

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-20/0784 vom 13. November 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

B+BTec Injektionssystem BIS-E Epoxy für Bewehrungsanschlüsse

Systeme für nachträglich eingemörtelte Bewehrungsanschlüsse

B+BTec Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

B+BTec Plant 1

19 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330087-00-0601, Edition 05/2018

Europäische Technische Bewertung ETA-20/0784

Seite 2 von 19 | 13. November 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-20/0784

Seite 3 von 19 | 13. November 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Gegenstand dieser Europäischen Technischen Bewertung ist der nachträglich eingemörtelte Anschluss von Betonstahl mit dem "B+BTec Injektionssystem BIS-E Epoxy für Bewehrungsanschlüsse" durch Verankerung oder Übergreifungsstoß in vorhandene Konstruktionen aus Normalbeton auf der Grundlage der technischen Regeln für den Stahlbetonbau.

Für den Bewehrungsanschluss wird Betonstahl mit einem Durchmesser ϕ von 8 bis 40 mm entsprechend Anhang A und dem Injektionsmörtel BIS-E Epoxy verwendet. Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Bewehrungsanschlüsses von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter statischen und quasi-statische Lasten	Siehe Anhang C 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	der Klasse A1
Feuerwiderstand	Siehe Anhang C 2

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330087-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

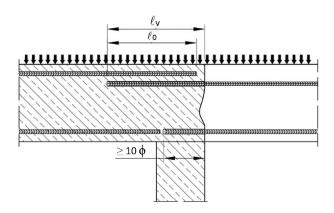
Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-20/0784

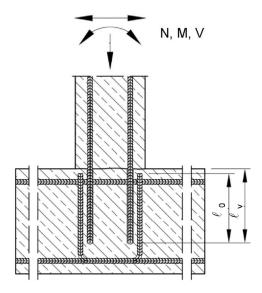
Seite 4 von 19 | 13. November 2020

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

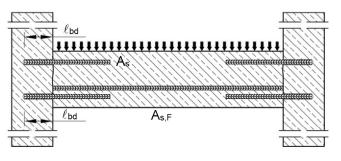
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

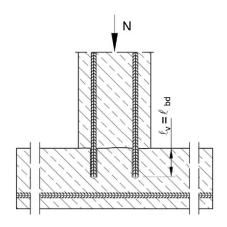

Ausgestellt in Berlin am 13. November 2020 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider



Installation für nachträglichen Bewehrungsanschluss


Bild A1: Übergreifungsstoß für Bewehrungsanschlüsse von Platten und Balken


Bild A2: Übergreifungsstoß einer biegebeanspruchten Stütze oder Wand an ein Fundament

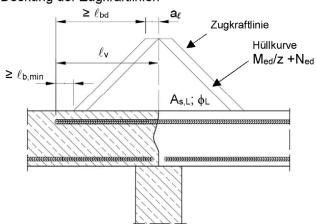

Bild A3: Endverankerung von Platten oder Balken (z.B. gelenkig gelagert bemessen)

