

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0783 of 13 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

B+BTec Injection system BIS-E Epoxy for concrete

Bonded fastener for use in concrete

B+BTec Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

B+BTec Plant 1

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-20/0783

Page 2 of 24 | 13 November 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0783

Page 3 of 24 | 13 November 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "B+BTec Injection System BIS-E Epoxy for concrete" is a bonded anchor consisting of a cartridge with injection BIS-E Epoxy and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-20/0783

Page 4 of 24 | 13 November 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

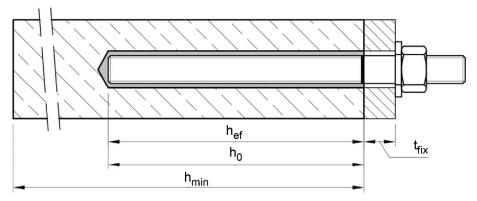
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

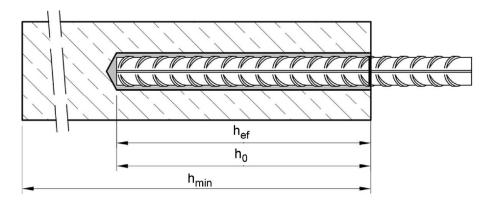
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 November 2020 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider

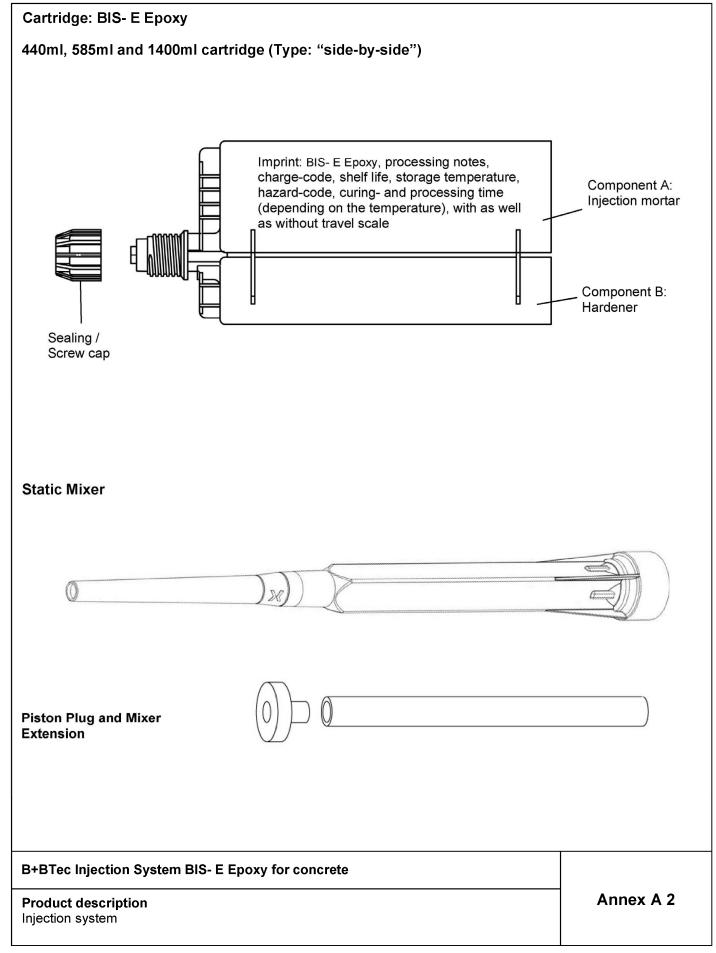

Installation threaded rod M8 up to M30

prepositioned installation or

push through installation (annular gap filled with mortar)

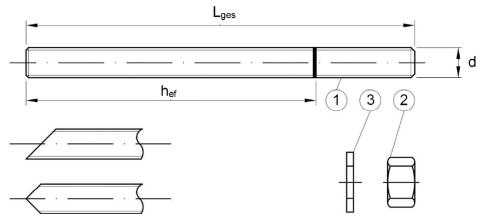
Installation reinforcing bar Ø8 up to Ø32

 t_{fix} = thickness of fixture


 h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

 h_{min} = minimum thickness of member


B+BTec Injection System BIS- E Epoxy for concrete	
Product description Installed condition	Annex A 1

