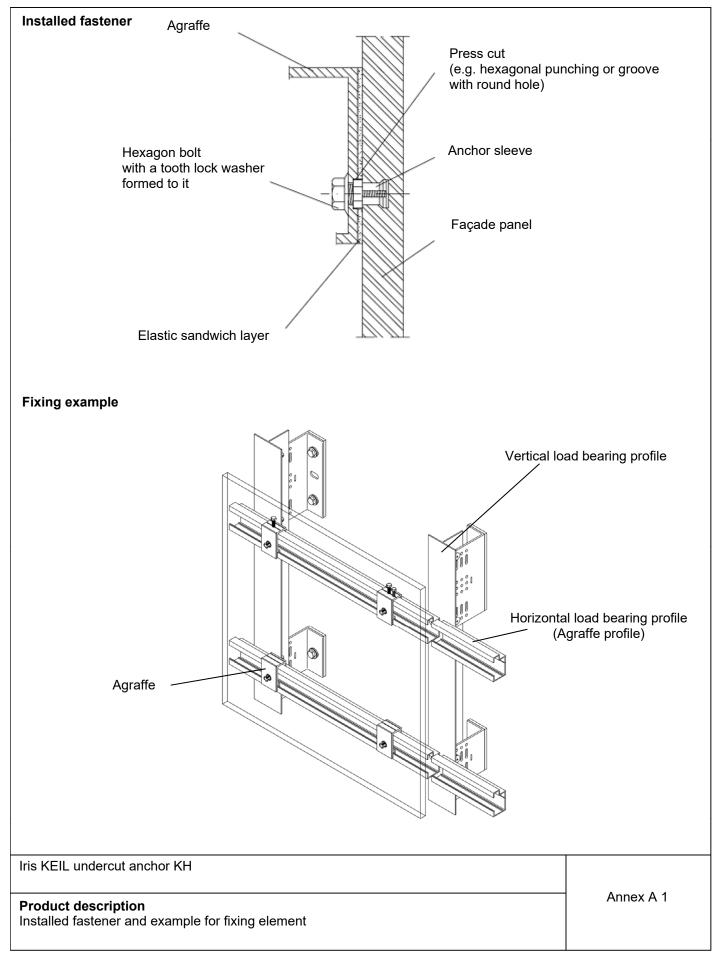
Page 4 of 18 | 29 June 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330030-00-0601 the applicable European legal act is: [97/161/EG]. The system to be applied is: 2+

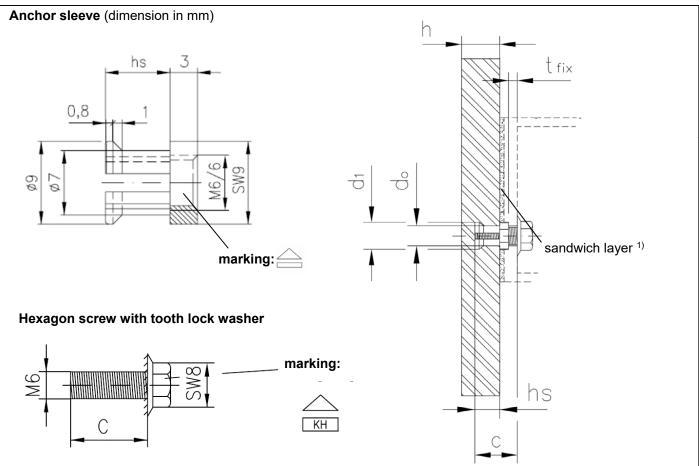
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 29 June 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Aksünger

