

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0475 of 24 July 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Connector HCC-K with Injectionmortar HIT-HY 200-R V3 and HIT-RE 500 V3

Connector for Strengthening of existing concrete structures by concrete overlay

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

19 pages including 3 annexes which form an integral part of this assessment

EAD 332347-00-0601, Edition 12/2019

European Technical Assessment ETA-20/0475

Page 2 of 19 | 24 July 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0475

Page 3 of 19 | 24 July 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Connector Hilti HCC-K is a headed fastener made of steel anchored with the Injectionmortar Hilti HIT-HY 200-R V3 or Hilti HIT-RE 500 V3 into a predrilled cylindrical drill hole in existing concrete. The Hilti HCC-K is connecting two layers of concrete cast at different times (existing concrete and concrete overlay). The side with the anchor head of Hilti HCC-K is finally embedded in the concrete overlay.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Existing concrete:	
- resistances	See Annex C 1 and C 2
- edge distance and spacing	See Annex B 2
Concrete overlay:	
- resistances	See Annex C 3
- edge distance and spacing	See Annex B 2
Shear interface parameter under static and quasi-static and fatigue cyclic loading	
- material and geometric parameters	See Annex C 3
- factor for fatigue cyclic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332347-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-20/0475 English translation prepared by DIBt

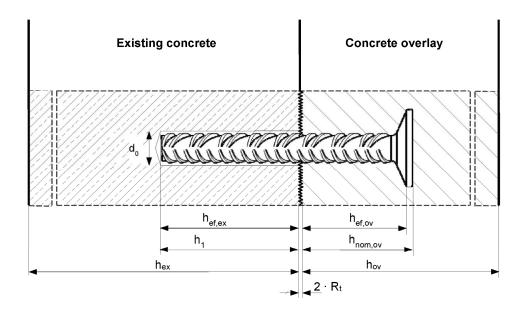
Page 4 of 19 | 24 July 2020

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 24 July 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Tempel

Installed condition

Figure A1:

Connector Hilti HCC-K

 $h_{\text{ef,ex}}$ Effective embedment depth in existing concrete

h₁ Drill hole depth

hex Thickness of existing concrete

Rt Roughness according to EOTA Technical

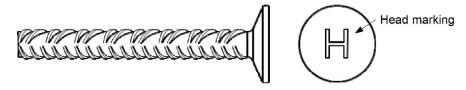
Report TR 066:2018-11

 $\begin{array}{ll} h_{\text{ef,ov}} & \text{Effective embedment depth in concrete overlay} \\ h_{\text{nom,ov}} & \text{Overall embedment depth in the concrete} \end{array}$

overlay

h_{ov} Thickness of concrete overlay

Connector Hilti HCC-K


Product description
Installed condition

Annex A1

Product description: Connector and injection mortar

Steel element Hilti HCC-K, sizes 10, 12, 14, 16

Injection mortar Hilti HIT-HY 200-R V3: epoxy resin system with aggregate 330 ml and 500 ml

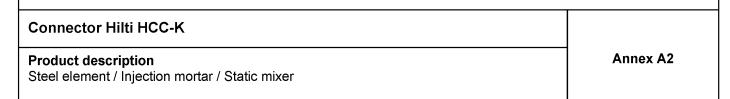
Product name: "Hilti HIT-HY 200-R V3"

Injection mortar Hilti HIT-RE 500 V3: epoxy resin system with aggregate

330 ml, 500 ml and 1400 ml

Product name: "Hilti HIT-RE 500 V3"

Static mixer Hilti HIT-RE-M



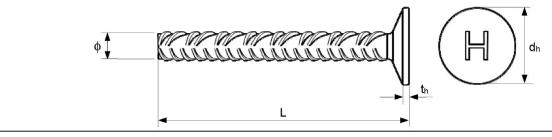


Table A1: Materials

Designation	Material
нсс-к	Reinforcing bar B500B according EN 1992-1-1:2004 and AC:2010, Annex C Strength: $f_{uk} \ge 550 \text{ N/mm}^2$, $f_{yk} \ge 500 \text{ N/mm}^2$ Strain at maximum force $\epsilon_{uk} \ge 5\%$