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Table A1: Materials										
Part	Part Designation Material									
	_	acc. to EN 10087:1998	3 or 1	EN 10263:2001)						
		μm acc. to EN ISO								
				1:2009 and EN ISO 10684:	2004+AC:2009 or					
- sr	nerardized ≥ 4	-5 μm acc. to EN ISO	1/6		01					
	Property class Characteristic steel Characteristic steel Elongation at									
			4.6	f _{uk} = 400 N/mm ²	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%				
1	Threaded rod		4.8	f _{uk} = 400 N/mm²	f _{yk} = 320 N/mm ²	A ₅ > 8%				
		acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm²	f _{yk} = 300 N/mm²	A ₅ > 8%				
		214 100 000 1.2010	5.8	f _{uk} = 500 N/mm²	f _{yk} = 400 N/mm²	A ₅ > 8%				
			8.8	f _{uk} = 800 N/mm²	f _{yk} = 640 N/mm²	A ₅ > 8%				
		acc. to	4	for anchor rod class 4.6 o	r 4.8					
2	Hexagon nut	EN ISO 898-2:2012	5	for anchor rod class 5.6 or 5.8						
			8	for anchor rod class 8.8						
3	Washer			galvanised or sherardized EN ISO 7089:2000, EN ISC	7093:2000 or EN ISO	7094:2000)				
Stair	nless steel A2 (Mate	rial 1.4301 / 1.4307 / 1	.431	1 / 1.4567 or 1.4541, acc. t	o EN 10088-1:2014)					
				1 / 1.4362 or 1.4578, acc. t						
High	corrosion resistan	ce steel (Material 1.45	29 o	r 1.4565, acc. to EN 10088						
		Property class		Characteristic steel	Characteristic steel	Elongation at				
		, , ,		ultimate tensile strength	yield strength	fracture				
1	Threaded rod ¹⁾²⁾	acc. to	50	f _{uk} = 500 N/mm²	f _{yk} = 210 N/mm ²	A ₅ ≥ 8%				
		EN ISO 3506-		f _{uk} = 700 N/mm²	f _{yk} = 450 N/mm²	A ₅ > 8%				
		1:2009	80	f _{uk} = 800 N/mm²	f _{yk} = 600 N/mm²	A ₅ > 8%				
		acc. to	50	for anchor rod class 50						
2	Hexagon nut 1)2)	EN ISO 3506-	70	for anchor rod class 70						
		1:2009	80	for anchor rod class 80						
				07 / 1.4311 / 1.4567 or 1.4	,					
3	Washer			.04 / 1.4571 / 1.4362 or 1.4		1:2014				
-				1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC		7094:2000)				
	Danie de la 20 au 0	1				. 55 1.2555)				

¹⁾ Property class 70 or 80 for anchor s and hexagon nuts up to M24

B+BTec Injection System BIS- E Epoxy for concrete	
Product description	Annex A 4
Materials threaded rod	

 $^{^{\}rm 2)}\,\mbox{Property}$ class 80 only for stainless steel A4 and HCR

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Reinf	orcing bars	
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Electronic copy of the ETA by DIBt: ETA-20/0783

B+BTec Injection System BIS- E Epoxy for concrete

Product description
Materials reinforcing bar

Annex A 5

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +35 °C and max short term temperature +60 °C)
- III: 40 °C to +70 °C (max long term temperature +43 °C and max short term temperature +70 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4. Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

B+BTec Injection System BIS- E Epoxy for concrete	
Intended Use Specifications	Annex B 1

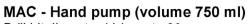
English translation prepared by DIBt

Table B1: Installation parameters for threaded rod											
Anchor size											
Diameter of element	t	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmer	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	
Effective embedmer	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	
Diameter of clearance hole in	Prepositioned i	nstallation d _f	[mm]	9	12	14	18	22	26	30	33
the fixture	Push through i	[mm]	12	14	16	20	24	30	33	40	
Maximum torque mo	ment	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀					
Minimum spacing s _{min}			[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	ince	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Anchor size	Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12	21)	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Diameter of element	d = d _{nom}	[mm]	8	10	12		14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12 12 14		14 1	16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70		75	80	90	96	100	112	128
Enective embedment depth	h _{ef,max}	[mm]	160	200	240)	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			1126 - 240							
Minimum spacing	s _{min}	[mm]	40	10 50			70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45		50	50	60	70	70	75	85


¹⁾ both nominal drill hole diameter can be used

B+BTec Injection System BIS- E Epoxy for concrete	
Intended Use Installation parameters	Annex B 2

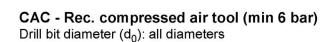
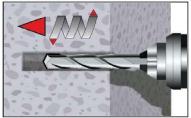


