

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0626 of 9 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Akalm bonded anchor AIT-VPK-SF

Bonded fastener for use in concrete

Akalm (Shandong) Building Technology Co., Ltd.
No. 3 Shencheng Road, Economic Development-Zone,
Sishui Country
Jining City
SHANDONG
VOLKSREPUBLIK CHINA

Plant (Shandong)

11 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 4/2020

European Technical Assessment ETA-20/0626

Page 2 of 11 | 9 November 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0626

Page 3 of 11 | 9 November 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Akalm bonded anchor AIT-VPK-SF is a bonded anchor consisting of a mortar capsule and a steel element according to Annex A.

The steel element is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements under short-term and long-term loading	See Annex C 2
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

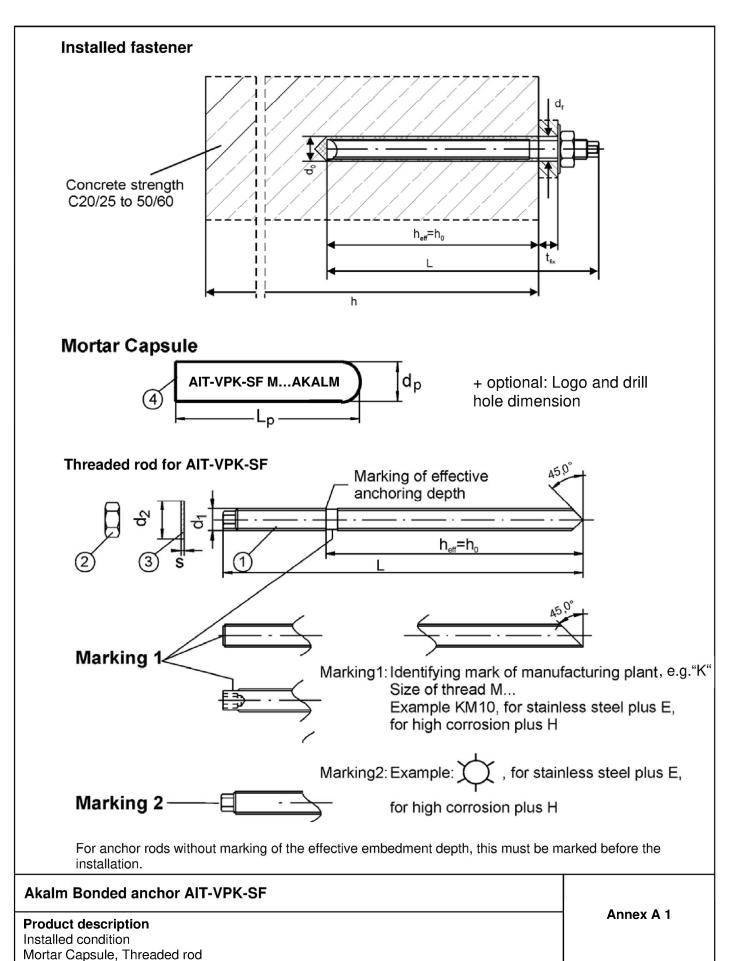
European Technical Assessment ETA-20/0626

Page 4 of 11 | 9 November 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].


The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 November 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Electronic copy of the ETA by DIBt: ETA-20/0626

Table A1: Dimensions

Anchor size			М8	M10	M12	M16	M20	M24
	Ø d ₁	[mm]	M8	M10	M12	M16	M20	M24
Threaded rod	L≥	[mm]	90	100	120	140	190	235
	h _{ef}	[mm]	80	90	110	125	170	210
Mortor Copoulo	d₂	[mm]	9	10,5	12,5	16,5	23	23
Mortar Capsule	Lp	[mm]	80	85	95	95	160	190