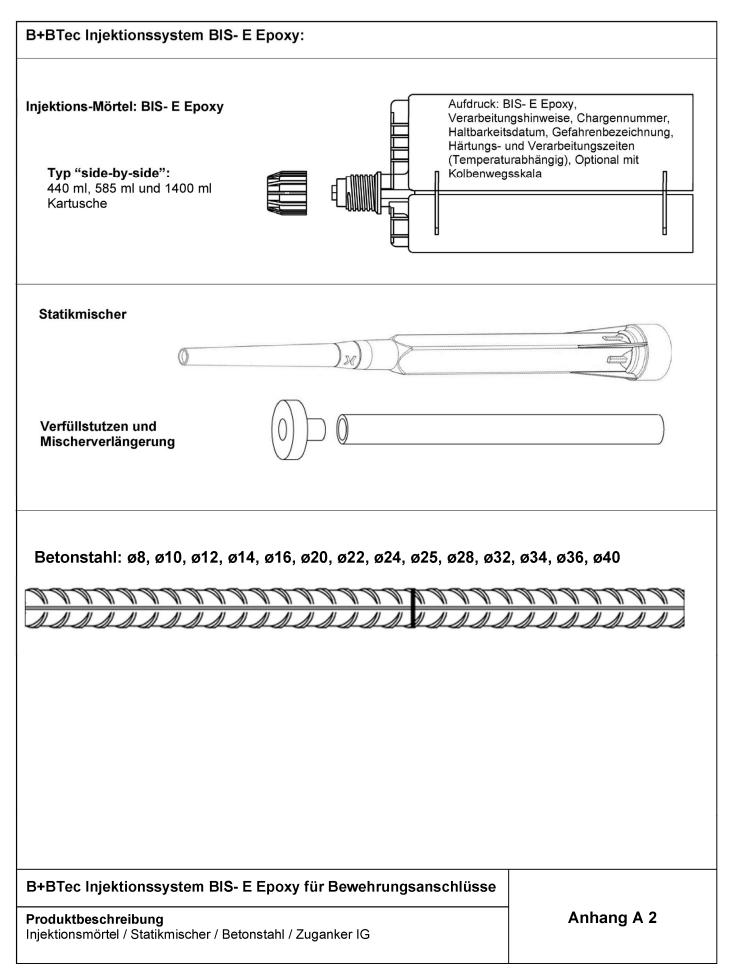
Bild A4: Bewehrungsanschlüsse überwiegend auf Druck beanspruchter Bauteile

Bild A5: Verankerung von Bewehrung zur Deckung der Zugkraftlinien

Anmerkung zu Bild A1 bis A5:

In den Bildern ist keine Querbewehrung dargestellt; die nach EN 1992-1-1:2004+AC:2010 erforderliche Querbewehrung muss vorhanden sein.

Vorbereitung der Fugen gemäß Anhang B 2


B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse

Produktbeschreibung

Einbauzustand und Anwendungsbeispiele für Bewehrungsanschlüsse mit Betonstahl

Anhang A 1

Betonstahl: ø8, ø10, ø12, ø14, ø16, ø20, ø22, ø24, ø25, ø28, ø32, ø34, ø36, ø40

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05φ ≤ h_{rib} ≤ 0,07φ betragen
 (φ: Nomineller Durchmesser des Betonstahls; h_{rib}: Rippenhöhe des Betonstahls)

Tabelle A1: Werkstoffe

Benennung	Werkstoff
Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C fyk und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA fuk = ftk = k•fyk

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 3

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten.
- Brandbeanspruchung

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C12/15 bis C50/60 gemäß EN 206: 2013 + A1:2016.
- Maximal zulässiger Chloridgehalt im Beton von 0.40 % (CL 0.40) bezogen auf den Zementgehalt gemäß EN 206: 2013 + A1:2016.
- Nicht karbonisiertem Beton.

Anmerkung: Bei einer karbonatisierten Oberfläche des bestehenden Betons ist die karbonatisierte Schicht vor dem Anschluss des neuen Stabes im Bereich des nachträglichen Bewehrungsanschlusses mit dem Durchmesser von ϕ + 60 mm zu entfernen. Die Tiefe des zu entfernenden Betons muss mindestens der Mindestbetondeckung für die entsprechenden Umweltbedingungen nach EN 1992-1-1:2004+AC:2010 entsprechen.

Dies entfällt bei neuen, nicht karbonatisierten Bauteilen und bei Bauteilen in trockener Umgebung.

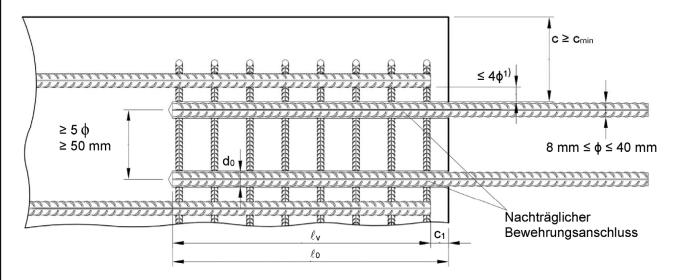
Temperaturbereich:

• - 40°C bis +80°C (max. Kurzzeit-Temperatur +80°C und max. Langzeit-Temperatur +50°C).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Bemessung gemäß EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 und Anhang B 2 und B 3.
- Die tatsächliche Lage der Bewehrung im vorhandenen Bauteil ist auf der Grundlage der Baudokumentation festzustellen und beim Entwurf zu berücksichtigen.