Table B3:	Parameter cleaning and setting tools																										
Threaded Rod	Rebar	d ₀ Drill bit - ∅ HD, HDB, CD	d _b d _{b,min} min. Brush - Ø Brush - Ø			Piston plug		n direction piston plug																			
[mm]	[mm]	[mm]		[mm]	[mm]		1	-	1																		
M8	8	10	RB10	11,5	10,5		•																				
M10	8 / 10	12	RB12	13,5	12,5		No pluo	required																			
M12	10 / 12	14	RB14	15,5	14,5		ino piug	required																			
	12	16	RB16	17,5	16,5																						
M16	14	18	RB18	20,0	18,5	VS18																					
	16	20	RB20	22,0	20,5	VS20																					
M20		22	RB22	24,0	22,5	VS22																					
	20	25	RB25	27,0	25,5	VS25	h _{ef} >	h _{ef} >																			
M24		28	RB28	30,0	28,5	VS28		250 mm	all																		
M27		30	RB30	31,8	30,5	VS30	250 mm																				
	24 / 25	32	RB32	34,0	32,5	VS32																					
M30	28	35	RB35	37,0	35,5	VS35]						
	32	40	RB40	43,5	40,5	VS40																					

Drill bit diameter (d_0): up to 20 mm Drill hole depth (h_0): < 10 d_s Only in non-cracked concrete

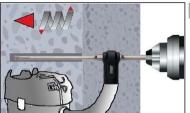
HDB - Hollow drill bit system

Drill bit diameter (d₀): all diameters


The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa and flow rate of minimum 150 m³/h (42 l/s).

B+BTec Injection System BIS- E Epoxy for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

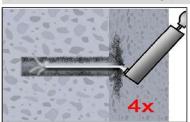

Drilling of the bore hole

Hammer (HD) or compressed air drilling (CD)

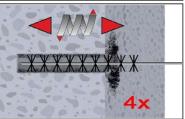
Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or B2).

Proceed with Step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.

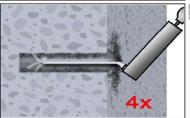
Hollow drill bit system (HDB) (see Annex B 3)


Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or B2). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.

In case of aborted drill hole, the drill hole shall be filled with mortar.

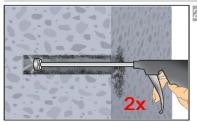

Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for dry and wet bore hole with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10 d_{nom}$ (uncracked concrete only!)

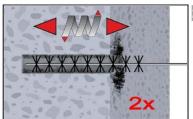

used.

Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B 3) a minimum of four times until return air stream is free of noticeable dust.

Check brush diameter (Table B3). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B3) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be

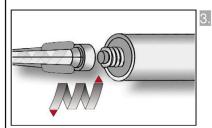

Finally blow the hole clean again with handpump (Annex B 3) a minimum of four times until return air stream is free of noticeable dust.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

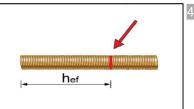

B+BTec Injection System BIS- E Epoxy for concrete	
Intended Use Installation instructions	Annex B 4

Installation instructions (continuation)

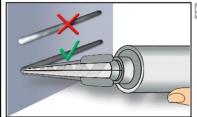
CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete


Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

Check brush diameter (Table B3). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).



Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.



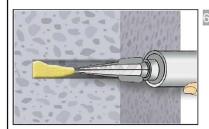
Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.

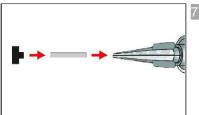
Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

B+BTec Injection System BIS- E Epoxy for concrete

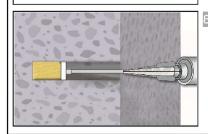

Intended Use

Electronic copy of the ETA by DIBt: ETA-20/0783

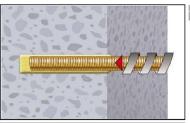

Installation instructions (continuation)

Annex B 5

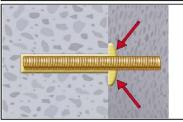
Installation instructions (continuation)



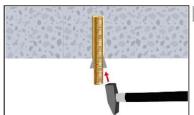
Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B4.


Piston plugs shall be used according to Table B3 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.


Insert piston plug to back of the hole and inject adhesive. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used

During injection the piston plug is naturally pushed out of the borehole by the back pressure of the mortar. Observe the gel-/ working times given in Table B4.



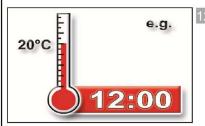
Push the fixing element into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment mark has reached the surface level.