Table A1: Specification

Connector Hilti HCC-K			10	12	14	16
Rebar diameter	ф	[mm]	10	12	14	16
Stressed section	As	[mm ²]	78,5	113	154	201
Overall length	L	[mm]	100 to 650	140 to 650	200 to 650	230 to 650
Diameter of the head	dh	[mm]	30	36	42	48
Height of the head	th	[mm]	2	2	2	2

Connector Hilti HCC-K

Product description
Materials / Specification

Annex A3

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- static or quasi static actions
 - surface roughness "very smooth" to "very rough" of the shear interface according to EOTA Technical Report TR 066:2018-11

Base materials:

Connector for use to strengthen existing concrete by concrete overlay. Both concrete layers are made of compacted reinforced or unreinforced normal weight concrete without fibres with strength classes in the range C20/25 to C50/60 all in accordance with EN 206:2013; cracked and uncracked concrete; dry or wet concrete condition or water filled drill hole (with HIT-RE 500 V3 only) in existing concrete

Temperature in the base material (existing concrete):

For use with HIT-HY 200-R V3

- at installation:
 - -10 °C to +40 °C for the standard variation of temperatures after installation
- in-service:

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

For use with HIT-RE 500 V3

at installation:

-5 °C to +40 °C for the standard variation of temperatures after installation

in-service:

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +70 °C

(max. long term temperature +43 °C and max. short term temperature +70 °C)

Design:

- The design of an anchorage and the specification of the fastener is under the control of an engineer experienced in anchorages and concrete work
- Post-installed shear connections are designed in accordance with EOTA Technical Report TR 066:2018-11
- For the concrete overlay following requirements on the mixture apply:
 - Concrete compressive strength of the new concrete shall be higher than the concrete compressive strength of the existing concrete
 - Use of concrete with low shrinkage is recommended
 - Slump of fresh concrete f ≥ 380 mm, a slump value f ≥ 450 mm is recommended, if applicable

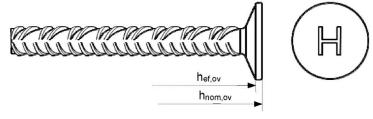
Installation:

- The fastener installation is executed by trained personnel, ensuring that the Installation instruction and the specifications by the engineer are observed
- Installation direction in existing concrete is downward and horizontal and upwards (e.g. overhead) installation (D3)
- The requirements for construction works given in EOTA Technical Report TR 066:2018-11 have to be considered.

Connector Hilti HCC-K	
Intended Use Specifications	Annex B1

Z53940.20 8.06.01-49/20

Electronic copy of the ETA by DIBt: ETA-20/0475


Table B2: Installation parameters of connector Hilti HCC-K in existing concrete

Connector Hilti HCC-K			10	12	14	16
Effective embedment depth	h _{ef,ex}	60	70	75	80	
and drill hole depth	= h ₁	[mm]	200	240	280	320
Naminal diameter of drill hit	d₀	f	12 ¹⁾	14 ¹⁾	20	0.5
Nominal diameter of drill bit		[mm]	14 ¹⁾	16 ¹⁾	20	25
Minimum thickness of existing concrete	$h_{min,ex}$	[mm]	max (100; h _{ef} + 30, h _{ef} + 2 · d ₀)			d ₀)
Minimum spacing	S _{min,ex}	[mm]	50	60	70	80
Minimum edge distance	C _{min,ex}	[mm]	45	45	50	50

¹⁾ Each of the two given values can be used.

Table B3: Installation parameters of connector Hilti HCC-K in concrete overlay

Connector Hilti HCC-K				10	12	14	16
Effective embedment depth	min	h.	[mm]	40	40	40	40
Effective embedment depth	max	— n _{ef,ov}		$L - h_{\text{nom,ex}} - t_{\text{h}} - 2 \cdot R_{\text{t}}^{1)}$			
Overall embedment depth h _{nom,ov} [mm			[mm]	$h_{ef,ov} + t_h$			
Minimum thickness of concrete	overlay	$h_{\text{min,ov}}$	[mm]	nm] h _{nom,ov} + c _{nom} ²⁾			
Minimum spacing S _{min,ov}		[mm]	60	75	85	100	
Minimum edge distance c _{min,ov}		[mm]	15 + c _{nom²⁾}	20 + c _{nom} ²⁾	25 + c _{nom} ²⁾	25 + C _{nom} ²⁾	

[&]quot;) "Rt" Roughness according to EOTA Technical Report TR 066:2018-11

Connector Hilti HCC-K	
Intended Use Installation parameters	Annex B2

²⁾ "c_{nom}" Minimum concrete cover according EN 1992-1-1:2004 + AC:2010.

