

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0455 of 15 June 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

WÜRTH Frame Anchor IFR

Plastic anchor for multiple use in concrete and masonry for non-structural applications

Wuerth India Pvt. Ltd. 703/704 Windfall, Sahar Plaza Complex Andheri - Kurla Road J B Nagar Andheri (East) MUMBAI, MAHARASHTRA - 400059 INDIEN

Plant 1

22 pages including 3 annexes which form an integral part of this assessment

ETAG 020, March 2012, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0455

Page 2 of 22 | 15 June 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z42370.20 8.06.04-119/20

European Technical Assessment ETA-20/0455

Page 3 of 22 | 15 June 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The WÜRTH Frame Anchor IFR is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A 1
Resistance to fire	See Annex C 1

3.2 Safety and accessibility (BWR 4)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 - C 4, C 9
Edge distances and spacing	See Annex B 2 – B 5
Displacements	See Annex C 5 – C 9
Durability	See Annex B 1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 020, March 2012 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

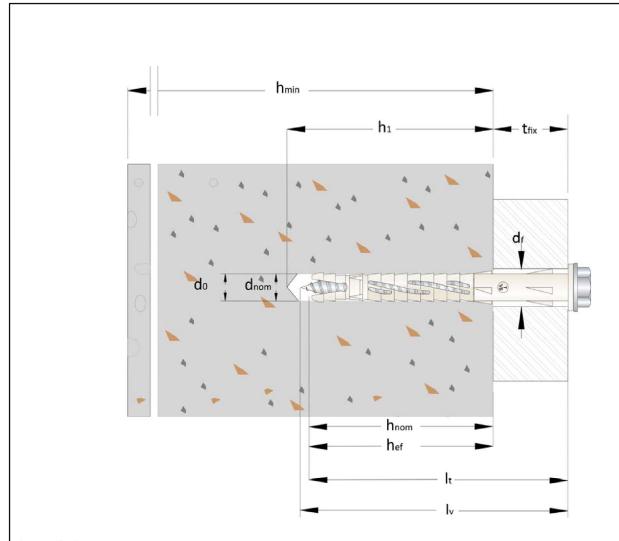
Z42370.20 8.06.04-119/20

European Technical Assessment ETA-20/0455 English translation prepared by DIBt

Page 4 of 22 | 15 June 2020

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 15 June 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Ziegler

Z42370.20 8.06.04-119/20

Intended use:

Fixing in concrete and different types of masonry.

Legend:

h _{min} :	minimum thickness of concrete member
h _{nom} :	minimum overall embedment depth
h _{ef} :	minimum effective embedment depth
d _{nom} :	anchor diameter
l _t :	anchor length
l _v :	screw length
d _o :	drill hole diameter
h ₁ :	minimum depth of drill hole
t _{fix} :	maximum thickness of fixture
d _f :	diameter of clearance hole in the fixture

WÜRTH Frame Anchor IFR	
Product description Installed condition	Annex A 1

WÜRTH Frame Anchor IFR	
Product description Anchor types / specific screw – marking and dimensions	Annex A 2

Table 1: Dimensions

Anchor type		IFR Ø 8	IFR Ø 10
Outside diameter of anchor	d _{nom} = [mm]	8	10
Length of the anchor	l _t = [mm]	≥	80
Screw diameter	dv = [mm]	6	7
Screw length	lv = [mm]	≥85	≥85

Table 2: Materials

Anchor sleeve	Polyamide, PA 6, light grey color
Carbon steel screw	Carbon Steel grade 5.8, gvz min 5 µm acc. to ISO 2081:2008
Stainless steel screw	SS A4/70 (AISI 316) acc. to ISO 3506-1:2009 and EN 10088-3:2014

WÜRTH Frame Anchor IFR	
Product description Dimensions and materials	Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads
- Multiple fixing of non-structural applications

Base materials:

- Reinforced or unreinforced normal weight concrete ≥ C16/20 (use category a), acc. to EN 206-1:2000, Annex C1.
- Solid brick masonry (use category b), according to Annex C2.
 - Note: The characteristic resistance is also valid for larger brick sizes and larger compressive strength of the masonry unit.
- Hollow brick masonry (use category c), according to Annexes C3 and C4.
- Autoclaved aerated concrete (use category d), according to Annex C9
- Mortar strength class of the masonry ≥ M2,5 at minimum according to EN 998-2:2010.
- For other base materials of the use categories a, b, c and d the characteristic resistance of the anchor may be determined by job site tests according to ETAG 020, Annex B Edition March 2012.