Einbau:

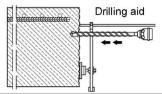

- · Trockener oder nasser Beton.
- · Installation in wassergefüllte Bohrlöcher ist nicht erlaubt.
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB), Pressluft- (CD) oder Diamantbohren (DD).
- Der Einbau von nachträglich eingemörtelten Bewehrungsstäben ist durch entsprechend geschultes Personal und unter Überwachung auf der Baustelle vorzunehmen; die Bedingungen für die entsprechende Schulung des Baustellenpersonals und für die Überwachung auf der Baustelle obliegt den Mitgliedstaaten, in denen der Einbau vorgenommen wird.
- Überprüfung der Lage der vorhandenen Bewehrung (wenn die Lage der vorhandenen Bewehrungsstäbe nicht ersichtlich ist, müssen diese mittels dafür geeigneter Bewehrungssuchgeräte auf Grundlage der Baudokumentation festgestellt und für die Übergreifungsstöße am Bauteil markiert werden).

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse	
Verwendungszweck Spezifikationen	Anhang B 1

Bild B1: Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl

- Bewehrungsanschlüsse dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Übertragung von Querkräften zwischen vorhandenem und neuem Beton ist gemäß EN 1992-1-1:2004+AC:2010 nachzuweisen.
- · Die Betonierfugen sind mindestens derart aufzurauen, dass die Zuschlagstoffe herausragen.

1) Ist der lichte Abstand der gestoßenen Stäbe größer als 4φ, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Stababstand und 4φ vergrößert werden.


Folgende Abkürzungen und Hinweise gelten für Abbildung B1:

- c Betondeckung des eingemörtelten Betonstahl
- c₁ Betonabdeckung an der Stirnseite des einbetonieren Stabes
- c_{min} Mindestbetondeckung gemäß Tabelle B1 und EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2
- Φ Durchmesser des eingemörtelten Betonstahls
- Länge des Übergreifungsstoßes gemäß der EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3
- ℓ_v wirksame Setztiefe, $\geq \ell_0 + c_1$
- d₀ Bohrernenndurchmesser, siehe Anhang B 5

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse	
Verwendungszweck Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl	Anhang B 2

Tabelle B1: Mindestbetondeckung min c¹⁾ des eingemörtelten Bewehrungsstabes in Abhängigkeit vom Bohrverfahren

Bohrverfahren	Stabdurchmesser	Ohne Bohrhilfe	Mit Bohrhilfe		
Hammerbohren (HD)	< 25 mm	30 mm + 0,06 · $\ell_{\rm V}$ ≥ 2 ϕ	30 mm + 0,02 · $\ell_{\rm V}$ ≥ 2 ϕ		
Hohlbohren (HDB)	≥ 25 mm	40 mm + 0,06 · ℓ_{V} ≥ 2 ϕ	40 mm + 0,02 · ℓ _v ≥ 2 φ		
Diamantbohren (DD)	< 25 mm	Bohrständer entspricht	30 mm + 0,02 · ℓ_{V} ≥ 2 ϕ		
	≥ 25 mm	Bohrhilfe	40 mm + 0,02 · ℓ_{v} ≥ 2 ϕ		
Pressluftbohren (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v		
Pressiditionien (CD)	≥ 25 mm	60 mm + 0,08 · ℓ _v	60 mm + 0,02 · ℓ _v		