Table A2: Materials

		Material					
Part	Designation	Steel, zinc plated ≥ 5 µm	Steel, hot-dip galvanized ≥ 40 µm				
	acc. to EN ISO 4042:2018		acc. to EN ISO 1461:2009				
1	Threaded rod	Steel EN 10087:2019, EN 10263:2017					
	Threaded rod	Property class 5.8, acc. to EN ISO	898-1:2013				
2	Hexagon nut	Steel					
	EN ISO 4032:2012	Property class 8, acc. to EN ISO 89	98-2:2012				
3	Washer						
	EN ISO 7089:2000	Steel, galvanized	Steel, hot-dip galvanized				
	EN ISO 7093:2000		Stool, not dip garvanized				
	EN ISO 7094:2000						
Part	Designation	Material					
	Doorgination	Stainless steel A4	High corrosion resistant steel (HCR)				
1		Material 1.4401, 1.4404, 1.4571,	Material 1.4529, 1.4565,				
	Threaded rod	1.4578, EN 10088:2014,	EN 10088:2014,				
	1111000000100	Property class 70,	Property class 70,				
		EN ISO 3506-1:2009	EN ISO 3506-1:2009				
2	Hexagon nut	Material, 1.4401, 1.4404, 1.4571,	Material 1.4529, 1.4565,				
	EN ISO 4032:2012	EN 10088-1:2014,	EN 10088-1:2014,				
		Property class 70,	Property class 70,				
		EN ISO 3506-2:2009	EN ISO 3506-2:2009				
3	Washer	Material, 1.4401, 1.4404, 1.4571,	Material 1.4529, 1.4565,				
	EN ISO 7089:2000	EN 10088-1:2014	EN 10088-1:2014				
	EN ISO 7093:2000						
	EN ISO 7094:2000						
Part	Designation	Material					
4	Mortar capsule	Glass, Quartz, Resin, Hardener					

Akalm Bonded anchor AIT-VPK-SF	
Product description	Annex A 2
Dimensions and Materials	

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- · Non-cracked concrete.

Temperature Range:

• -40°C to 80°C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A4 according to Annex A 2, Table A2: CRC III
 - High corrosion resistance steel HCR according to Annex A 2, Table A2: CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry or wet concrete: all sizes.
- Flooded holes (not sea water): M12 to M24.
- Hole drilling by hammer drilling.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The mortar capsule is placed into the drilled hole; connecting the anchor rod with the percussion drill
 by using a corresponding adapter; driving the anchor rod into the mortar capsule by simultaneous
 hammering and turning of the drill; if the anchorage depth is achieved the drill must stopped
 immediately by using some pressure; if the anchor is proper installed mortar must be visible at the
 member surface

Akalm Bonded anchor AIT-VPK-SF	A D. 4
Intended Use Specifications	Annex B 1

Table B1: Installation parameters

Fastener size		M8	M10	M12	M16	M20	M24	
Nominal diameter of drill hole	d ₀	[mm]	10	12	14	18	25	28
Max. cutting diameter of drill hole	d _{cut}	[mm]	10,45	12,45	14,5	18,5	25,5	28,5
Depth of drill hole	h ₀	[mm]	80	90	110	125	170	210
Effective embedment depth	h _{eff}	[mm]	80	90	110	125	170	210
Diameter of clearance hole in fixture	df≤	[mm]	9	12	14	18	22	26
Max. torque moment	max. T _{inst}	[Nm]	10	20	40	60	120	150
Minimum member thickness	h _{min}	[mm]	110	120	150	160	220	300
Minimum edge distance	Cmin	[mm]	60	70	85	95	130	160
Minimum spacing	Smin	[mm]	60	70	85	95	130	160

Cleaning Tools

Steel Brush DBK

Fastener Size				M10	M12	M16	M20	M24
Diameter of steel brush	d	[mm]	12	14	16	20	27	30

Blow Pump ABK (Standard Cleaning)

Compressed Air (Premium Cleaning)

Oilfree compressed air with a pressure ≥ 6 bar

Table B2: Minimum curing time

Temperature in the	Minimum curing time	Minimum curing time
anchorage base	in dry concrete [min]	in wet concrete [min]
0°C to 5°C	180	360
5°C to 10°C	90	180
10°C to 20°C	40	80
> 20°C	20	40

Akalm Bonded anchor AIT-VPK-SF Intended Use Installation parameters, Cleaning and Setting Tools, Minimum curing time Annex B 2

Installation instructions

Standard Cleaning

- Drill the hole. Blow out the dust with the blow pump ABK twice.

- Brush the drill hole twice with the steel brush DBK, again blow out the dust with the blow pump ABK twice.

 Check the capsule before using. The capsule can be used if it is undamaged and the resin is vicious. Insert the capsule into the drill hole.

 Drive the anchor stud into the drill hole with the help of a percussion drill. Notice the curing times. In case of a wet base material the curing time has to be doubled.

Considering the curing times the nut can be tightened.
 Respect the torque moment.

Premium Cleaning

Drill the hole.
 Blow out the dust with compressed air (>6 bar) twice.

- Brush the drill hole twice with the steel brush RB again blow out the dust with compressed air (>o par) twice.

 Check the capsule before using. The capsule can be used if it is undamaged and the resin is vicious. Insert the capsule into the drill hole.