Page 5 of European Technical Assessment ETA-20/0456 of 29 June 2020



Page 6 of European Technical Assessment ETA-20/0456 of 29 June 2020

English translation prepared by DIBt

¹⁾ elastic sandwich layer (e.g. EPDM) - thickness 1.0 to 3.0 mm

Table A1: Dimensions and Materials

Anchor type	KH 5,5	KH 7,0	KH 8,5		
anchorage depth h _s = [r			5,5	7,0	8,5
panel thickness	h≥	[mm]	[mm] 8,0 9,5 11,		
diameter of drill hole d _o = [n			7,0		
Diameter of undercut d ₁ = [m			9,0		
screw length	c =	[mm]	h _s + 3mm + t _{fix}		
installation torque moment T _{inst} [Nm]			$2.5 \leq T_{inst} \leq 4.0$		
Materials	KH 5,5	KH 7,0	KH 8,5		
anchor sleeve			Stainless steel 1.4404 according to EN 10 088:2014		
nevadon screw with tooth lock washer			Stainless steel 1.4401, 1.4404 or 1.4578 according to EN 10 088:2014		

Iris KEIL undercut anchor KH

Product description Dimensions and materials Annex A 2

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Base materials:

- The stoneware façade panels shall correspond to the group Ala, Alb, Bla or Blb according to EN 14411:2012
- The facade panels of Iris Ceramaica group with the following manufacturing plants are to be used:
 - Porcelaingres GmbH
 - Irisstrasse 1, 03226 Vetschau, Germany
 - GranitiFiandre S.p.A.
 - Via Radici Nord, 112 42014 Castellarano (Reggio Emilia), Italy
 - Division Iris Ceramaica GranitiFiandre S.p.A.
 - Via Ghiarola Nuova, 119 41042 Fiorano Modenese (MO), Italy
 - Divisione Ariostea GranitiFiandre S.p.A.
 Via Cimabue, 20 42014, Castellarano (Reggio Emilia), Italy
 Division FMG di GranitiFiandre S.p.A.
 - Via Ghiarola Nuova, 119 41042 Fiorano Modenese (MO), Italy
- Characteristic values of the panel correspond Table B 1
- The façade panels and the constancy of the performance of the fastener shall be checked in follow

Classification test (Initial type test)

The following values shall be checked on at least 10 samples:

- bending strength determined according to EN ISO 10545-4:2014-11 with the "visible face" on top; deviating from EN ISO 10 545-4:2014-11 the dimension of the test specimen is l/b = 400/200 mm and the support span is $l_s = 300$ mm
- axial tension load determined on test specimens with dimensions of I/b = 200/200 mm, an edge distance of 100 mm and a support diameter of \emptyset = 70 mm (panel thickness and embedment depth according to the construction project); N_{U5%} \ge N_{Rk} :Characteristic resistance to tension load according to Table C1
- shear load determined on test specimens with dimensions of I/b = 400/200 mm and an edge distance of 100 mm (panel thickness and embedment depth according to the construction project);

 $V_{U5\%} \ge V_{Rk}$:Characteristic resistance to shear load according to Table C1

Acceptance Test (Verification of constancy of performance)

For each construction project the following values shall be checked on at least 10 samples independent of the scope of delivery:

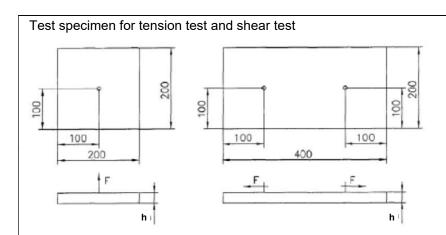
axial tension load – determined on test specimens with dimensions of I/b = 200/200 mm, an edge distance of 100 mm and a support diameter of Ø = 70 mm (panel thickness and embedment depth according to the construction project); N_{U5%} ≥ N_{Rk} :Characteristic resistance to tension load according to Table C1

From the test results (Classification and Acceptance tests) the 5%-Fractile (confidence level of 75%, unknown standard deviation and lognormal distribution) shall be determined.

With the determined values of the 5%-Fractile the façade panels are to be classified according to the respective property class corresponding to Table B1.