Table B4: Maximum working time and minimum curing time for Hilti HIT-HY 200-R V3 ¹⁾

Temperature in the	base material T	Maximum working time twork	Minimum curing time t _{cure}
-10 °C to	-5 °C	3 hours	20 hours
> -5 °C to	0 °C	1,5 hours	8 hours
> 0 °C to	5 °C	45 min	4 hours
> 5 °C to	10 °C	30 min	2,5 hours
> 10 °C to	20 °C	15 min	1,5 hours
> 20 °C to	30 °C	9 min	1 hour
> 30 °C to	40 °C	6 min	1 hour

 $^{^{1)}}$ The minimum temperature of the foil pack is 0° C.

Table B5: Maximum working time and minimum curing time for Hilti HIT-RE 500 V3 1)2)

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
-5 °C to -1 °C	2 hours	168 hours
0 °C to 4 °C	2 hours	48 hours
5°C to 9°C	2 hours	24 hours
10 °C to 14 °C	1,5 hours	16 hours
15 °C to 19 °C	1 hours	16 hours
20 °C to 24 °C	30 min	7 hours
25 °C to 29 °C	20 min	6 hours
30 °C to 34 °C	15 min	5 hours
35 °C to 39 °C	12 min	4,5 hours
40 °C	10 min	4 hours

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Connector Hilti HCC-K	
Intended Use Maximum working time and minimum curing time	Annex B3

²⁾ The minimum temperature of the foil pack is +5° C.

Table B6: Overview of installation options

Concrete	Drilling		Cleaning	нсс-к	with
condition	Drilling		Cleaning	HIT-HY 200-R V3	HIT-RE 500 V3
	Hammer drilling with hollow drill bit TE-CD or TE-YD		none	✓	✓
	Hammar drilling		Manual cleaning	✓	-
Dry / wet	Hammer drilling		Compressed air cleaning	✓	✓
	Diamond drilling with roughening tool TE-YRT		Cleaning of diamond cored holes with roughening	✓	✓
	Diamond drilling	€ • >	Cleaning of diamond drilled holes	-	✓
Waterfilled drill-hole	Hammer drilling	CCCCC	Cleaning for water filled drill-holes	-	✓

Table B7: Parameters of cleaning and setting tools

Elements		Drill and clean							
HCC-K	Hamme	er drilling	Diamo	nd coring	Brush	Piston plug			
1100-10		Hollow drill bit		Roughening tool	Brusii	r istori piug			
************			₹ → ←						
size	d ₀ [mm]	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ			
10	12	12 ¹⁾	12 -		12	12			
10	14	14 ¹⁾	14	-	14	14			
12	14	14 ¹⁾	14	-	14	14			
12	16	16	16	-	16	16			
14	18	18	18	18	18	18			
16	20	20	20	20	20	20			

¹⁾ To be used in combination with Hilti vacuum cleaner with suction volume ≥ 61 l/s (VC 20/40 –Y in corded mode only).

Connector Hilti HCC-K	
Intended Use Overview of installation options / Parameters of cleaning and setting tools	Annex B4

Cleaning alternatives

Manual Cleaning (MC) for use with HIT-HY 200-R V3 only: Hilti hand pump for blowing out drill holes with diameters d₀ ≤ 20 mm and drill hole depths $h_0 \le 10 \cdot d$.

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

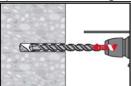
Table B8: Parameters for use of the Hilti Roughening tool TE-YRT

Associated components							
Diamo	ond coring	Roughening tool TE-YRT	Wear gauge RTG				
€	•						
de	[mm]	d₀ [mm]	oizo				
nominal	nominal measured		size				
18 17,9 to 18,2		18	18				
20 19,9 to 20,2		20	20				

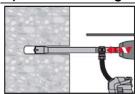
Table B9: Installation parameters for use of the Hilti Roughening tool TE-YRT

	Roughening time t _{roughen}	Minimum blowing time t _{blowing}
h _{ef,ex} [mm]	$t_{roughen}$ [sec] = $h_{ef,ex}$ [mm] / 10	$t_{blowing}$ [sec] = $t_{roughen}$ [sec] + 20
0 to 100	10	30
101 to 200	20	40
201 to 300	30	50
301 to 400	40	60