 Drive the anchor stud into the drill hole with the help of a percussion drill. Notice the curing times. In case of a wet base material the curing time has to be doubled.

Considering the curing times the nut can be tightened.
 Respect the torque moment.

For all installations the max setting time of 10 seconds should not be exceeded.

Akalm Bonded anchor AIT-VPK-SF Intended Use Installation instructions Annex B 3

Table C1: Characteristic values of resistance under tension loads

Fastener size	Fastener size						M20	M24
Steel failure								
Characteristic resistance, Steel property class 5.8	N _{Rk,s}	[kN]	17	26	38	72	114	165
Partial factor	γMs,N	[-]				1,56		
Characteristic resistance, Stainless steel (class 70)	N _{Rk,s}	[kN]	23	34	52	97	153	222
Partial factor	γMs,N	[-]				1,87		
Combined pull-out and concrete	cone fa	ailure						
Installation factor for dry and wet concrete	γinst	[-]				1,2		
Installation factor for flooded holes	γinst	[-]	-	_1)			1,2	
Characteristic bond resistance in uncracked concrete, max. temperature 50/80°C Standard Cleaning	TRk,ucr	[N/mm²]	4,5	4,0	4,0	4,0	3,5	3,5
Characteristic bond resistance in uncracked concrete max. temperature 50/80°C Premium Cleaning	₹Rk,ucr	[N/mm²]	6,0	5,5	6,0	5,5	5,5	4,5
Characteristic bond resistance in cracked concrete	τ _{Rk,cr}	[N/mm²]		No	perforr	mance a	assesse	ed
Increasing factors w. for	C30/3	7				1,08		
Increasing factors ψc for concrete	C40/5	0				1,15		
Concrete	C50/6	0				1,19		
Reduction Factor	ψ^0 sus	[-]		No	perforr	mance a	assesse	ed
Concrete cone failure								
Factor for uncracked concrete	k ucr	[-]	11,0					
Factor for cracked concrete	k cr	[-]	No performance assessed					
Edge distance	C _{cr,N}	[mm]	1,5*h _{ef}					
Spacing	S _{cr,N}	[mm]	2*C _{cr,N}					
Splitting failure								
Edge distance	C _{cr,Sp}	[mm]	120	135	165	190	255	315
Spacing	S cr,Sp	[mm]	240	270	330	380	510	630

¹⁾ No performance assessd

Table C2: Displacements under tension loads

Fastener size			M8	M10	M12	M16	M20	M24
Displacement	δνο	[mm]	0,1	0,1	0,1	0,2	0,3	0,3
Displacement	δ _{N∞.}	[mm]	1,1	1,1	1,1	2,2	3,3	3,3

Akalm Bonded anchor AIT-VPK-SF	A 0.4
Performances Characteristic values of resistance under tension loads, Displacements under tension loads	Annex C 1

Table C3: Characteristic values of resistance under shear loads

Fastener size			M8	M10	M12	M16	M20	M24
Steel failure without lever arm			•			•	•	
Characteristic resistance, Steel property class 5.8	V^0 _{Rk,s}	[kN]	8	13	19	36	57	83
Partial factor	γMs,V	[-]	1,25					
Characteristic resistance, Stainless steel (class 70)	V^0 Rk,s	[kN]	11	17	26	49	77	111
Partial factor	γMs,V	[-]	1,56					
Ductility factor	k ₇	[-]	1,0					
Steel failure with lever arm								
Characteristic bending moment, Steel property class 5.8	M ⁰ Rk,s	[Nm]	16	30	56	144	285	498
Partial factor	γMs,V	[-]	1,25					
Characteristic bending moment, Steel property class 70	M ⁰ Rk,s	[Nm]	22	41	75	194	384	670
Partial factor	γMs,V	[-]	1,56					
Ductility factor	k ₇	[-]	1,0					
Concrete pry-out failure								
Pry-out factor	k ₈	[-]	2,0					
Concrete edge failure								
Effective length of anchor in shear loading	If	[mm]	80	90	110	125	170	210
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	18	25	28
Installation factor	γinst	[-]	1,0					

Table C4: Displacements under shear loads

Fastener size			M8	M10	M12	M16	M20	M24
Displacement	δνο	[mm]	1,5	1,6	1,8	2,0	2,5	3,0
Displacement	δv∞.	[mm]	2,3	2,4	2,7	3,0	3,8	4,5

Akalm Bonded anchor AIT-VPK-SF	
Performances Characteristic values of resistance under shear loads, Displacements under shear loads	Annex C 2