

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0731 of 13 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

AnkaScrew Xtrem

Mechanical fasteners for use in concrete

Ramset Reid 1 Ramset Drive CHIRNSIDE PARK, VIC 3116 AUSTRALIEN

Plant 1

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

European Technical Assessment ETA-20/0731

Page 2 of 22 | 13 November 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0731

Page 3 of 22 | 13 November 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The concrete screw AnkaScrew Xtrem respectively SPIT TAPCON XTREM is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 4, Annex C 1 and C 2				
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2				
Displacements and Durability	See Annex C 7 and Annex B 1				
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4, C 5 and C 8				

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

European Technical Assessment ETA-20/0731

Page 4 of 22 | 13 November 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

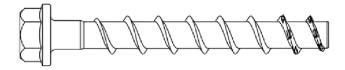
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 November 2020 by Deutsches Institut für Bautechnik

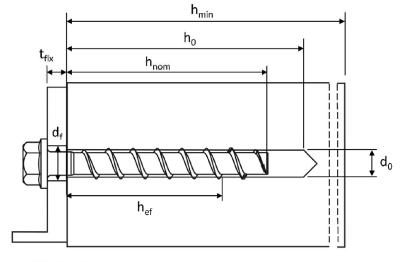
Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Tempel


Product in installed condition

Ramset™ AnkaScrew™ Xtrem™

- Galvanized carbon steel
- Zinc flakes coated carbon steel



- Stainless steel A4
- Stainless steel HCR

e.g. Ramset[™] AnkaScrew[™] Xtrem[™], zinc flakes coated, with hexagon head

and fixture

d₀ = nominal drill hole diameter

 t_{fix} = thickness of fixture

d_f = clearance hole diameter

h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

Ramset™ AnkaScrew™ Xtrem™

Product description

Product in installed condition

Annex A1

Ramset™ AnkaSo Product descri Screw types	Annex A2					
		Configuration with internal thread a hexagon drive e.g. AS06055XMS	nd			
		Configuration with hexagon drive an connection thread e.g. AS06055XHN				
		Configuration with countersunk hea connection thread e.g. AS06055XM8				
	(SM)	Configuration with large pan head and TORX drive e.g. AS08080XLR				
		Configuration with pan head and TO drive e.g. AS08080XR	RX			
	(SA)	Configuration with countersunk hea e.g. AS08080XF	d and TORX drive			
	(S.)	Configuration with hexagon head e.g. AS08080XH				
	Co. 4	Configuration with washer and bundes.g. AS08080XBC	I			
	(25 m)	Configuration with washer, hexagon TORX drive e.g. AS08080XT	head and			
	(15 dg)	Configuration with washer and hexa e.g. AS08080X	gon head			
	0	Configuration with metric connection and hexagon drive e.g. AS08105XM2				
	©	Configuration with metric connection and hexagon socket e.g. AS08105XN				

Table 1: Material

Part	Product name	Material
all	AnkaScrew Xtrem	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5μm)
types	AnkaScrew Xtrem A4	1.4401; 1.4404; 1.4571; 1.4578
	AnkaScrew Xtrem HCR	1.4529

		Nominal char	acteristic steel	Rupture	
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]	
	AnkaScrew Xtrem				
all types	AnkaScrew Xtrem A4	560	700	≤8	
Lypes	AnkaScrew Xtrem HCR				

Table 2: Dimensions

Anchor size			6	5	8			10			12			14		
Nominal embedm	ent	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]		500												
Core diameter	d _K	[mm]	5,	5,1 7,1 9,1 11,1 13,1												
Thread outer diameter	d _s	[mm]	7,	,5		10,6		12,6		14,6			16,6			

Marking:

AnkaScrew Xtrem

Screw type: TSM
Screw size: 10
Screw length: 100

AnkaScrew Xtrem BC ST

screw type: TSM BC ST Screw size: 10 Screw length: 100

AnkaScrew Xtrem A4

Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

AnkaScrew Xtrem HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

Ramset™ AnkaScrew™ Xtrem™

Product description

Material, Dimensions and markings

Z98212.20

Specification of Intended use

Table 3: Anchorages subject to

AnkaScrew Xtrem screw	AnkaScrew Xtrem screw size 6			8			10		12			14			
Nominal embedment depth [n		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static load	ds		All sizes and all embedment depths												
Fire exposure					All	31203	una	un ci	поса	inciic	. аср	.113			
C1 category - seismic		ok	ok				ok								
C2 category – seismic (A4 and HCR: no performa assessed)	ince	,	Κ	,	Κ	ok	х	х	ok	>	(ok	>	(ok

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.

 Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in

Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Ramset [™] AnkaScrew [™] Xtrem [™]	
Intended use	Annex B1
Specification	

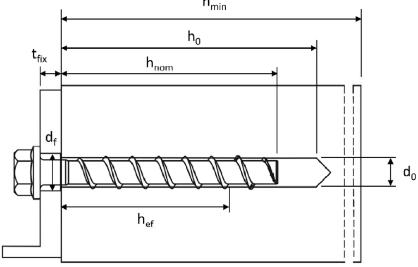
Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
 The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters df of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling; hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar
- Adjustability according to Annex B6 for sizes 8-14, all embedment depths
- Cleaning of borehole is not necessary, if using a hollow drill


Ramset™ AnkaScrew™ Xtrem™

Intended use
Specification continuation

Annex B2

AnkaScrew Xtrem size			$ $ ϵ	5	8			10		
Naminal ambadment denth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85
Nominal drill hole diameter	d ₀	[mm]	ϵ	5		8			10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4	40		8,45			10,45	
Drill hole depth	h₀≥	[mm]	45	60	55	65	75	65	85	95
Clearance hole diameter	d _f ≤	[mm]	8	3		12			14	
Installation torque (version with connection thread)	T _{inst}	[Nm]	10 20						40	
Torque impact screw driver	[Nm]	Max. torque according to r				nanufacturer's instructions 400				
AnkaScrew Xtrem size	AnkaScrew Xtrem size			1	2		14			
Name in all and a short all and b		h _{nom}	h _{nom1}	h _{nor}	_{n2} h _{nom3}		h _{nom1} h		_{n2}	1 _{nom3}
Nominal embedment depth		[mm]	65	85		100	75	100	0	115
Nominal drill hole diameter	d_0	[mm]		1	2			1	.4	
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12	,50			14	,50	
Drill hole depth	h₀≥	[mm]	75	95		110	85	110	0	125
Clearance hole diameter	d _f ≤	[mm]		1	6			1	.8	
Installation torque (version with connection thread)	T _{inst}	[Nm]		6	0			8	0	
Tarqua impact carayy drivar		[NIm]	Max	. torqu	e accord	ding to r	nanufac	turer's	instruct	ions
Torque impact screw driver		[Nm]			50		650			

Ramset™ AnkaScrew™ Xtrem™

Intended use Installation parameters

Annex B3

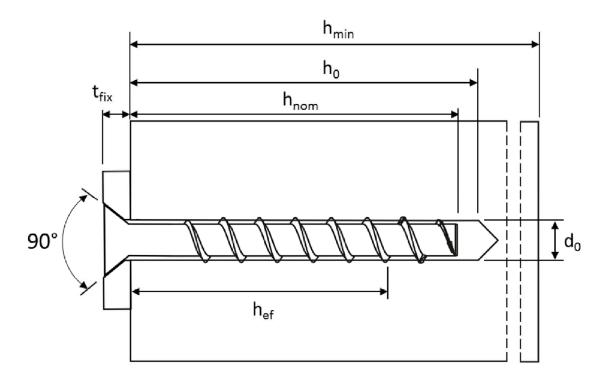
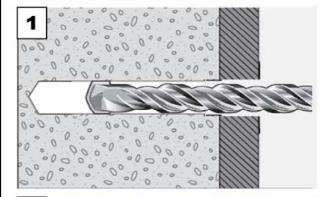
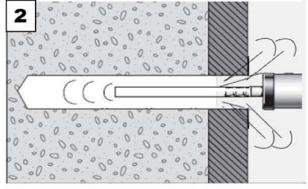

Electronic copy of the ETA by DIBt: ETA-20/0731

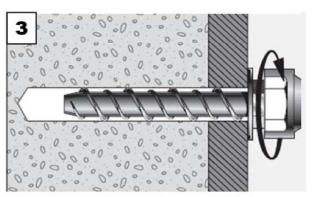
Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

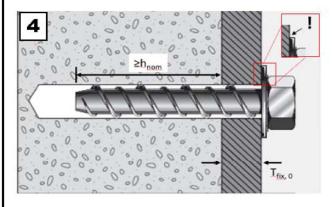

AnkaScrew Xtrem size	kaScrew Xtrem size			5		8		10			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment d	ерш	[mm]	40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]		80							
Minimum edge distance	C _{min}	[mm]	40		40	50			50		
Minimum spacing	S _{min}	[mm]	4	.0	40	5	0		50		