Table B1: Characteristic value of the panel

Strength class of facade panels	Α	В	С		
Bending strength ("visible face" on top)	σ u5% ≥	[N/mm²]	35	40	45
Modulus of elasticity	E =	[N/mm²]	30000		
poisson's ratio	ν =	[-]	0,2		
specific weight	$\gamma =$	[kN/m ³]	25,0		
Panel thickness	h≥	[mm]		8	


Iris KEIL undercut anchor KH

Intended use Specifications

Page 8 of European Technical Assessment ETA-20/0456 of 29 June 2020

English translation prepared by DIBt

Use conditions (Environmental conditions):

· According to EN 1993-1-4:2015 according to the Corrosion Resistance Class of the fastener III

Design:

Generals:

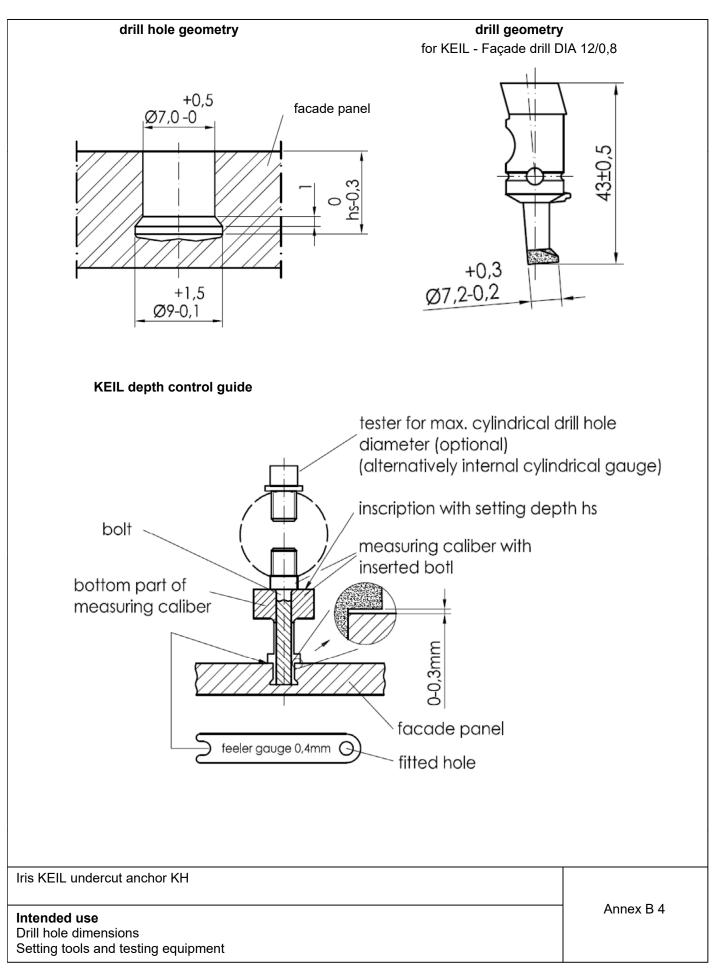
- Each façade panel is fixed with at least four anchors in a rectangular arrangement via single agraffes on the substructure (for small panels or small fitted pieces, differential or fill- in pieces the number and position of the anchors shall be chosen constructively).
- Edge distance and spacing shall be observed. For small fitted pieces, differential and fill-in pieces the edge distance and spacing shall be chosen.
- The substructure is constructed such that the façade panels are fixed according to Annex B 7 technically strainfree via skids (loose bearings) and one fixed point (fixed bearing) - the fixed point may be placed at the panel edge or in the panel field - and that there are no additional loads acting on the panels and their fixings due to excentric load application / load transfer (symmetrical bearing of the panels).
- · Constraint loads shall be into account for design, If constraint loads exists.
- Two fixing points of the façade panel are designed such that they are able to carry the dead load of the façade panel.
- When using agraffes on horizontal load-bearing profiles the fixing points of a façade panel situated horizontally at the same height are fastened in each case to the same load-bearing profile.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the nature and strength of the base materials and the dimensions of the anchorage members as well as of the relevant tolerances. The position of the anchor is indicated on the design drawings.
- The calculation shall be carried out in a linear elastic manner. The stiffness of the substructure shall be considered for the respective case of application.
- For hanging panels (overhead installation) or reveals respectively the load direction shall be taken into consideration and the combinations of actions shall be based on EN 1990.