Temperature Range:

- \cdot a: 40 $^{\circ}$ C to 40 $^{\circ}$ C (max. short term temperature + 40 $^{\circ}$ C and max long term temperature + 24 $^{\circ}$ C)
- b: 40 °C to 80 °C (max. short term temperature + 80 °C and max long term temperature + 50 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel).
- The specific screw made of galvanized steel may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with the ETAG 020, Annex C March 2012 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple use for non-structural applications, acc. to ETAG 020 March 2012.

Installation:

- Hole drilling by the drill modes according to Annex C1, C2, C3, C4, C9.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Installation temperature ≥ 0°C
- Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks

WÜRTH Frame Anchor IFR	
Intended use Specifications	Annex B 1

Table 3: Installation parameters

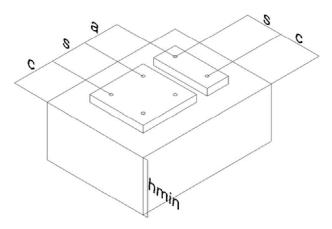

Parameter / Size		IFR Ø 8	IFR Ø 10
Nominal drill hole diameter	d _o [mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤[mm]	8.45	10.45
Depth of drill hole	h ₁ = [mm]	90	90
Effective anchorage depth	h _{ef} = [mm]	70	70
Diameter of clearance hole in the fixture	d _f = [mm]	9	11
Thickness of fixture	t _{fix} = [mm]	≥10	
Hexalobular socket number (ISO 10664)	T [-]	30	40
Wrench size (for hexagonal head only)	SW = [mm]	10	13

Table 4: Minimum thickness of the member, edge distance and spacing in concrete

Parameter / Size		IFR Ø 8	IFR Ø 10
Concrete class		≥16	/20
Minimum thickness of the member	h _{min} [mm]	140	
Characteristic edge distance	c _{cr,N} 1) [mm]	105	105
Characteristic spacing	S _{cr,N} ¹⁾ [mm]	75	90
Minimum allowable spacing and edge distance ¹	s _{min} [mm]	90	100
	c _{min} [mm]	90	100

¹⁾ Intermediate value by linear interpolation

Scheme of edge distance and spacing in concrete and masonry

Fixing points with a spacing a \leq s_{cr,N} are considered as a group with a maximum characteristic resistance N_{Rk,p} acc. to Table 17 – Table 27. For a spacing a > s_{cr,N} the anchors are considered as single anchors, each with a characteristic resistance N_{Rk,p} acc. to Table 17 – Table 27.

WÜRTH Frame Anchor IFR	
Intended use Installation parameters, edge distances and spacing for use in concrete	Annex B 2

Table 5: Minimum distances and dimensions in solid masonry - Type "A"

Minimum thickness of the member	h _{min} [mm]	110
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

Table 6 : Minimum distances and dimensions in solid masonry – Type "B" $\,$

Minimum thickness of the member	h _{min} [mm]	120
Single anchor		
Minimum edge distance	c _{min} [mm]	125
Anchor Group		
Spacing perpendicular to free edge S _{1,min} [mm]		250
Spacing parallel to free edge	S _{2,min} [mm]	500
Minimum edge distance	c _{min} [mm]	125

Table 7: Minimum distances and dimensions in solid masonry – Type "E"

Minimum thickness of the member	h _{min} [mm]	370
Single anchor		
Minimum edge distance	c _{min} [mm]	185
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	370
Spacing parallel to free edge	S _{2,min} [mm]	740
Minimum edge distance	c _{min} [mm]	185

Table 8: Minimum distances and dimensions in solid masonry - Type "F"