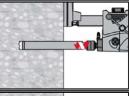
Hilti roughening tool TE-YRT and wear gauge RTG


Connector Hilti HCC-K	
Intended Use Cleaning alternatives / Parameters for use of roughening tool	Annex B5

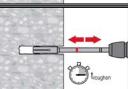
Installation instruction


Hole drilling

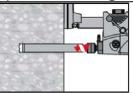
a) Hammer drilling


Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

b) Hammer drilling with Hilti hollow drill bit


Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit attached to Hilti vacuum cleaner VC 20/40 (-Y) (suction volume ≥ 57 l/s) with automatic cleaning of the filter activated. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. When using TE-CD size 12 and 14 refer to Table B7. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

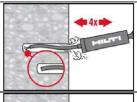
c) Diamond coring with roughening with Hilti roughening tool TE-YRT:


Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

For the use in combination with Hilti roughening tool TE-YRT see parameters in Table B8 and Table B9.

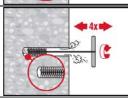
Before roughening water needs to be removed from the drill hole. Check usability of the roughening tool with the wear gauge RTG. Roughen the drill hole over the whole length to the required hef,ex.

d) Diamond coring: For dry and wet concrete only, for use with HIT-RE 500 V3 only


Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

Drill hole cleaning

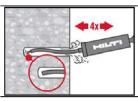
Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.


Manual Cleaning (MC), for use with HIT-HY 200-R V3 only

Uncracked concrete only. For drill hole diameters d₀ ≤ 20 mm and drill hole depths h₀ ≤ 10·d.

The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

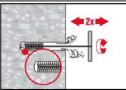

Brush 4 times with the specified brush (see Table B7) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Connector Hilti HCC-K

Intended Use

Installation instructions

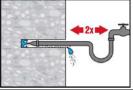
Annex B6



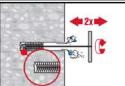
Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

Compressed air cleaning (CAC) for all drill hole diameters d₀ and all drill hole depths h₀

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.



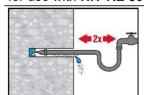
Brush 2 times with the specified brush (see Table B7) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole } \emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.



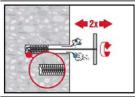
Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Cleaning of diamond cored holes with roughening with Hilti roughening tool TE-YRT.

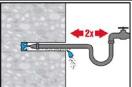
Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.



Brush 2 times with the specified brush (see Table B7) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole } \emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.

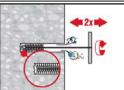

Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water. Remove all water from the drill hole until drill hole is completely dried before mortar injection.

Cleaning of hammer drilled water-filled drill holes and diamond cored holes, for use with HIT-RE 500 V3 only. For all drill hole diameters d₀ and all drill hole depths h₀.


Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

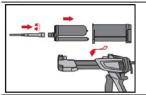
Intended Use Annex B7 Installation instructions

Brush 2 times with the specified brush (see Table B7) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.


The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

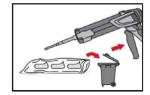
Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water.


Brush 2 times with the specified brush size (brush $\emptyset \ge$ drill hole \emptyset , see Table B7 by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole – if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.

Injection preparation



Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

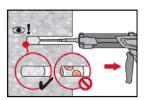
The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack, an initial amount of adhesive has to be discarded. Discarded quantities are

Electronic copy of the ETA by DIBt: ETA-20/0475

- for use with HIT-HY 200-R V3: 2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack,

4 strokes for 500 ml foil pack ≤ 5 °C. The minimum foil pack temperature is 0° C.

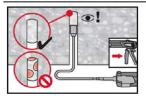
- for use with HIT-RE 500 V3:


3 strokes for 330 ml foil pack, 4 strokes for 500 ml foil pack, 65 ml for 1400 ml foil pack

The minimum foil pack temperature is +5° C.

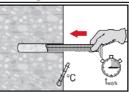
Connector Hilti HCC-K Intended Use Installation instructions Annex B8

Inject adhesive from the back of the drill hole without forming air voids.

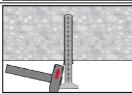

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length.

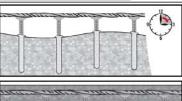
In water saturated concrete it is required to set the fastener immediately after cleaning the drill hole.