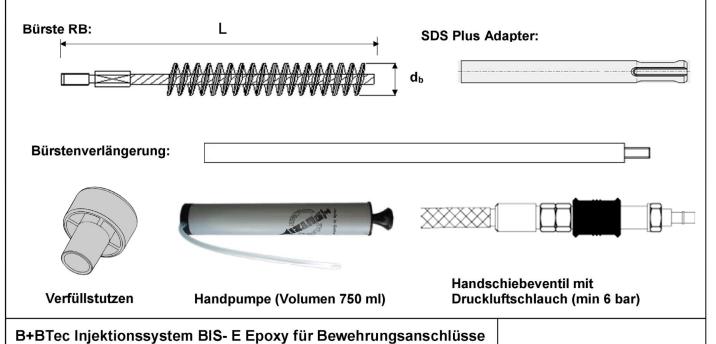
siehe Anhang B 2, Bild B1 oder Anhang B 3, Bild B2 Anmerkung: Die Mindestbetondeckung gemäß EN 1992-1-1:2004+AC:2010 ist einzuhalten

Tabelle B2: maximale Setztiefe $\ell_{v,max}$

Betonstahl	HD / CD / DD	HDB
ф	$\ell_{ m v,max}$ [mm]	$\ell_{ m v,max}$ [mm]
8 mm	800	800
10 mm	1000	1000
12 mm	1200	1000
14 mm	1400	1000
16 mm	1600	1000
20 mm	2000	1000
22 mm	2000	1000
24 mm	2000	1000
25 mm	2000	1000
28 mm	2000	1000
32 mm	2000	1000
34 mm	2000	-
36 mm	2000	-
40 mm	2000	-

Tabelle B3: Untergrundtemperatur, Verarbeitungs- und Aushärtezeit

Beton Temperatur	Verarbeitungszeit ¹⁾	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton				
	\mathbf{t}_{gel}	t _{cure,dry}	t _{cure,wet}				
+ 5 °C bis + 9°C	80 min	60 h	120 h				
+ 10 °C bis + 14°C	60 min	48 h	96 h				
+ 15 °C bis + 19°C	40 min	24 h	48 h				
+ 20 °C bis + 24°C	+ 20 °C bis + 24°C 30 min		24 h				
+ 25 °C bis + 34°C	12 min	10 h	20 h				
+ 35 °C bis + 39°C	8 min	7 h	14 h				
+ 40 °C	8 min	4 h 8 h					
Kartuschentemperatur	+5°C bis +40°C						


¹⁾ tgel: Maximale Zeit vom Injizieren des Mörtels bis zum Ende des Setzvorgangs

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse	
Verwendungszweck Mindestbetondeckung; Maximale Setztiefe; Verarbeitungs- und Aushärtezeit	Anhang B 3

Verwendungszweck Auspressgeräte Installationszubehör

		für Bautechnik	DIRT
Tabelle B4: Auspre	essgeräte		
Kartusche Typ/Größe	Ma	anuell	Druckluftbetrieben
Side-by-side Kartuschen 440, 585 ml			
	z.B. SA 296C585	z.B. Typ H 244 C	z.B. Typ TS 444 KX
Side-by-side Kartusche 1400 ml	-	-	z.B. Typ TS 471
Alle Kartuschen können	ebenso mit einer Akkupistole	e ausgepresst werden.	
Reinigungs- und Ins	stallationszubehör		
einem Klasse M Staubs	ystem besteht aus dem Heller Dus sauger mit einem minimalen enge von Minimum 150 m³/h	Unterdruck von 253 hPa	DUSTER EXPERI

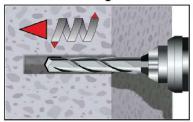
Z98498.20 8.06.01-673/20

Anhang B 4

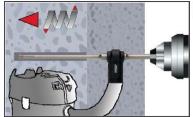
Tabelle B5: Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung, Hammer- (HD), Diamant- (DD) und Druckluftbohren (CD)