Minimum thickness of the member	h _{min} [mm]	240	
Single anchor	Single anchor		
Minimum edge distance	c _{min} [mm]	120	
Anchor Group			
Spacing perpendicular to free edge	S _{1,min} [mm]	240	
Spacing parallel to free edge	S _{2,min} [mm]	480	
Minimum edge distance	c _{min} [mm]	120	

WÜRTH Frame Anchor IFR	
Intended use Edge distances and spacing for use in solid masonry	Annex B 3

Table 9: Minimum distances and dimensions in hollow masonry - Type "C"

Minimum thickness of the member	h _{min} [mm]	120
Single anchor		
Minimum edge distance	c _{min} [mm]	125
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	250
Spacing parallel to free edge	S _{2,min} [mm]	500
Minimum edge distance	c _{min} [mm]	125

Table 10 : Minimum distances and dimensions in hollow masonry – Type "D"

Minimum thickness of the member	h _{min} [mm]	120
Single anchor		
Minimum edge distance	c _{min} [mm]	125
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	250
Spacing parallel to free edge	S _{2,min} [mm]	
Minimum edge distance	c _{min} [mm]	75

Table 11: Minimum distances and dimensions in hollow masonry – Type "G"

Minimum thickness of the member	h _{min} [mm]	240
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge S _{1,min} [mm]		240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

Table 12: Minimum distances and dimensions in hollow masonry - Type "H"

Minimum thickness of the member	h _{min} [mm]	115
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

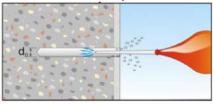
WÜRTH Frame Anchor IFR	
Intended use Edge distances and spacing for use in hollow masonry	Annex B 4

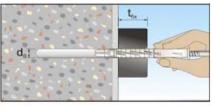
Table 13: Minimum distances and dimensions in hollow masonry - Type "I"

Minimum thickness of the member	h _{min} [mm]	175
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

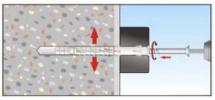
Table 14: Minimum distances and dimensions in AAC

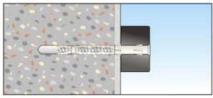
Minimum thickness of the member	h _{min} [mm]	240
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

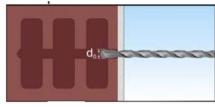

WÜRTH Frame Anchor IFR	
Intended use Edge distances and spacing for use in hollow masonry and AAC	Annex B 5

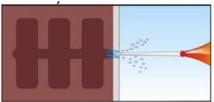


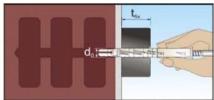
Setting instructions

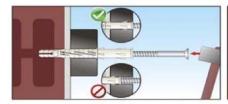

Installation sequence in concrete and solid masonry

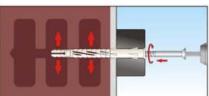


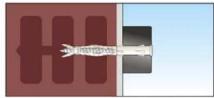


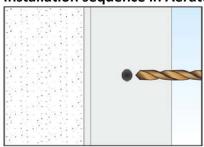


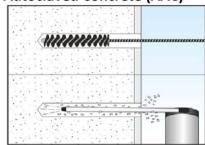


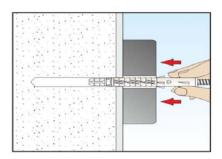


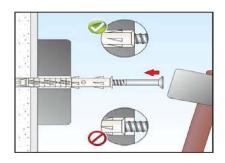

Installation sequence in Hollow Masonry

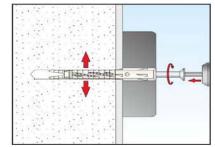


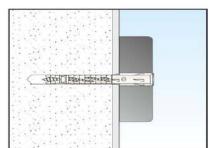









Installation sequence in Aerated Autoclaved Concrete (AAC)



WÜRTH Frame Anchor IFR

Intended use Setting instructions Annex B 6

Table 15: Characteristic bending resistance of the screw

Parameter / Size		IFR	Ø 8	IFR Ø 10			
		Galvanized	Galvanized Stainless		Stainless		
			steel	steel	steel	steel	
Characteristic bending	M _{Rk,s}	[Nm]	12,1	16,9	19,3	27,1	
resistance	IVIRk,s	נויווון	12,1	10,9	19,5	27,1	
Partial safety factor	γMs	-	1,25				