AnkaScrew Xtrem size			12		14				
Nominal embedment d	shadmant danth		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment d	ерш	[mm]	65	85	100	75	100	115	
Minimum thickness of member	h _{min}	[mm]	80	101	120	87	119	138	
Minimum edge distance	C _{min}	[mm]	50		70	50	70		
Minimum spacing	S _{min}	[mm]	50 70 50		50	70			



Ramset™ AnkaScrew™ Xtrem™	
Intended use	Annex B4
Minimum thickness of member, minimum edge distance and minimum spacing	


Installation Instructions


Create hammer drilled or hollow drilled borehole

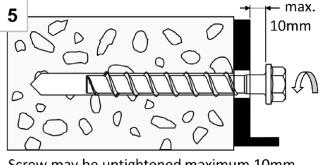
Remove drill dust by vacuuming or blowing of

Install with torque impact screw driver or torque wrench

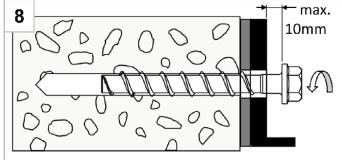
The head must be undamaged and in contact with the fixture

Ramset™ AnkaScrew™ Xtrem™

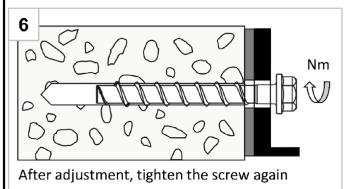
Intended use Installation instructions

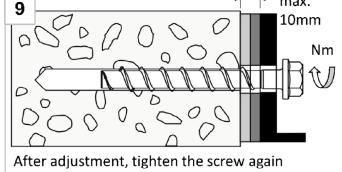

Annex B5

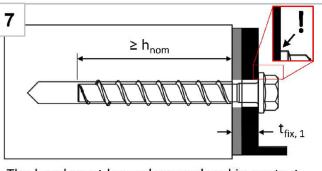
Electronic copy of the ETA by DIBt: ETA-20/0731

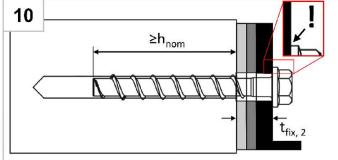

Installation Instructions - Adjustment

1. Adjustment




Screw may be untightened maximum 10mm


2. Adjustment


Screw may be untightened maximum 10mm

The head must be undamaged and in contact with the fixture

The head must be undamaged and in contact with the fixture

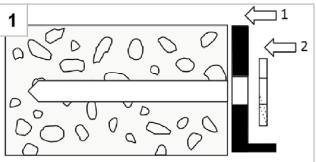
Note:

Electronic copy of the ETA by DIBt: ETA-20/0731

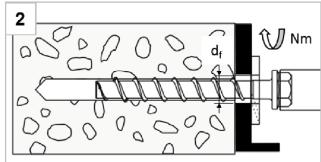
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom}.