The anchor shall be free of dirt, grease, oil or other foreign material.

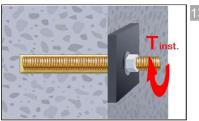
After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed.

11. For overhead application the anchor rod shall be fixed (e.g. wedges) until the mortar has started to harden.

B+BTec Injection System BIS- E Epoxy for concrete


Intended Use

Electronic copy of the ETA by DIBt: ETA-20/0783


Installation instructions (continuation)

Annex B 6

Installation instructions (continuation)

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).

After full curing, the add-on part can be installed with up to the max. torque (Table B1) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Table B4: Maximum working time and minimum curing time

Concrete temperatu		Gelling rking time	Minimum curing time in dry concrete	Minimum curing time in wet concrete				
+ 5 °C to + 9) °C	80 min	60 h	120 h				
+ 10 °C to + 14	1 °C	60 min	48 h	96 h				
+ 15 °C to + 19	9°C	40 min	24 h	48 h				
+ 20 °C to + 24	1 °C	30 min	12 h	24 h				
+ 25 °C to + 34	· °C	12 min	10 h	20 h				
+ 35 °C to + 39	°C	8 min	7 h	14 h				
+40 °C		8 min 4 h 8 h						
Cartridge temperatur	е	+5°C to +40°C						

B+BTec Injection System BIS- E Epoxy for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 7

Т	Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods											
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30	
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561	
Cr	naracteristic tension resistance, Steel failu	re ¹⁾										
Ste	eel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Ste	eel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
Ste	eel, Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
Sta	ainless steel A2, A4 and HCR, class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281	
Sta	ainless steel A2, A4 and HCR, class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	_3)	_3)	
Sta	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)	
Cr	naracteristic tension resistance, Partial fact	tor ²⁾										
Ste	eel, Property class 4.6 and 5.6	γMs,N	[-]				2,0)				
Ste	eel, Property class 4.8, 5.8 and 8.8	$\gamma_{Ms,N}$	[-]				1,5	5				
Sta	ainless steel A2, A4 and HCR, class 50	γMs,N	[-]				2,8	6				
Sta	ainless steel A2, A4 and HCR, class 70	γMs,N	[-]	1,87								
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6								
Cr	naracteristic shear resistance, Steel failure								I			
_	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168	
ever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
ort ic	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140	
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	_3)	_3)	
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)	
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797	
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125	
Wit	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)	
	Stainless steel A4 and HCR, class 80	М ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)	
Cr	naracteristic shear resistance, Partial facto	r ²⁾										
Ste	eel, Property class 4.6 and 5.6	γMs,V	[-]				1,6	7				
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5				
Sta	ainless steel A2, A4 and HCR, class 50	γMs,V	[-]				2,3	8				
Sta	ainless steel A2, A4 and HCR, class 70	$\gamma_{Ms,V}$	[-]				1,5	6				
Stainless steel A4 and HCR, class 80 $\gamma_{Ms,V}$ [-] 1,33								3				

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009. $^{2)}$ in absence of national regulation

³⁾ Anchor type not part of the ETA

B+BTec Injection System BIS- E Epoxy for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

English translation prepared by DIBt

Axial distance

2 c_{cr,sp}

	Characteristic valu	ues for Cond	crete con	e failure and Splitting with all kind of
Anchor				All Anchor type and sizes
Concrete cone fa	ailure			
Non-cracked con	crete	k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}

[mm]

s_{cr,sp}

B+BTec Injection System BIS- E Epoxy for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Page 19 of European Technical Assessment ETA-20/0783 of 13 November 2020

English translation prepared by DIBt

Ancho	r size threaded re	od			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure		1									
Charac	Characteristic tension resistance N _{Rk,s} [kN]						$A_{s} \cdot f_{l}$	_{ık} (or s	ee Tab	le C1)		
Partial	factor		γ _{Ms,N}	[-]				see Ta	ble C1			
Combi	ned pull-out and	concrete failure	•									
Charac	teristic bond resis	tance in non-crac	ked concrete	C20/25								
iture	l: 40°C/24°C	Dry, wet			15	15	15	14	14	13	13	13
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,ucr	[N/mm²]	10	10	10	9,5	9,5	9,0	9,0	9,0
Ten	III: 70°C/43°C	hole			7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Charac	teristic bond resis	tance in cracked	concrete C20/	/25								
ture	l: 40°C/24°C	Dry, wet			7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,cr	[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5
Tem	III: 70°C/43°C	hole			3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0
Reduct	tion factor ψ ⁰ sus in	cracked and non	-cracked cond	crete C20/25								
ture	l: 40°C/24°C	Dry, wet			0,60							
Temperature range	II: 60°C/35°C	concrete and flooded bore	Ψ^0 sus	[-]	0,60							
Terr	III: 70°C/43°C	hole			0,60							
			C25/30	•				1,	02			
			C30/37		1,04							
Increas	sing factors for cor	ocrete	C35/45		1,07							
Ψ_{C}			C40/50		1,08							
			C45/55		1,09							
			C50/60		1,10							
	ete cone failure											
	nt parameter							see Ta	ble C2			
Splittir	<u> </u>							-	LL 00			
	nt parameter							see 12	ble C2			
	ation factor	or flooded bo	1									
for ary	and wet concrete	or mooded bore	γ _{inst}	[-]				1	,4			