Table 16: Characteristic resistance of the screw

			IFR	Ø 8	IFR Ø 10		
Parameter / Size		Galvanized	Stainless	Galvanized	Stainless		
			steel	steel	steel	steel	
Characteristic tension resistance	N _{Rk,s}	[kN]	11,3	15,8	15,4	21,6	
Partial safety factor	γMs	-		1,	,5		
Characteristic shear resistance	V _{Rk,s}	[kN]	5,6 7,9 7,7 10,8				
Partial safety factor	γMs	-	1,25				

Table 17: Characteristic resistance for use in concrete¹⁾

Plastic sleeve pull-out failure			IFR Ø	8	IFR Ø 10		
Temperature range		24/40 °C	50/80 °C	24/40 °C	50/80 °C		
Characteristic tension resistance	N _{Rk,p}	[kN]	3,5	3,0	4,5	4,0	
Partial safety factor	γ _{Mc} ²⁾	[-]	1,8				

¹⁾ Concrete strength f_{ck}≥16 N/mm² (strength class C16/20 acc. to EN 206-1:2000) Drill method: hammer drilling

Table 18: Characteristic resistance under fire exposure in concrete¹⁾ in any load direction, no permanent centric tension load and without lever arm, fastening of facade systems

	, , , , , , , , , , , , , , , , , , , ,	0
Anchor type	Fire resistance class	F _{Rk} [kN]
IFR	R 90	0,8

¹⁾ Concrete strength f_{ck}≥16 N/mm² (strength class C16/20 acc. to EN 206-1:2000) Drill method: hammer drilling

WÜRTH Frame Anchor IFR	
Performances Characteristic resistance of the screw, characteristic resistance for use in concrete	Annex C 1

²⁾ In absence of other national regulations

Base material	Drill method	Bulk density class p	Minimum compressive strength f _b	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}
description	-	[kg/dm ³]	[N/mm²]	[kN]	[kN]
Solid clay brick acc. to EN 771-1:2011	Rotary +	1 7	39,0	2.0	2,0
Mattone pieno 110x60x240 "Danesi"	hammer	1,7	33,0	3,0	2,0

Table 20: Characteristic resistance – Solid masonry type "B" (use category "b")

Base material	Drill method	Bulk density class ρ	Minimum compressive strength fb	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}
description	-	[kg/dm ³]	[N/mm ²]	[kN]	[kN]
Solid clay brick acc. to EN 771-1:2011 Mattone pieno 250x120x55 "Terreal Italia"	Rotary + hammer	1,7	27,0	4,0	5,0

Table 21 : Characteristic resistance – Solid masonry type "E" (use category "b")

Base material	Drill method	Bulk density class ρ	Minimum compressive strength fb	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}
description	-	[kg/dm ³]	[N/mm²]	[kN]	[kN]
Vulcanic tuff brick, acc. to EN 771-3:2011 Fior di tufo 370x370x110 "Cave riunite"	Rotary + hammer	2,4	7,5	-	0,3

Table 22 : Characteristic resistance – Solid masonry type "F" (use category "b")

Base material	Drill method	Bulk density class ρ	Minimum compressive strength f _b	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}
description	-	[kg/dm ³]	[N/mm²]	[kN]	[kN]
Calcium silicate solid brick, acc. EN 771-2:2011 Kalksandsteine KS-Plansteine KS-R(P)- 20-2,0-8DF (240) "Heidelberger- Kalksandstein"	Rotary + hammer	1,9	28,2	5,5	6,0

WÜRTH Frame Anchor IFR	
Performances Characteristic resistance for use in solid masonry	Annex C 2

Table 23: Characteristic resistance – masonry type "C" (use category "c")

Base material	Drill method	Bulk density class ρ	Minimum compressive strength	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}
description	-	[kg/dm ³]	[N/mm²]	[kN]	[kN]
Perforated clay brick, acc. EN 771-1:2011 Doppio doppio UNI 120x245x250 "Danesi"	Rotary	0.9	13.0	-	0,3