	, Kart							Kartusche: 440 ml oder 585 ml Kartusche: 1400 r				sche: 1400 ml				
Stab-	Bohr - Ø		Ø	d _b Bürsten - Ø		d _{b,min} min.	Verfüll- stutzen		Hand- oder Akku- Pistole		luftpistole	Druckluftpistole				
Ф	HD	DD	CD	Bursten - Ø		- Ø		I _{v,max}	Ver- längerung	$I_{v,max}$	Ver- längerung	$I_{v,max}$	Ver- längerung			
[mm]		[m	m]		[mm]	[mm]		[mm]		[mm]		[mm]				
8	1	0	-	RB10	11,5	10,5	-	250		250		250				
	1	2	_	RB12	13,5	12,5		700		800		800	\/\ 10/0.7E			
10			_	NDIZ	13,3	12,3	-	250		250		250	VL10/0,75 oder VL16/1,8			
10	1	1	_	RB14	15,5	14,5	VS14	700		1000 250		1000				
12	1	4	-	KD14	15,5	14,5	V 3 14	250				250				
12		16		RB16	17,5	16,5	VS16		VL10/0,75 oder			1200				
14		18		RB18	20,0	18,5	VS18	700		oder	1300		1400]		
16		20		RB20	22,0	20,5	VS20				VL16/1,8		VL10/0,75	1600		
20	2	5	-	RB25	27,0	25,5	VS25		VE10/1,0		oder					
	-		26	RB26	28,0	26,5	VS25							VL16/1,8		
22		28		RB28	30,0	28,5	VS28	500					VL16/1,8			
24/25	32		RB32	34,0	32,5	VS32	300					VL10/1,0				
28		35		RB35	37,0	35,5	VS35	VS40		1000		2000				
32/34		40		RB40	43,5	40,5	VS40									
36		45		RB45	47,0	45,5	VS45									
40	-	52	-	RB52	54,0	52,5	VS52	-	-							
40	55	-	55	RB55	58,0	55,5	VS55									

Tabelle B6: Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung, Hammerbohren mit Hohlbohrersystem (HDB)


			d		Ka	rtusche: 440	Kartusche: 1400 ml											
Stab- Ф	Bohr - Ø	u _b	min.	d _b min.	I	min.	Verfüll- stutzen		oder Akku- istole	Druck	luftpistole	Druc	kluftpistole					
	HDB	Daisteii g	- Ø			I _{v,max}	Ver- längerung	I _{v,max}	Ver- längerung	$I_{v,max}$	Ver-längerung							
[mm]	[mm]				[mm]		[mm]		[mm]									
8	10			-	250		250		250									
	12				700		800		800									
10	12		_	250		250		250										
10	14			VS14	700		1000		1000									
10	14				250		250		250									
12	16	Keine Reini	gung	VS16		VL10/0,75		VL10/0,75		\(\(\) \(\								
14	18	erforderli	ch	VS18	700	oder		oder		VL10/0,75 oder VL16/1,8								
16	20			VS20		VL16/1,8		VL16/1,8		oder VL16/1,6								
20	25						1000		1000									
22	28			VS28			1000		1000									
24/25	32			VS32	500													
28	35		VS35															
32/34	40			VS40														

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse	
Verwendungszweck Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung	Anhang B 5


A) Bohrloch erstellen

Achtung: Vor dem Bohren, karbonatisierten Beton entfernen und Kontaktfläche reinigen (siehe Anhang B1) Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

1a. Hammer (HD) oder Druckluftbohren (CD)


Bohrloch mit dem Durchmesser und der Bohrlochtiefe entsprechend des gewählten Bewehrungseisens in den Untergrund bohren. Weiter mit Schritt B1.

Hohlbohrersystem (HDB) (siehe Anhang B 4)

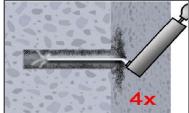
Bohrloch mit dem Durchmesser und der Bohrlochtiefe entsprechend des gewählten Bewehrungseisens in den Untergrund bohren. Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch während des Bohrens.

Weiter mit Schritt C.

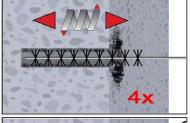
Diamantbohren (DD)

Bohrloch mit dem Durchmesser und der Bohrlochtiefe entsprechend des gewählten Bewehrungseisens in den Untergrund bohren. Weiter mit Schritt B2.