After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.



Overhead installation and/or installation with embedment depth $h_{ef,ex} > 250$ mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B7). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.


Setting the element

Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth before working time t_{work} has elapsed. The working time t_{work} is given in Table B4 and Table B5.

For overhead installation use piston plugs and fix embedded parts with e.g. wedges (Hilti HIT-OHW).

Observe the curing time t_{cure} , which varies according to temperature of base material (see Table B4). After t_{cure} has elapsed the concrete overlay can be concreted.

Observe the required condition of the surface before concreting and the use of the correct concrete composition.

For requirements on concrete composition see EOTA TR 066:2018-11.

Connector Hilti HCC-K	
Intended Use Installation instructions	Annex B9

Table C1:	Essential characteristics of connector Hilti HCC-K in existing concrete
	under static or quasi-static tension load

Connector Hilti HCC-K			10	12	14	16
Steel failure				<u>-</u>		-
Characteristic resistance	N _{Rk,s,ex}	[kN]	43	62	85	111
Partial safety factor	γMs,N,ex	[-]	1,4	1,4	1,4	1,4
Concrete cone failure						_
Factor for cracked concrete	k _{cr,N,ex}	[-]		7,	7	
Factor for uncracked concrete	$k_{ucr,N,ex}$	[-]		11	,0	
Edge distance	C _{cr,N,ex}	[mm]		1,5 ·	h _{ef,ex}	
Spacing	S _{cr,N,ex}	[mm]		3,0 ·	h _{ef,ex}	
Splitting failure						
Edge distance		/ h _{ef,ex} ≥ 2,0	1,0 · h _{ef,ex}	2,0		
C _{cr,sp,ex} [mm] for	-	/ h _{ef,ex} > 1,3 / h _{ef,ex} ≤ 1,3	4,6 · h _{ef,ex} - 1 2,26 · h _{ef,e}		1,0 h _{ef} 2,2	6 h _{ef} C _{cr,sp}
Spacing	S _{cr,sp,ex}	[mm]	—,—	2,0 · c	,	6 h _{ef} C _{cr,sp}
Installation factor for HCC-K with HIT-F	-			2,0	-cr,sp,ex	
Hammer drilling and Hammer drilling with hollow drill bit TE-CD or TE-YD		[-]	1,0			
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	1)			1,0
Combined pullout and concrete cone fa	ailure for	HCC-K with	h HIT-HY 20	0-R V3		
Characteristic bond resistance in cracked	concrete	C20/25				
Temperature range I: 40 °C / 24 °C	$ au_{Rk,cr}$	[N/mm ²]	5,0 7,0			
Temperature range II: 80 °C / 50 °C	$ au_{Rk,cr}$	[N/mm ²]	4,0		5,5	
Temperature range III: 120 °C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	3,5		5,0	
Characteristic bond resistance in uncrack	ed concre	te C20/25				
Temperature range I: 40 °C / 24 °C	$ au_{Rk,ucr}$	[N/mm ²]	12			
Temperature range II: 80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm ²]	10			
Temperature range III: 120 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	8,5			
Influence factors ψ on bond resistance	TRK					
		C30/37	1,04			
Cracked and uncracked concrete: Factor for concrete strength	$\psi_{\text{c,ex}}$	C40/50	1,07			
		C50/60	1,10			
Crashad and unaresked congretor	4	0 °C/24 °C		0,	74	
Cracked and uncracked concrete: Sustained load factor Ψ	r ⁰ sus 80	0 °C/50 °C	0,89			
Oustained load factor	12	0 °C/72 °C		0,	72	

Connector Hilti HCC-K	
Performances Essential characteristics under tension load in existing concrete	Annex C1