Table 24 : Characteristic resistance - masonry type "D" (use category "c")

Base material description	Drill method	Bulk density class p [kg/dm ³]	Minimum compressive strength f _b [N/mm ²]	IFR Ø 8 F _{Rk} [kN]	IFR Ø 10 F _{Rk} [kN]
Perforated clay brick, acc. EN 771-1:2011 Forati 120x250x250 "Wienerberger" 250 [mm]	Rotary	0.6	2.0	0,3	-

WÜRTH Frame Anchor IFR	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 3

Table 25 : Characteristic resistance - masonry type "G" (use category "c")						
Base material	Drill method	Bulk density class	Minimum compressive strength	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}	
description	•	[kg/dm ³]	[N/mm ²]	[kN]	[kN]	
Perforated clay brick, acc. EN 771-1:2011 Poroton-Hochlochziegel-Block-T-24,0-0,9 L "Wienerberger" 500	Rotary	0,9	7,0	0,9	0,9	

Table 26: Characteristic resistance - masonry type "H" (use category "c")

Table 20: Characteristic resistance - masoning type 11 (disc category e)						
		Bulk	Minimum	IFR	IFR	
Dana watawial	Drill	density	compressive	Ø 8	Ø 10	
Base material	method	class	strength			
		ρ	f _b	F_{Rk}	F _{Rk}	
description	-	[kg/dm ³]	[N/mm ²]	[kN]	[kN]	
Perforated clay brick, acc. EN 771-1:2011						
Poroton-Kleinformat HlzB- 2DF -0,9						
"Wienerberger"						
235						
1	Rotary	0,9	16,4	0,9	0,9	
	•					

Table 27: Characteristic resistance - masonry type "I" (use category "c")

Base material	Drill method	Bulk density class ρ	Minimum compressive strength f _b	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}
description	-	[kg/dm ³]	[N/mm²]	[kN]	[kN]
Hollow calcium silicate brick acc. EN 771-2:2011 "Heidelberger-Kalksandstein" KS-L	Rotary	1,5	16,3	5,0	5,5

WÜRTH Frame Anchor IFR	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 4

Table 28: Displacements under tension load in concrete

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load concrete	N	[kN]	1,2	1,6
Displacements	δ_{NO}	[mm]	0,24	0,29
Displacements	$\delta_{\text{N}\infty}$	[mm]	0,48	0,58

Table 29: Displacements under shear load in concrete

Parameter / Size			IFR Ø 8	IFR Ø 10
Service shear load in concrete	V	[kN]	3,2	4,4
Displacements	δ_{vo}	[mm]	2,00	1,67
Displacements	δν∞	[mm]	3,00	2,50

Table 30: Displacements under tension load in solid masonry – type "A"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load in solid masonry	N	[kN]	0,9	0,6
Displacements	δ_{N0}	[mm]	0,04	0,06
Displacements	$\delta_{N\infty}$ [mm]		0,08	0,12

Table 31: Displacements under tension load in solid masonry – type "B"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load in solid masonry	N	[kN]	1,1	1,4
Displacements	δ_{NO}	[mm]	0,25	0,67
Displacements	$\delta_{\text{N}\infty}$	[mm]	0,50	1,34

WÜRTH Frame Anchor IFR	
Performances Displacements in concrete and colid masonny	Annex C 5
Displacements in concrete and solid masonry	

Table 32: Displacements under tension load in solid masonry – type "E"

Parameter / Size	IFR Ø 8		
Service tension load in solid masonry	N	[kN]	0,09
Displacements	δ_{NO}	[mm]	0,01
Displacements	δ _{N∞}	[mm]	0,02

Table 33: Displacements under tension load in solid masonry – type "F"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load in solid masonry	N	[kN]	1,57	1,71
Displacements	δ _{N0} [mm]	[mm]	0,14	0,07
Displacements	$\delta_{\text{N}\infty}$	[mm]	0,29	0,15

