

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0117 of 19 June 2020

Deutsches Institut für Bautechnik

Wedge Anchor BZ3 dynamic

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Mechanical Fastener for use in concrete

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

MKT Metall-Kunststoff-Technik GmbH & Co.KG

12 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601 Edition 09/2019

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-20/0117 English translation prepared by DIBt

Page 2 of 12 | 19 June 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 | 19 June 2020

European Technical Assessment ETA-20/0117 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Wedge anchor BZ3 dynamic is a fastener made of zinc plated steel which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic fatigue resistance under cyclic tension loading (Assessment met	hod B)
Characteristic steel fatigue resistance	See Annex
Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance	C1
Characteristic fatigue resistance under cyclic shear loading (Assessment method	od B)
Characteristic steel fatigue resistance	
Characteristic concrete edge fatigue resistance	See Annex C1
Characteristic concrete pry out fatigue resistance	5
Characteristic fatigue resistance under cyclic combined tension and shear load (Assessment method B)	ing
Characteristic steel fatigue resistance	See Annex C1
Load transfer factor for cyclic tension and shear loading	
Load transfer factor	See Annex C1

European Technical Assessment ETA-20/0117

Page 4 of 12 | 19 June 2020

English translation prepared by DIBt

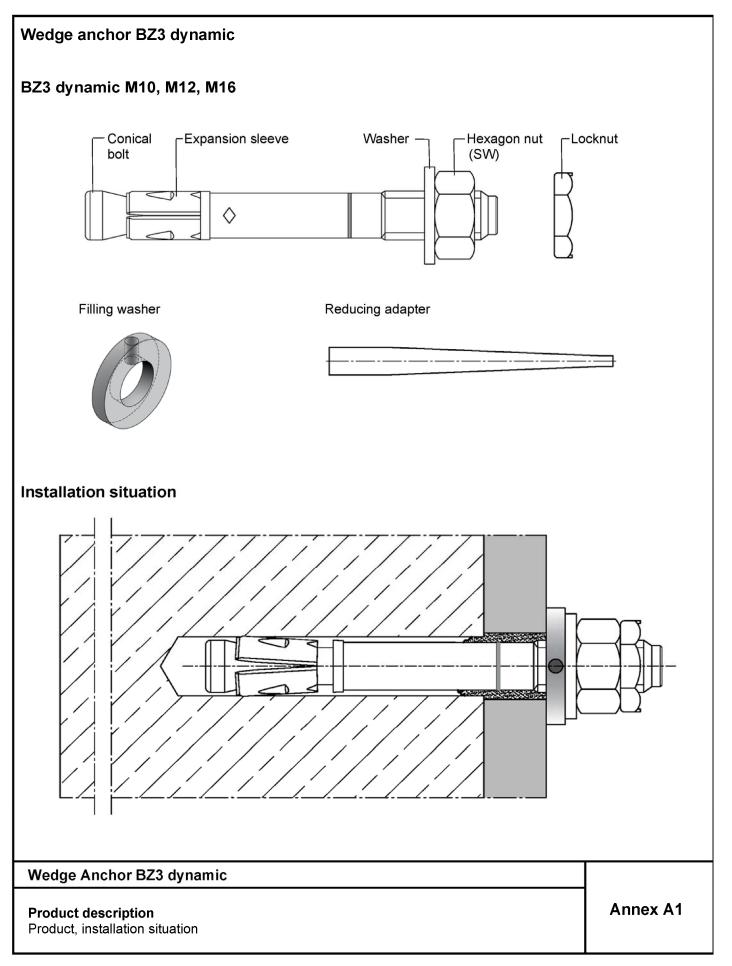
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330250-00-0601 the applicable European legal act is: 1996/582/EC.

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

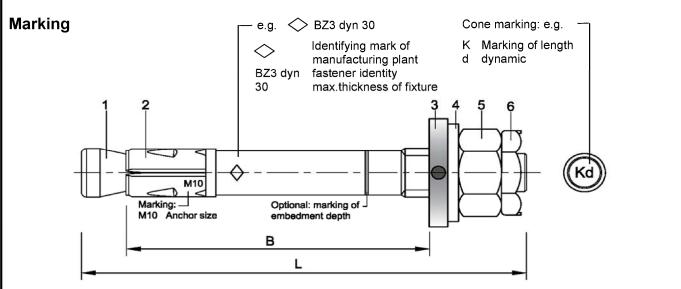
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin 19 June 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* G. Lange

Page 5 of European Technical Assessment ETA-20/0117 of 19 June 2020

English translation prepared by DIBt



Page 6 of European Technical Assessment ETA-20/0117 of 19 June 2020

English translation prepared by DIBt

Usable length:

 $B = h_{ef} + t_{fix}$ hef: (existing) effective anchorage depth

t_{fix}: fixture thickness

Table A1: Length identification

Length identifier	G	Н	I	J	К	L	М	N	0	Ρ	Q	R	S	Т	U
Usable ≥ length B	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135

Length identifier	v	w	X	Y	Z	
Usable ≥ length B	140	145	150	160	170	Dimension

ns in mm

Table A2: Material

Designation	Steel, zinc plated
Conical bolt	Steel, galvanized \geq 5 µm, fracture elongation A ₅ \geq 8%
Expansion sleeve	Stainless steel
Filling washer	
Washer	Stool askyonized > 5 um
Hexagon nut	Steel, galvanized ≥ 5 μm
Locknut	
Filling mortar	e.g. MKT VMH, VMZ or VMU plus
	Conical bolt Expansion sleeve Filling washer Washer Hexagon nut Locknut

Wedge Anchor BZ3 dynamic

Product description

Marking, length identification, material

Annex A2

Page 7 of European Technical Assessment ETA-20/0117 of 19 June 2020

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Fatigue cyclic loading
- Static and quasi-static action, fire exposure and seismic performance according to ETA-19/0619

Base materials:

- Cracked or uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206: 2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

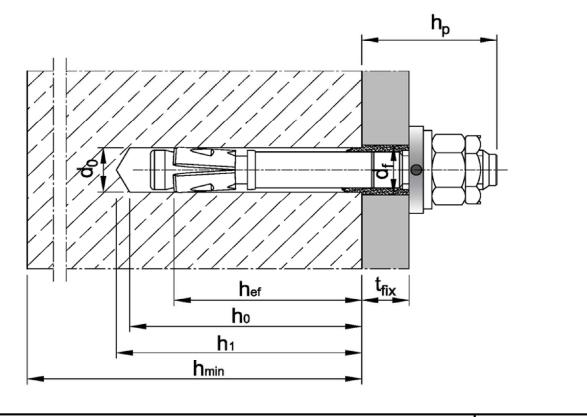
• Structures subject to dry internal conditions

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018 and TR 061 (design method II)

Installation:

- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener


Wedge Anchor BZ3 dynamic

Intended use Specifications of intended use

Deutsches Institut für Bautechnik

Table B1: Installation parame	eters				
Anchor size			M10	M12	M16
Nominal drill hole diameter	d0 =	[mm]	10	12	16
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10,45	12,5	16,5
Effective anchorage depth ¹⁾	h _{ef} ≥	[mm]	60	70	85
Donth of drill halo	h₀≥	[mm]	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14
Depth of drill hole	h₁≥	[mm]	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17
Diameter of clearance hole in the fixture	d _f =	[mm]	12	14	18
Minimum fixture thickness	t _{fix,min} =	[mm]	5	6	8
Installation torque	T _{inst} =	[Nm]	40	60	110
Overstand	$h_{p} \leq$	[mm]	21,5 + t _{fix}	25,5 + t _{fix}	29,5 + t _{fix}
Length of fastener	L	[mm]	h _{ef} + t _{fix} + 30,5	h _{ef} + t _{fix} + 35,5	h _{ef} + t _{fix} + 43
Hexagon nut width across nut	SW	[mm]	17	19	24
Locknut width across nut	SW	[mm]	17	19	24

¹⁾ End of thread must be above the concrete surface

Wedge Anchor BZ3 dynamic

Intended use

Installation parameters

Table B2: Minimum thickness of concrete member, minimum spacings, edge distances and required area

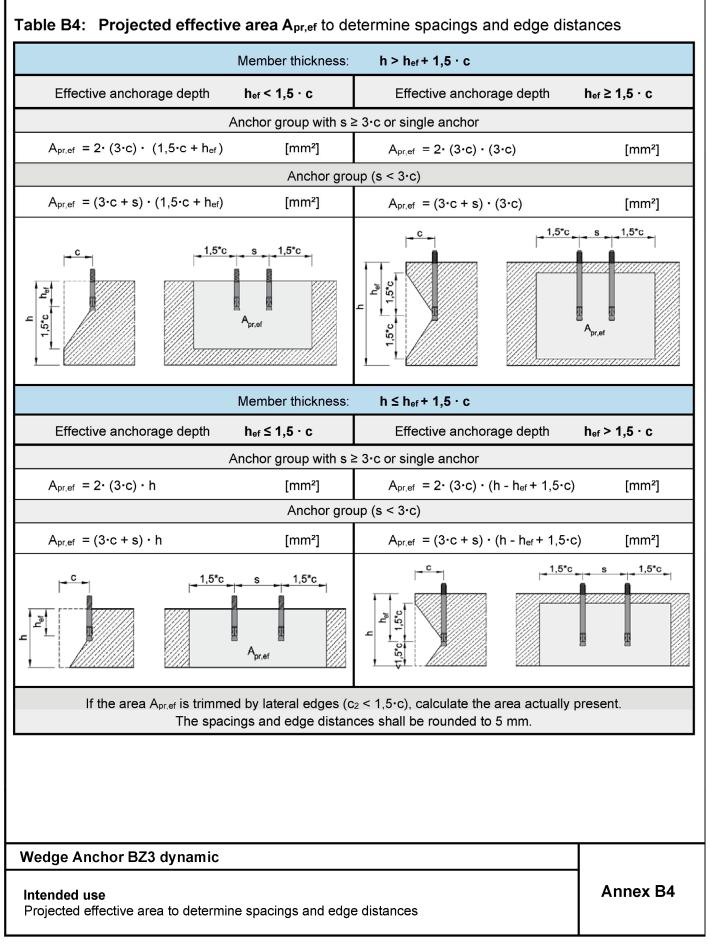
Anchor size				M10	M12	M16
Minimum member thickness depending on h _{ef}		h _{min} ≥	[mm]		1,5∙h _{ef}	
Minimum edge distances	and spacings					
Minimum edge distance		Cmin	[mm]	45	55	65
Minimum spacings		Smin	[mm]	40	50	65
Projected required area A	or,req					
Draigated required area	cracked concrete	A _{pr,req}	[mm²]	23 700	31 500	42 300
Projected required area	uncracked concrete	A _{pr,req}	[mm²]	34 700	41 300	50 200