Intended use Specifications

Installation:

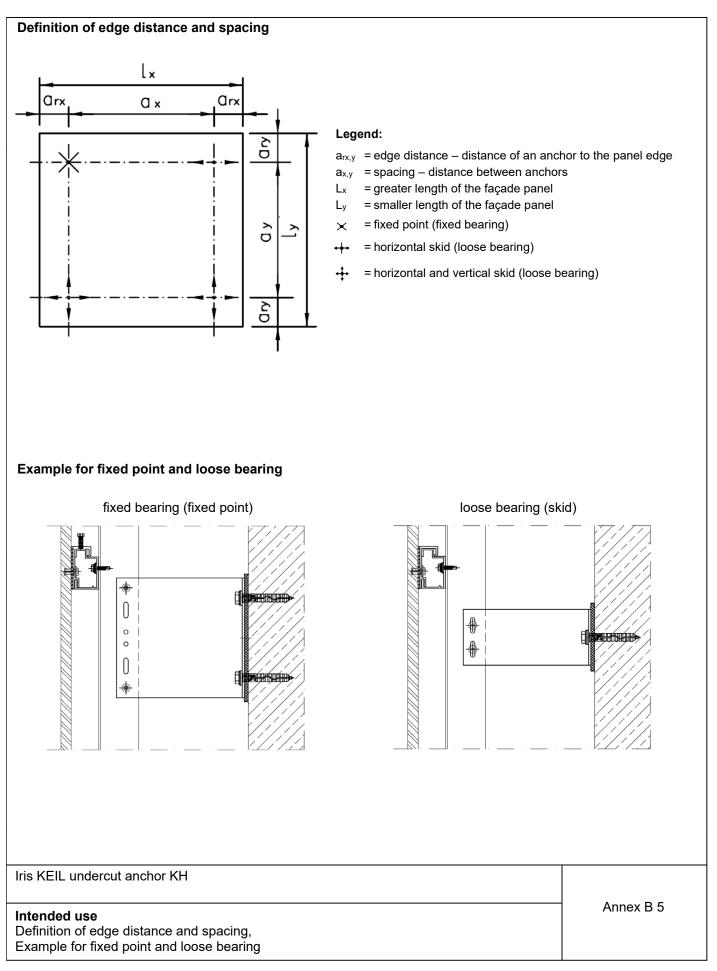
- The drillings are done at the factory or on site under workshop conditions; when making the drillings on site the execution is supervised by the responsible project supervisor or a skilled representative of the project supervisor.
- Making of the undercut drilling is done with the drill bit according to Annex B 6 and a special drilling device in accordance with the information deposited with Deutsches Institut für Bautechnik.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole.
- the geometry of the drill hole is checked on 1 % of all drillings. The following dimensions shall be checked and documented according to manufacturer's information and testing instructions by means of a KEIL depth control guide according to Annex B 6:
 - Volume of the undercut drill hole.
 - Depth position of the undercut; the distance between the lower edge of the KEIL depth control guide and the façade panel is between 0,0 and 0,3 mm (see Annex B 5).

If the tolerances given in Annex A 2 are exceeded, the geometry of the drill hole shall be checked on 25% of the drillings performed. No further drill hole may exceed the tolerances otherwise all the drill holes shall be controlled. Drilling holes falling below or exceeding the tolerances shall be rejected.

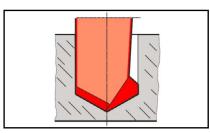

Note: Checking the geometry of the drill hole on 1 % of all drillings means that on one of the 25 panels (this corresponds to 100 drillings in façade panels with four anchors) one drilling shall be checked. If the tolerances given in Annex A 3 are exceeded the extent of the control shall be increase to 25 % of the drillings, i.e. one drilling each shall be checked on all the 25 panels.