Ramset™ AnkaScrew™ Xtrem™

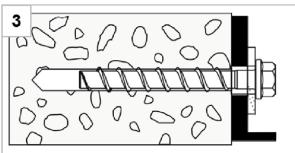
Intended use

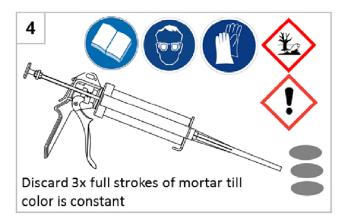

Installation instructions - Adjustment

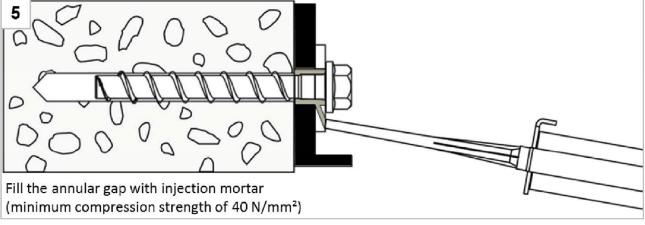
Annex B6



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

Ramset™ AnkaScrew™ Xtrem™

Intended use

Installation instructions - Filling annular gap

Annex B7

Table 6: Cha	racteristic val	ues fo	r static	and q	uasi-st	atic lo	ading,	sizes 6	-10			
AnkaScrew X	<i>(trem</i> size			6	5		8			10		
Naminal amb	edment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Norminal emb	eament depth		[mm]	40	55	45	55	65	55	75	85	
Steel failure	for tension and	shear	loadin	 g								
Characteristic	tension load	$N_{Rk,s}$	[kN]	14	١,0		27,0			45,0		
Partial factor		γ _{Ms,N}	[-]				1,	,5				
Characteristic	shear load	$V^0_{Rk,s}$	[kN]	7,	,0	13	3,5	17,0	22,5	34	١,0	
Partial factor		γ _{Ms,V}	[-]				1,	25				
Ductility factor		k ₇	[-]			ı		,8				
Characteristic	bending load	$M^{0}_{Rk,s}$	[Nm]	10),9		26,0			56,0		
Pull-out failu	re											
Characte- ristic tension	cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾	
load C20/25	uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0	
1	C25/30						1,	12				
Increasing factor for	C30/37	$\Psi_{_{\rm c}}$	[-]					22				
$N_{Rk,p}$	C40/50	, ,						41				
	C50/60							58				
	ure: Splitting fa	ailure, d			I		I		T	ı		
Effective emb	edment depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	
k-factor	cracked	k _{cr}	[-]			7,7						
	uncracked	k _{ucr}	[-]					.,0				
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}				
cone failure	edge distance	C _{cr,N}	[mm]		I	ı	1,5	x h _{ef}		ı		
Splitting	resistance	N ⁰ Rk,sp	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	16,0	19,0	
failure	spacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210	
	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105	
Factor for pry		k ₈	[-]			1	,0			2,	,0	
Installation fa	ctor	γ inst	[-]				1,	,0				
Concrete ed	ge failure											
Effective leng	th in concrete	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68	
	r diameter of	d_{nom}	[mm]		5		8			10		
screw 1) N ⁰ nu accordin	ng to EN 1992-4:20		_			<u> </u>						
,	et™ AnkaScrew		ım TM									
Perfo			quasi-	static lo	oading,	sizes 6	6-10	A	nnex (> 1		

8.06.01-663/20

AnkaScrew 2	Xtre	em size				12			14			
				h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}		
Nominal emb	oedi	ment depth		[mm]	65	85	100	75	100	115		
Steel failure	for	tension and shea	ar loadin	g								
Characteristic			N _{Rk,s}	[kN]		67,0			94,0			
Partial factor			γ _{Ms,N}	[-]			1,	,5				
Characteristic	c sh	ear load	V ⁰ _{Rk,s}	[kN]	33,5	42	2,0		56,0			
Partial factor			γ _{Ms,V}	[-]			1,:	25				
Ductility factor	or		k ₇	[-]			0,	,8				
Characteristic	c be	ending load	M ⁰ _{Rk,s}	[Nm]		113,0			185,0			
Pull-out fail	ure		•	'								
Characteristic	$\overline{}$	cracked	N _{Rk,p}	[kN]	12,0							
tension load C20/25	İ	uncracked	N _{Rk,p}	[kN]	16,0			$\geq N^{0}_{Rk,c}$ 1)				
C20/23		C25/30				l	1,:	12				
Increasing	t	C30/37	1				1,:					
actor for N _{Rk,p} C40/50		Ψ_{c}	[-]			1,						
	C50/60		1				1,!	 58				
Concrete fai	lure	e: Splitting failure	concre	te cone	failure	and nrv	-out failı	ıre				
Effective emb			h _{ef}	[mm]	50	67	80	58	79	92		
	$\overline{}$	racked	k ₁ =k _{cr}	[-]				,7				
k-factor	\vdash	ncracked	k ₁ = k _{ucr}	[-]			11					
Concrete	+	pacing	S _{cr,N}	[mm]				h _{ef}				
cone failure	—	dge distance	C _{cr,N}	[mm]				x h _{ef}				
	+	esistance	N ⁰ _{Rk,sp}	[kN]	12,0	18,5	24,5	15,0	24,0	30,0		
Splitting failure	sp	pacing	S _{cr,Sp}	[mm]	150	210	240	180	240	280		
Tantare	ed	dge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140		
Factor for pry	/-ou	ıt failure	k ₈	[-]	1,0	2,	,0	1,0	2,	.0		
Installation fa	acto	or	γinst	[-]			1,	,0				
Concrete ed	ge	failure										
Effective leng	gth i	in concrete	I _f = h _{ef}	[mm]	50	67	80	58	79	92		
Nominal oute	er d	iameter of screw	d_{nom}	[mm]		12			14			
¹⁾ N ⁰ _{Rk,c} accordi	ing t	to EN 1992-4:2018		•						_		
Ramse	t™	AnkaScrew™ Xtr	em™									