English translation prepared by DIBt

Connector H	ilti HCC-K			10	12	14	16
Installation fa	actor for HCC-K with HIT-R	E 500 V	3				
Hammer drillir TE-CD or TE-	ng with hollow drill bit YD	γinst	[-]	1)		1,0	
Hammer drillir	ng	γ inst	[-]		1,	0	
Diamond corir roughening to	ng with roughening with Hilti ol TE-YRT	γinst	[-]	1)		1,0	
Diamond corir	ng	γinst	[-]		1,2		1,4
Hammer drillir	ng in water-filled drill holes	γinst	[-]		1,	4	
Combined pu	illout and concrete cone fa	ilure HC	CC-K with HIT	-RE 500 V	3		
and diamond c	led holes and hammer drilled cored holes with roughening v	vith Hilti	roughening to	ol TE-YRT	- I	0.5	10
Temperature		τ _{Rk,cr}	[N/mm ²]	8,5	9,5	9,5	10
	range II: 70 °C / 43 °C bond resistance in uncracke	τ Rk,cr	[N/mm ²]	7	7,5	7,5	7,5
•	range II: 70 °C / 43 °C	τ _{Rk,ucr}	[N/mm ²]		15	<u>, </u>	
	bond resistance in uncracke	ed concre	1	diamond c			
Temperature		τ _{Rk,ucr}	[N/mm²]	9,0 6,5			
Temperature		τ _{Rk,ucr}	[N/mm ²]		6,	5	
	bond resistance in uncracked led holes and installation in was						
Temperature i		τ _{Rk,ucr}	[N/mm ²]		12	2,0	
Temperature	range II: 70 °C / 43 °C	τ _{Rk,ucr}	[N/mm ²]		9,	•	
Influence fac	tors ψ on bond resistance	TRk	- [·		
Influence of co	oncrete strength						
	in hammer drilled holes and		C30/37		1,0	04	
Factor for	hammer drilled holes with Hilti hollow drill bit TE-CD or TE-	ψ с,ех	C40/50		1,0	07	
concrete	YD and diamond cored holes		C50/60	1,10			
compressive strength	in diamond cored holes with roughening with Hilti roughening tool TE-YRT	ψ с,ех	C30/37 C40/50		1,	0	
Influence -f			C50/60				
Influence of si	ustained load		40°C / 24°C		0,8	38	
	(o	40 0 / 24 0				
Factor for con	crete compressive strength	ψ^0 sus $-$	70°C / 43°C		0,	70	

¹⁾ no performance assessed

Connector Hilti HCC-K	
Performances Essential characteristics under tension load in existing concrete	Annex C2

Table C2: Essential characteristics of connector Hilti HCC-K in concrete overlay under static or quasi-static tension load

Connector Hilti HCC-K					12	14	16
Steel failure			•			•	
Characteristic resistance	Characteristic resistance		[kN]	43	62	85	111
Partial safety factor	$\gamma_{\text{Ms,N,ov}}$	[-]	1,4	1,4	1,4	1,4	
Pullout failure for anchor heads							
Projected area of the head		A_h	[mm²]	628	905	1232	1608
Height of the head		t h	[mm]			2	
Concrete cone failure							
Effective embedment depth	min	h _{ef,ov}	[mm]	40			
Ellective embedillent deptil	max			$L-h_{nom,ex}-t_h-2\cdot R_t^{\ 1)}$			
Factor for cracked concrete		k _{cr,N,ov}	[-]	8,9			
Factor for uncracked concrete		$k_{\text{ucr},N,ov}$	[-]	12,7			
Edge distance		Ccr,N,ov	[mm]	1,5 · h _{ef,ov}			
Spacing		S _{cr,N,ov}	[mm]		3,0 ·	$h_{\text{ef,ov}}$	
Splitting failure							
Edge distance		C _{cr,sp,ov}	[mm]	3,0 · h _{ef,ov}			
Spacing		Scr,sp,ov	[mm]	6,0 · h _{ef,ov}			
Blow-out failure							
Projected area of the head		A_h	[mm²]	628	905	1232	1608
Factor for cracked concrete k ₅			[-]	8,7			
Factor for uncracked concrete k ₅			[-]	12,2			

¹⁾ "R_t" Roughness according to EOTA Technical Report TR 066:2018-11

Table C3: Essential characteristics for connector Hilti HCC-K for the shear interface under static, quasi-static loading

Connector Hilti HCC-K			10	12	14	16
Characteristic yield strength	f _{yk}	[N/mm ²]	500	500	500	500
Product specific factor for ductility	Ck1	[-]	1,0	1,0	1,0	1,0
Stressed cross section	As	[mm²]	78,5	113	154	201
Product specific factor for geometry	Ok2	[-]	1,0	1,0	1,0	1,0

Connector Hilti HCC-K	
Performances Essential characteristics under tension load in concrete overlay Essential characteristics for the shear interface	Annex C3