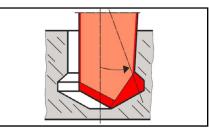
- During transport and storage on site the façade panels are protected from damages; the façade panels are not be hung up jerkily (if need be lifters shall be used for hanging up the façade panels); façade panels and reveal panels respectively with incipient cracks are not be installed.
- The façade are installed by skilled specialists and the laying instructions of the manufacturer shall be paid attention to.
- Between agraffe and façade panel an elastic sandwich layer may be placed. (see Annex A 1).
- The façade panels are aranged in a "reclined" or "uprigth" position.
- · Overhead installation is allowed.

Iris KEIL undercut anchor KH

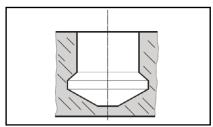

Intended use Specifications

Page 11 of European Technical Assessment ETA-20/0456 of 29 June 2020

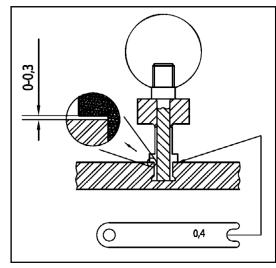




Installation instructions


1. Drilling the undercut hole

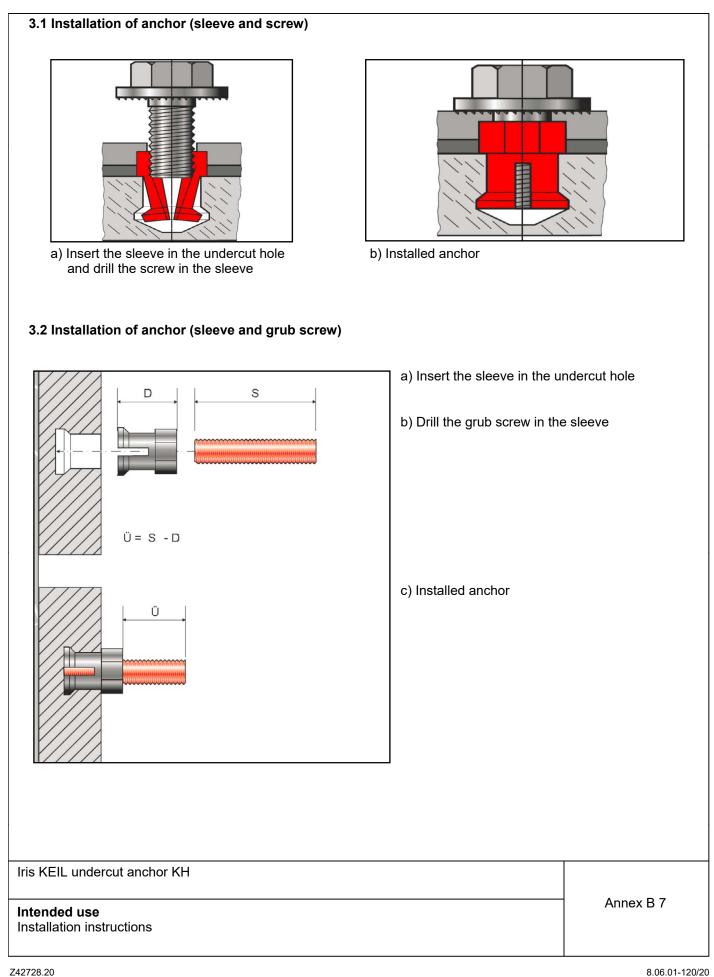
a) Cylindrical drilling



b) Undercutting

c) Finished undercut hole

2. Checking the undercut hole