Z98212.20

Table 8: Seismic category C1 –	- Charac	cterist	ic load	l value	S				
AnkaScrew Xtrem size			6	5	8	1	0	12	14
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment depth		[mm]	40	55	65	55	85	100	115
Steel failure for tension and she	ar load								
Characteristic load	$N_{Rk,s,eq}$	[kN]	14	١,0	27,0	45	5,0	67,0	94,0
Partial factor	γMs,eq	[-]				1,5	1		
Characteristic load	$V_{Rk,s,eq}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4
Partial factor	γ _{Ms,eq}	[-]				1,25	5		
With filling of the annular gap ¹⁾	α_{gap}	[-]				1,0	ł		
Without filling of the annular gap	$lpha_{\sf gap}$	[-]				0,5	1		
Pull-out failure									
Characteristic tension load in cracked concrete C20/25	$N_{Rk,p,eq}$	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ _{Rk,c}	2)
Concrete cone failure									
Effective embedment depth	h _{ef}	[mm]	31	44	52	43	68	80	92
Edge distance	C _{cr,N}	[mm]				1,5 x	h _{ef}		
Spacing	S _{cr,N}	[mm]				3 x h	lef		
Installation factor	γinst	[-]				1,0	1		
Concrete pry-out failure									
Factor for pry-out failure	k ₈	[-]		1	,0			2,0	
Concrete edge failure									
Effective length in concrete	I _f = h _{ef}	[mm]	31	44	52	43	68	80	92
Nominal outer diameter of screw	d_{nom}	[mm]	6	6	8	10	10	12	14
1) =: 1:		D 7 C:	_						

 $^{^{\}rm 1)}$ Filling of the annular gap according to annex B7, figure 5

Ramset™ AnkaScrew™ Xtrem™

Performances

Seismic category C1 – Characteristic load values

Annex C3

 $^{^{2)}}$ N 0 _{Rk,c} according to EN 1992-4:2018

AnkaScrew Xtrem size			8	10	12	14
N		h _{nom}		h _{no}	om3	
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension						
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0
Partial factor	γMs,eq	[-]		1,	5	
With filling of the annular gap	$lpha_{\sf gap}$	[-]		1,	0	
Pull-out failure	•					
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5
Steel failure for shear load		<u> </u>				
Characteristic load	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7
Partial factor	γMs,eq	[-]		1,	25	
With filling of the annular gap	$lpha_{\sf gap}$	[-]		1,	0	
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5 :	x h _{ef}	
Spacing	S _{cr,N}	[mm]		3 x	h_{ef}	
Installation factor	γinst	[-]		1,	0	
Concrete pry-out failure						
Factor for pry-out failure	k ₈	[-]	1,0		2,0	

1)	Λ/Ι	and	HCR	not	suita	hla
- 1 1	A4	and	HL.K	nor	suma	nie

Nominal outer diameter of screw

Ramset™ AnkaScrew™ Xtrem™

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

14

Z98212.20 8.06.01-663/20

[mm]

 d_{nom}

8

10

12

			8	10	12	14
		h _{nom}		h _r	iom3	<u> </u>
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension (hexago	n head t	vpe)				
Characteristic load	N _{Rk,s,eq}	// / [kN]	27,0	45,0	67,0	94,0
Partial factor	γ _{Ms,eq}	[-]		1	.,5	•
Pull-out failure (hexagon head t	ype)					
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5
Steel failure for shear load (hex	agon hea	d type)				
Characteristic load	$V_{Rk,s,eq}$	[kN]	10,3	21,9	24,4	23,3
Partial factor	γ _{Ms,eq}	[-]		1	,25	
Without filling of the annular gap	$lpha_{\sf gap}$	[-]		C),5	
Steel failure for tension (counte	rsunk he	ad type	e)			
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0		
Partial factor	γMs,eq	[-]	1	l,5	no performa	ince assessed
Pull-out failure (countersunk he	ead type)	•				
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	no performa	ince assessed
Steel failure for shear load (cou	ntersunk	head t	ype)			
Characteristic load	$V_{Rk,s,eq}$	[kN]	3,6	13,7		
Partial factor	γ _{Ms,eq}	[-]	1	,25	no performa	nce assessed
Without filling of the annular gap	$lpha_{\sf gap}$	[-]	(),5		
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}	
Spacing	S _{cr,N}	[mm]		3)	د h _{ef}	
nstallation factor	γinst	[-]		1	.,0	
Concrete pry-out failure						
actor for pry-out failure	k ₈	[-]	1,0		2,0	
Concrete edge failure						
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14
¹⁾ A4 and HCR not suitable	,				•	•