B+BTec Injection System BIS- E Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 3

8.06.01-674/20 Z98525.20

Table C4: Characteristic va			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm					1		0	11121		
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]		0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)						
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]			1,2 • '	N _{el} ∙ f _{uk}	(or see	Table C	:1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)							
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0	'		

B+BTec Injection System BIS- E Epoxy for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Table C5: Characteristic values of tension loads under static and quasi-static action														
Ancho	r size reinforcir	ng bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa	ailure												•	•
Charac	teristic tension r	esistance	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Cross s	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial ⁻			$\gamma_{Ms,N}$	[-]					1,	4 ²⁾				
		d concrete failu												
Charac	teristic bond res	istance in non-c	racked conci	rete C20/2	.5	1		1				ı		
ture	l: 40°C/24°C	Dry, wet			14	14	14	12	12	12	12	11	11	11
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
	III: 70°C/43°C	hole			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Charac	teristic bond res	istance in cracke	ed concrete (C20/25										
ture	l: 40°C/24°C	Dry, wet			6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,cr	[N/mm²]	4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
Ten	III: 70°C/43°C	hole			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reduct	ion factor ψ ⁰ sus	in cracked and r	on-cracked	concrete (20/25	5		•						
ture	I: 40°C/24°C	Dry, wet			0,60									
Temperature range	II: 60°C/35°C	concrete and flooded bore	Ψ ⁰ sus	[-]	0,60									
Tem	III: 70°C/43°C	hole			0,60									
			C25/	'30					1,	02				
			C30/							04				
	sing factors for c	oncrete	C35/		1,07									
Ψс			C40/							80				
			C45/ C50/							09 10				
Concre	ete cone failure	<u> </u>	L C50/	00					Ι,	10				
	nt parameter								see Ta	able C	2			
Splittin	•													
Releva	nt parameter								see Ta	able C	2			
Installa	ation factor													
for dry bore ho	and wet concret ble	e or flooded	γ _{inst}	[-]					1	,4				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

B+BTec Injection System BIS- E Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Table C6: Characteristic values of shear loads under static and quasi-static action												
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,5	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,} ∨	[-]						1,52)				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm	·											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2 •	W _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,} ∨	[-]		•				1,5 ²⁾				
Concrete pry-out failure		•										
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure		•										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)									
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 24 25 28 32									
Installation factor	γinst	[-]	1,0									

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Electronic copy of the ETA by DIBt: ETA-20/0783

B+BTec Injection System BIS- E Epoxy for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Table C7: Displacements under tension load¹) (threaded rod)											
Anchor size threaded re	od		M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concrete under static and quasi-static action											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041	
Temperature range II: 60°C/35°C	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061	
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077	
Cracked concrete unde	r static and o	uasi-static actio	n								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110	
່60°C/35°C ັ	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121	
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C8: Displacements under shear load²⁾ (threaded rod)

Anchor size threade	M8	M10	M12	M16	M20	M24	M27	M30			
Non-cracked and cracked concrete under static and quasi-static action											
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

B+BTec Injection	on System	BIS- E	Epoxy 1	for concrete

Performances

Displacements under static and quasi-static action (threaded rods)

Annex C 7

Electronic copy of the ETA by DIBt: ETA-20/0783

Deutsches
Institut
für
Bautechnik

Table C9: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinf	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked concrete under static and quasi-static action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range l: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Cracked concrete	under statio	and quasi-stat	ic actio	n								
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range l: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature range II: 60°C/35°C	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load²⁾ (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked and cracked concrete under static and quasi-static action												
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{ m V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor V; V:

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}$ -factor · V;

B+BTec Injection System BIS- E Epoxy for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 8