With KEIL depth control guide

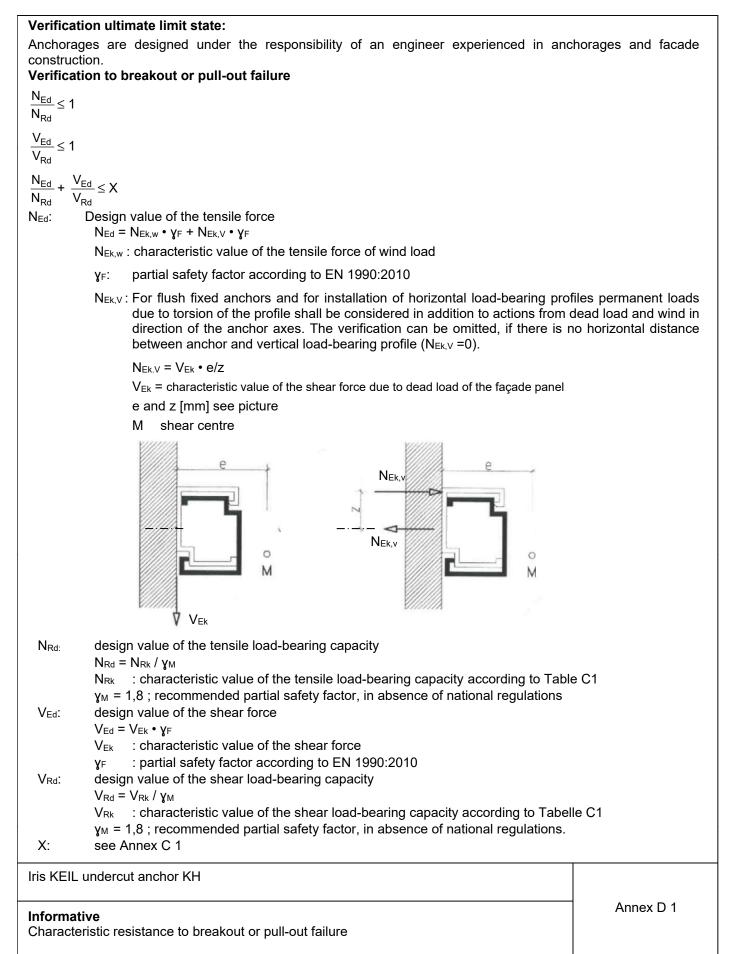
Iris KEIL undercut anchor KH

Intended use Installation instructions

Page 13 of European Technical Assessment ETA-20/0456 of 29 June 2020

Table C1: Character	istic values for	the desi	gn of the a	anchor		
Embedment depth	h _s =	[mm]	5,5	7,0	8,5	
Panel thickness		h≥	[mm]	8,0	9,5	11,0
	Class A	N _{Rk} =	[kN]	1,0	1,5	2,7
Characteristic resistance to tension load	Class B			1,1	1,6	2,8
	Class C			1,2	1,7	3,0
	Class A	V _{Rk} =	[kN]	2,0	2,2	2,4
characteristic resistance to shear load	Class B			2,1	2,3	2,5
	Class C			2,2	2,4	2,6
edge distance 1)	dge distance ¹⁾		[mm]	100		
spacing	spacing		[mm]	200		
charakt. resistance	tension load		[kN]	14,1		
steel failure	shear load	V _{Rk,s} =	[kN]	7,0		
Value for tri-linear fun combined tension and		X =	[-]		1,0	

¹⁾ The edge distance may be reduced to 50 mm. For edge distances 50 mm ≤ a_r ≤ 100 mm the characteristic values of resistance for shear loads shall be reduced by the factor a_r/100 [a_r in mm]; in case of different edge distances the smaller value is decisive