Z98212.20 8.06.01-663/20

Seismic category C2 - Characteristic load values without filled annular gap

AnkaScrew X	ítrem s	size		(5		8			10			12			14	
Namainal amb		ما در داد د	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal emb	eamen	t depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	11
Steel failure	for ter	sion and s	hear l	load													
	R30	N _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3			10,3	
	R60	N _{Rk,s,fi60}	[kN]	0,	,8		1,7			3,3			5,8			8,2	
	R90	N _{Rk,s,fi90}	[kN]	0,	,6		1,1			2,3			4,2			5,9	
	R120	N _{Rk,s,fi120}	[kN]	0,	,4		0,7			1,7			3,4			4,8	
	R30	V _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3			10,3	
characteristic	R60	V _{Rk,s,fi60}	[kN]	0,	,8		1,7			3,3			5,8			8,2	
Resistance	R90	V _{Rk,s,fi90}	[kN]	0,	,6		1,1			2,3			4,2			5,9	
	R120	V _{Rk,s,fi120}	[kN]	0,			0,7			1,7			3,4			4,8	
	R30	M ⁰ _{Rk,s,fi30}		0,			2,4			5,9			12,3	3		20,4	
	R60	M ⁰ Rk,s,fi60		0,			1,8			4,5			9,7			15,9	
	R90	M ⁰ Rk,s,fi90		0,			1,2			3,0			7,0			11,6	
	R120	M ⁰ Rk,s,fi120	[Nm]	0,	,3		0,9			2,3			5,7			9,4	
Pull-out failu	ire																
Characteristic	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
Resistance	R120	N Rk,p,fi	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Concrete cor	ne failu	ire															
	R30-	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
Resistance l	R120		[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3 0	5,3	2,4	5,1	7,9	3,5	7,6	11
		N ⁰ Rk,c,fi	[KIV]	0,7	1,0	1,0	1,/	۷,7	1,/	3,0	٥,٥	2,4	J,1	7,5	3,3	7,0	
Edge distanc	e																
R30 bis R120		C _{cr,fi}	[mm]							2	x he	f					
In case of fire	attack	from more	than	one s	side,	the r	minir	num	edg	e dis	tanc	e sha	all be	≥300	mm.	•	
Spacing																	
R30 bis R120		S _{cr} ,fi	[mm]							4	x he	F					
Pry-out failure	e		,														
R30 bis R120		k ₈	[-]			1,	.0			2,	0	1,0	2	,0	1,0	2	,0
The anchorag	e depti	h has to be	increa	sed f	for w	et co	oncre	ete b	y at	east	30 r	nm c	omp	ared	to th	e give	<u>n</u>

Ramset™ AnkaScrew™ Xtrem™

Performances

Fire exposure – characteristic values of resistance

Annex C6

AnkaScrew	Xtrem size			(5		8			10	
Nominal om	bedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
NOMINAL EM	beament depth		[mm]	40	55	45	55	65	55	75	85
6 1	tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6
Cracked concrete	displacement	δ_{NO}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9
concrete	displacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2
	tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9
Uncracked concrete	displacement	δ_{NO}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0
Concrete	ncrete displacement $\delta_{N\infty}$		[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2
AnkaScrew	Xtrem size				12				14		
Naminal am	bedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nc}	om3	h _{nom1}	h _{nom} ;	₂	n _{om3}
Nominal em	beament depth		[mm]	65	85	10	00	75	100		115
Consolute al	tension load	N	[kN]	5,7	9,4	12	,3	7,6	12,0		15,1
Cracked concrete	displacement	δ_{NO}	[mm]	0,9	0,5	1,	.0	0,5	0,8		0,7
concrete	displacement	$\delta_{N^{\infty}}$	[mm]	1,0	1,2	1,	2	0,9	1,2		1,0
	tension load	N	[kN]	7,6	13,2	17	,2	10,6	16,9		21,2
Uncracked concrete	displacement	δ_{NO}	[mm]	1,0	1,1	1,	2	0,9	1,2		0,8
concrete	displacement	$\delta_{N^{\infty}}$	[mm]	1,0	1,2	1,	2	0,9	1,2		1,0