Table 34: Displacements under shear load in solid masonry type "A", "B" and "E"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service shear load in solid masonry	V	[kN]	3,2	4,4
Displacements	δνο	[mm]	2,67	3,67
Displacements	δν∞	[mm]	4,00	5,50

Table 35: Displacements under shear load in solid masonry type "F"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service shear load in solid masonry	V	[kN]	1,57	1,71
Displacements	δνο	[mm]	1,31	1,43
Displacements	δν∞	[mm]	1,96	2,14

WÜRTH Frame Anchor IFR	
Performances Displacements in solid masonry	Annex C 6

Table 36: Displacements under tension load in hollow masonry - type "C"

Parameter / Size	IFR Ø 10		
Service tension load in hollow masonry	N	[kN]	0,09
Displacements	δηο	[mm]	0,12
Displacements	δ _{N∞}	[mm]	0,24

Table 37: Displacements under tension load in hollow masonry – type "D"

Parameter / Size	IFR Ø 8		
Service tension load in hollow masonry	N	[kN]	0,09
Displacements	δηο	[mm]	0,03
Dishiacements	δ _{N∞}	[mm]	0,06

Table 38: Displacements under tension load in hollow masonry - type "G"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load in hollow masonry	N	[kN]	0,26	0,26
Displacements	δ _{N0} [[mm]	0,01	0,01
Displacements	$\delta_{\text{N}\infty}$	[mm]	0,02	0,02

Table 39: Displacements under tension load in hollow masonry - type "H"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load in hollow masonry	N	[kN]	0,26	0,26
Displacements	δ _{N0} [mr	[mm]	0,01	0,01
Displacements	$\delta_{\text{N}\infty}$	[mm]	0,02	0,02

WÜRTH Frame Anchor IFR	
Performances Displacements in hollow masonry	Annex C 7

Table 40: Displacements under tension load in hollow masonry - type "I"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load in hollow masonry	N [kN]		1,43	1,57
Displacements	δ _{N0} [mm	[mm]	0,11	0,08
Displacements	δ_{N^∞}	[mm]	0,21	0,17

Table 41: Displacements under shear load in hollow masonry type "C" and "D"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service shear load in hollow masonry	V	[kN]	3,2	4,4
Displacements	δ _{v0} [r	[mm]	6,40	8,80
Displacements	δν∞	[mm]	9,60	13,20

Table 42: Displacements under shear load in hollow masonry type "G" and "H"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service shear load in hollow masonry	V	[kN]	0,26	0,26
Displacements	δνο	[mm]	0,21	0,21
	δν∞	[mm]	0,32	0,32

Table 43 : Displacements under shear load in hollow masonry type "I"

Parameter / Size			IFR Ø 8	IFR Ø 10
Service shear load in hollow masonry	V	[kN]	1,43	1,57
Displacements	δ_{V0}	[mm]	1,19	1,31
	δν∞	[mm]	1,79	1,96

WÜRTH Frame Anchor IFR	
Performances	Annex C 8
Displacements in hollow masonry	

Table 44: Characteristic resistance in autoclaved aerated concrete (use category "d")

Base material	Drill method	Bulk density class ρ	Minimum compressive strength f _b	IFR Ø 8 F _{Rk}	IFR Ø 10 F _{Rk}
description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
Non-cracked aerated					
autoclaved concrete (AAC Blocks)	Rotary only	0,5	3,5	0,5	0,6
EN 771-4: 2011					

Table 45: Displacements under tension load in autoclaved aerated concrete

Parameter / Size			IFR Ø 8	IFR Ø 10
Service tension load	N	[kN]	0,18	0,21
Displacements	δηο	[mm]	0,01	0,01
	$\delta_{\text{N}\infty}$	[mm]	0,02	0,02

Table 46: Displacements under shear load in autoclaved aerated concrete

Parameter / Size			IFR Ø 8	IFR Ø 10
Service shear load	V	[kN]	0,18	0,21
Displacements	δ_{vo}	[mm]	0,36	0,43
	$\delta_{v^{\infty}}$	[mm]	0,54	0,64

WÜRTH Frame Anchor IFR	
Performances Characteristic resistance and displacements for use in autoclaved aerated concrete	Annex C 9