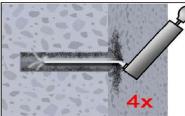
B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse


Verwendungszweck
Setzanweisung: Bohrloch bohren und reinigen (HD; HDB und CD)

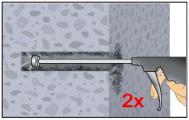
Anhang B 6


B1) Bohrlochreinigung

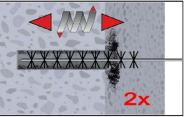
MAC: Reinigung für Bohrlochdurchmesser d $_0 \le$ 20mm und Bohrlochtiefe h $_0 \le$ 10d $_{nom}$ mit Bohrverfahren HD/CD


Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 4) ausblasen.


Bürstendurchmesser prüfen (Tabelle B5). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B5) minimum 4x mit Drehbewegungen auszubürsten.

Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.


Anschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 4) ausblasen.

CAC: Reinigung für alle Bohrlochdurchmesser und alle Bohrlochtiefen mit Bohrverfahren HD/CD

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine entsprechende Verlängerung verwendet werden.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B5 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder einer Bohrmaschine ausbürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine

Anschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine entsprechende Verlängerung verwendet werden.

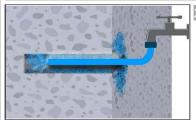
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

Bürstenverlängerung verwendet werden.

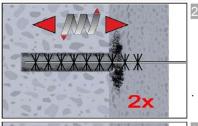
B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse

Verwendungszweck

Setzanweisung: Bohrlochreinigung (HD; HDB und CD)


Anhang B 7

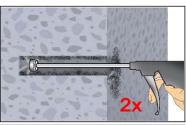
798498 20



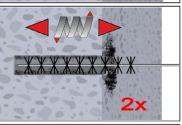
B2) Bohrlochreinigung

SPCAC: Reinigung für alle Bohrlochdurchmesser und Bohrlochtiefen mit Bohrmethode DD

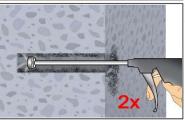
Mit Wasser ausspülen, bis klares Wasser aus dem Bohrloch austritt.



Bohrloch mit geeigneter Drahtbürste gem. Tabelle B5 (minimaler Bürstendurchmesser $d_{b,min}$ ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder einer Bohrmaschine ausbürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.



Erneut mit Wasser ausspülen, bis klares Wasser aus dem Bohrloch austritt.


Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

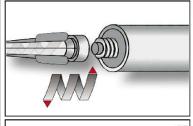
Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine entsprechende Verlängerung verwendet werden.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B5 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder einer Bohrmaschine ausbürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.

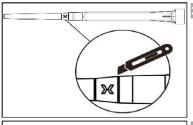
Anschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine entsprechende Verlängerung verwendet werden.

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

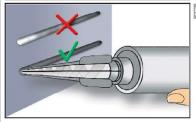
B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse


Verwendungszweck

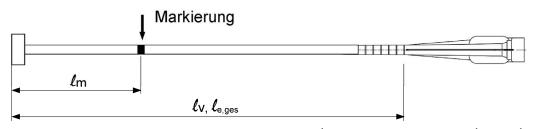
Setzanweisung: Bohrlochreinigung (DD)


Anhang B 8


C) Vorbereiten von Kartusche und Bewehrungsstab


Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die maximale Verarbeitungszeit (Tabelle B3) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.

Bei Verwendung der Mischerverlängerung VL16/1,8, muss die Spitze des Mischers an der Position "X" abgeschnitten werden .



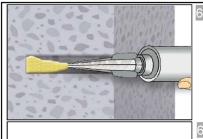
Vor dem Injizieren des Mörtels ist die Setztiefe auf dem Bewehrungsstab zu markieren (z.B. mit Klebeband). Danach den Bewehrungsstab in das leere Bohrloch einführen, um die korrekte Bohrlochtiefe Iv zu überprüfen. Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein .

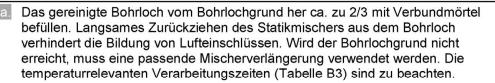
Mörtelvorlauf ist nicht zur Befestigung des Bewehrungseisens geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe

D) Befüllen des Bohrloches

Auf Mischer und Mischerverlängerung müssen Mörtel-Füllmarke $\ell_{\rm m}$ und Verankerungstiefe $\ell_{\rm v}$ bzw. $\ell_{\rm e,ges}$ mit einem Klebeband oder Textmarker markiert werden. Grobe Abschätzung: $\ell_{\rm m}=1/3\cdot\ell_{\rm v}$ Solange das Bohrloch mit Mörtel befüllen, bis die Mörtel-Füllmarke Markierung $\ell_{\rm m}$ sichtbar wird.

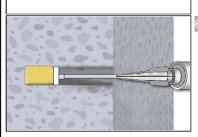
Optimales Mörtelvolumen: $\ell_{\rm m} = \ell_{\rm v} \ {\rm resp.} \ \ell_{\rm e,ges} \cdot \left(1,2 \cdot \frac{\varphi^2}{d_0^2} - 0,2\right) \ [{\rm mm}]$


B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse

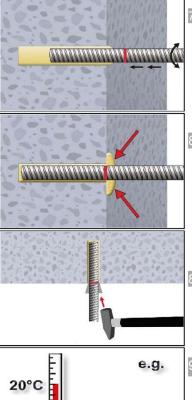

Verwendungszweck

Setzanweisung: Vorbereiten von Kartusche und Bewehrungsstab und Befüllen des Bohrlochs

Anhang B 9



- Verfüllstutzen sind gem. Tabelle B5 und B6 für die folgenden Anwendungen zu verwenden:
- Horizontalmontage (horizontale Richtung) und Bodenmontage (vertikale Richtung nach unten): Bohrer-Ø $d_0 \ge 18$ mm und Setztiefe $h_{ef} > 250$ mm
- Überkopfmontage (vertikale Richtung nach oben): Bohrer-Ø d₀ ≥ 18 mm Vor dem Injizieren den Mischer, Verlängerung und Verfüllstutzen montieren.



Den Verfüllstutzen bis zum Bohrlochgrund einführen und den Mörtel injizieren. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden.

Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels auf natürliche Weise aus dem Bohrloch gedrückt.

Die temperaturrelevanten Verarbeitungszeiten (Tabelle B3) sind zu beachten.

E) Setzen des Bewehrungsstabes

Bewehrungsstab mit leichter Drehbewegung (zur Verbesserung der Mörtelverteilung) bis zur Setztiefemarkierung in das Bohrloch einführen.

Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.

Nach Installation des Stabes sicherstellen, dass sich die Setztiefenmarkierung am Bohrlochanfang befindet und der Ringspalt komplett mit Mörtel ausgefüllt ist. Tritt keine Masse nach Erreichen der Setztiefe am Bohrlochanfang heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden.

Bei Überkopfmontage ist der Bewehrungsstab bis zum Start der Aushärtung zu fixieren (z.B. Holzkeile).

2:00

Die angegebene Verarbeitungszeit t_{qel} ist zu beachten und einzuhalten. Achtung: die Verarbeitungszeit kann auf Grund von unterschiedlichen Untergrund-Temperaturen variieren (siehe Tabelle B3). Bewehrungsstab vor Erreichen der Aushärtezeit (siehe Tabelle B3) weder bewegen, noch belasten.

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse

Verwendungszweck

Setzanweisung: Setzen der Ankerstange

Anhang B 10

Minimale Verankerungslänge und minimale Übergreifungslänge

Die minimale Verankerungslänge $\ell_{\text{b,min}}$ und die minimale Übergreifungslänge $\ell_{\text{0,min}}$ gemäß EN 1992-1-1:2004+AC:2010 ($\ell_{\text{b,min}}$ nach Gl. 8.6 und Gl. 8.7 und $\ell_{\text{0,min}}$ nach Gl. 8.11) müssen mit dem Erhöhungsfaktor α_{lb} nach Tabelle C1 multipliziert werden.