Table 13: Displacements under static and quasi-static shear load

Xtrem size			(5		8			10		
hodmont donth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
beament depth		[mm]	40	55	45	55	65	55	75	85	
shear load	V	[kN]	3,	,3		8,6			16,2		
	δ_{V0}	[mm]	1,	55		2,7			2,7		
displacement	δν∞	[mm]	3,	,1		4,1			4,3		
AnkaScrew Xtrem size					_			14			
hadmant danth		h_{nom}	h _{nom1}	h _{nom2}	h _{nc}	om3	h _{nom1}	h _{nom} ;	<u>.</u> h	I _{nom3}	
beament depth		[mm]	65	85	10	00	75	100		115	
shear load	٧	[kN]		20,0)		30,5				
	$\delta_{ extsf{V0}}$	[mm]		4,0	ı			3,1			
displacement	δν∞	[mm]		6,0				4,7			
	bedment depth shear load displacement Xtrem size bedment depth shear load	bedment depth shear load V displacement δ_{Vo} Xtrem size bedment depth shear load V δ_{Vo}	bedment depth $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	bedment depth	bedment depth	bedment depth $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			bedment depth $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	bedment depth $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Ramset™ AnkaScrew™ Xtrem™	
Performances Displacements under static and quasi-static loads	Annex C7

AnkaScrew Xtrem size			8	10	12	14
		h _{nom}		h _{no}	om3	
Nominal embedment depth		[mm]	65	85	100	115
Displacements under tension I	oads (hexa	gon hea	d type)			
Displacement DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	2,36	4,39
Displacements under shear loa	ads (hexago	n head	type with h	ole clearan	ce)	
Displacement DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27
		h _{nom}			om3	14
AnkaScrew Xtrem size			8	10	12	14
Nominal embedment depth		[mm]	65	85	100	115
Displacements under tension I	oads (hova				100	
	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16
Displacement DLS		1 [0,52	0,5,	
Displacement DLS Displacement ULS		+		1.36	2.36	
Displacement DLS Displacement ULS Displacements under tension I	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	-		4,39
Displacement ULS Displacements under tension I	δ _{N,eq(ULS)}	[mm] tersunk	1,74 head type)	-	2,36	4,39
Displacement ULS Displacements under tension I Displacement DLS	$\begin{array}{c} \delta_{\text{N,eq(ULS)}} \\ \text{oads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] tersunk [mm] [mm]	1,74 head type) 0,66 1,74	0,32 1,36	no performa	4,39
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(ULS)}} \\ \text{oads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] tersunk [mm] [mm]	1,74 head type) 0,66 1,74	0,32 1,36	no performa	4,39
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS Displacements under shear loa	$\begin{array}{c} \delta_{\text{N,eq(ULS)}} \\ \text{oads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ ads (hexago$	[mm] tersunk [mm] [mm]	1,74 head type) 0,66 1,74 type with h	0,32 1,36 ole clearan	no performa ce)	4,39
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS Displacements under shear loa Displacement DLS	$\delta_{N,eq(ULS)}$ oads (coun $\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$ ads (hexago $\delta_{V,eq(DLS)}$	[mm] [mm] [mm] on head [mm] [mm]	1,74 head type) 0,66 1,74 type with h 4,21 7,13	0,32 1,36 ole clearan 4,71 8,83	no performa ce) 4,42 6,95	4,39 nce assessed 5,60
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS Displacements under shear load Displacement DLS Displacement ULS	$\delta_{N,eq(ULS)}$ oads (coun $\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$ ads (hexago $\delta_{V,eq(DLS)}$	[mm] [mm] [mm] on head [mm] [mm]	1,74 head type) 0,66 1,74 type with h 4,21 7,13	0,32 1,36 ole clearan 4,71 8,83	no performa ce) 4,42 6,95	4,39 nce assessed 5,60 12,63

¹⁾ A4 and HCR not suitable

Ramset™ AnkaScrew™ Xtrem™

Performances
Displacements under seismic loads

Annex C8