The edge distances and spacings shall be selected in steps of 5 mm. In combination with variable anchorage depths and member thicknesses, the following equation must be fulfilled:

 $A_{pr,req} \leq A_{pr,ef}$

- Projected required area A_{pr,req} A_{pr,ef}
 - Projected effective area (acc. to Table B4)

Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance ccr,sp


Anchor size			M10	M12	M16
Applicable concrete thickness	h_{sp}	[mm]	mir	$n(h; h_{ef} + 1, 5 \cdot c \cdot n)$	<u>√2</u>)
Area to determine c _{cr,sp} ¹⁾	A_{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$

¹⁾ with N⁰_{Rk,sp} in kN according to ETA-19/0619

Intended use

Minimum spacings and edge distances Required area and applicable concrete thickness

Inst	allation instructions	
1	90° • • • • • • • • • • • • • • • • • • •	Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Drive in fastener with filling washer until effective anchorage depth is reached.
4	Tinst	Apply installation torque T _{inst} according to Table B1 by using torque wrench.
5		Screw on locknut until hand tight then tighten ¹ /4 to ½ turn.
6		Fill the annular gap between anchor and fixture with mortar (compressive strength ≥ 40 N/mm², e.g. MKT Injection System VMH, VMZ or VMU plus). Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out.

Wedge Anchor BZ3 dynamic

Intended use

Installation instructions

Anchor size			M10	M12	M16			
Tension load								
Steel failure								
Characteristic fatigue resistance	∆N _{Rk,s,0,∞}	[kN]	4,6	6,2	9,7			
Exponent for combined loading	α_{s}	[-]	0,5	0,5	0,7			
Load-transfer factor for fastener groups	ψ_{FN}	[-]		0,5				
Pull-out								
Characteristic fatigue resistance	∆N _{Rk,p,0,∞}	[kN]		0,5 N _{Rk,p} 1)				
Concrete cone and splitting fail	ure							
Characteristic fatisus registeres	∆N _{Rk,c,0,∞}	J _{Rk,c,0,∞} [kN] 0,5 N _{Rk,c} ¹⁾						
Characteristic fatigue resistance -	∆N _{Rk,sp,0,∞}	[kN]	0,5 N _{Rk,sp} ¹⁾					
Effective anchorage depth	h _{ef} ≥	[mm]	60	70	85			
Shear load				· ·				
Steel failure without lever arm								
Characteristic fatigue resistance	∆V _{Rk,s,0,∞}	[kN]	2,5	4,0	7,5			
Exponent for combined loading	α_{s}	[-]	0,5	0,5	0,7			
Load-transfer factor for fastener groups	ψ_{FV}	[-]		0,5				
Concrete pry-out failure								
Characteristic fatigue resistance	∆V _{Rk,cp,0,∞}	[kN]		0,5 V _{Rk,cp} 1)				
Concrete edge failure								
Characteristic fatigue resistance	ΔV _{Rk,c,0,∞}	[kN]		0,5 V _{Rk,c} ¹⁾				
Effective length of anchor	lf	[mm]	60	70	85			
Diameter of anchor	d _{nom}	[mm]	10	12	16			

¹⁾ N_{Rk,c}, N_{Rk,p}, N_{Rk,sp}, V_{Rk,c} and V_{Rk,cp} – Characteristic values of resistance under static or quasi-static actions according to ETA-19/0619 and EN 1992-4:2018

Wedge Anchor BZ3 dynamic

Performance

Characteristic values of fatigue resistance

Annex C1