Iris KEIL undercut anchor KH

Performance

Characteristic values for the design of the anchor

Annex C 1

Verifica	tion to steel failure
N _{Ed} N _{Rd,s} ≤	≤ 1,0
$rac{V_{Ed}}{V_{Rd,s}} \leq$	1
$\left(\frac{N_{Ed}}{N_{Rd,s}}\right)$	$\Big)^2 + \left(\frac{V_{Ed}}{V_{Rd,s}}\right)^2 \le 1.0$
N _{Ed} :	Design value of the tensile force, see Annex D 1
N _{Rd,s:}	design value of steel failure under tension load
	$N_{Rd,s} = N_{Rk,s} / \chi_{Ms}$
	$N_{Rk,s}$: Characteristic resistance to steel failure under tension according to Table C1 γ_{Ms} = 1,87 recommended partial safety factor, in absence of national regulations.
V _{Ed} :	design value of the shear force, see Annex D 1
V _{Rd,s} :	design value of steel failure under shear load
	$V_{Rd,s} = V_{Rk,s} / \gamma_M$
	V Characteristic resistance to steel foilure shear load according to Table C1

 $V_{Rk,s}$: Characteristic resistance to steel failure shear load according to Table C1 $\gamma_{M,s}$ = 1,56 recommended partial safety factor, in absence of national regulations.

Informative Characteristic resistance to steel failure Anhang D 2

Verification to wind loads for selective panel sizes and bearing conditions

For the panel sizes and bearing conditions given in Table D1 depending on the strength class, panel thickness, setting depth and edge distance the verification of structural stability is deemed to be verified, if the following condition is met:

 $w_{Ed} \le w_{Rk} / \gamma_M$

With:

- w_{Ed} = design value of the existing wind load
- w_{Rk} = characteristic resistance to wind loads according to Table D1

 γ_{M} = partial safety factor according to Table D1

Table D1: characteristic resistance w_{Rk} to wind loads for selective panel sizes and bearing conditions depending on property class, panel thickness, setting depth and edge distance

Class	h	hs	a _{rx}	a _{ry}	panel sizes bearing condit		WRk	γм
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]	[kN/m²]	[-]
В	≥ 11,5	≥7	60-120	100-200	600 imes 1200	4 Agraffen	5,4	
В	≥ 11,5	≥7	60-120	75-150	600 imes 900	4 Agraffen	8,1	
В	≥ 9,5	≥7	60-120	60-120	600 imes 600	4 Agraffen	10,8	
А	≥ 13	≥ 8,5	123	240-350	900 imes 1200	4 Agraffen	2,2	1,8
А	≥ 13	≥ 8,5	123	240-350	900 × 1200	6 Agraffen	2,7	
А	≥ 13	≥ 8,5	123	240-350	900 × 1200	8 Agraffen	4,3	
С	≥ 13	≥7	100	100	900 imes 900	4 Agraffen	4,3	

¹⁾ maximum size of agraffe: width = 30 mm, heigth = 60 mm

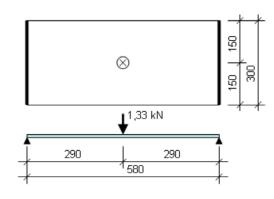
Object-releated calculation can lead to different panel sizes and spacings.

Iris KEIL undercut anchor KH

Informative

Verification to wind loads for selective panel sizes and bearing conditions

Annex D 3



Guideline for structural calculation by means of FE - method

For structural calculation by means of the Finite-Element-Method the façade panels are to be idealized with their effective dimensions (size and thickness) as panel elements; the system chosen shall have the capacity to sufficiently precise represent the tension and the deformation state as well as the support reactions of the façade panels. The mesh size at fixing range shall not exceed 10 mm.

The modelling of the façade panel is to be calibrated on the basis of the following points:

- modelling a panel section of 580 mm x 300 mm with a panel thickness of 13,3 mm
- support at the short sides with rotable restraint
- loading at centre with a single load of 1,33 kN
- determination of a factor $f_{cal.FE}$ = 41,8 / σ_{FE}
- the determined bending stresses shall be multiplied with factor $f_{cal.FE}$ ($\sigma_{Sk} = \sigma_{FE} \cdot f_{cal.FE}$); the factor $f_{cal.FE}$ shall only be considered for stresses due to support moments

 σ_{FE} = maximum main tensile stress [N/mm²]

Informative

Guideline for structural calculation by means of FE - method

Annex D 4

Electronic copy of the ETA by DIBt: ETA-20/0456