Tabelle C1: Erhöhungsfaktor $\alpha_{\rm lb}$ in Abhängigkeit der Betonfestigkeitsklasse und Bohrverfahren

Betonfestigkeitsklasse	Bohrverfahren	Stabdurchmesser	Erhöhungsfaktor αι _ι
C12/15 bis C50/60	HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrersystem CD: Druckluftbohren	8 mm bis 40 mm	1,0
C12/15 bis C50/60	DD: Diamantbohre	8 mm bis 40 mm	1,5

Tabelle C2: Reduktionsfaktor kb

Stabdurchmesser	Bohr-	Betonfestigkeitsklasse								
ф	verfahren	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 bis 40 mm	HD, HDB, CD	1,0								
8 bis 40 mm	DD	1,0			0,90	0,79	0,73	0,68	0,63	

Tabelle C3: Bemessungswerte der Verbundspannung fbd,PIR in N/mm² für alle Bohrverfahren und für gute Verbundbedingungen

 $f_{bd,PIR} = k_b \cdot f_{bd}$

mit

f_{bd}: Bemessungswert der Verbundspannung in N/mm², in Abhängigkeit von der Betonfestigkeitsklasse und dem Stabdurchmesser entsprechend EN 1992-1-1:2004+AC:2010 (für alle anderen Verbundbedingungen sind die Werte mit 0,7 zu multiplizieren)

kb: Reduktionsfaktor gem. Tabelle C2

Stabdurchmesser	Bohr-	Betonfestigkeitsklasse								
ф	verfahren	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 bis 32 mm		1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	HD, HDB, CD	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm		1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm		1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0
8 bis 32 mm		1,6	2,0	2,3			2	,7		
34 mm		1,6	2,0	2,3	,3 2,6					
36 mm	DD	1,5	1,9	2,2			2	,6		
40 mm	1	1,5	1,8	2,1	2,5					

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse	
Leistungen	Anhang C 1
Erhöhungsfaktor α _{lb} , Reduktionsfaktor k _b Bemessungswerte der Verbundspannungen f _{bd,PIR}	

Bemessungswert der Verbundspannung f_{bd,fi} unter Brandbeanspruchung für die Betonfestigkeitsklassen C12/15 bis C50/60, (alle Bohrmethoden):

Der Bemessungswert der Verbundspannung f_{bd,fi} unter Brandbeanspruchung ist nach der folgenden Gleichung zu berechnen:

$$f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$$

mit: $\theta \le 140^{\circ}\text{C}$: $k_{fi}(\theta) = 5862 \cdot \theta^{-1,657} / (f_{bd,PIR} \cdot 4,3) \le 1,0$

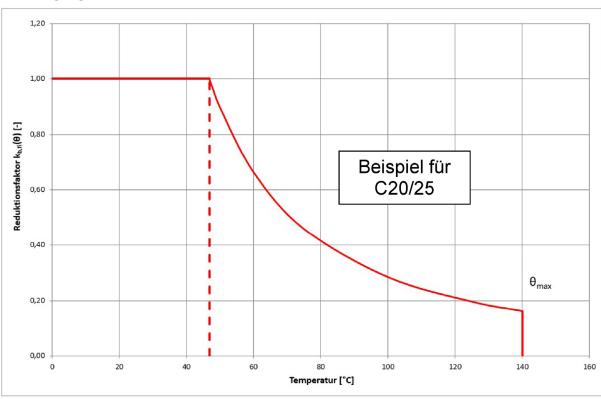
 $\theta > 140^{\circ}C$: $k_{fi}(\theta) = 0$

f_{bd,fi} Bemessungswert der Verbundspannung unter Brandbeanspruchung in N/mm²

θ Temperatur in °C in der Mörtelfuge.

 $k_{fi}(\theta)$ Abminderungsfaktor unter Brandbeanspruchung.

f_{bd,PIR} Bemessungswert der Verbundspannung in N/mm² im kalten Zustand nach den Tabellen C3


in Abhängigkeit von der Betonfestigkeitsklasse, dem Stabdurchmesser,

dem Bohrverfahren und dem Verbundbereich entsprechend EN 1992-1-1:2004+AC:2010.

 γ_c Teilsicherheitsbeiwert gemäß EN 1992-1-1:2004+AC:2010. $\gamma_{M,fi}$ Teilsicherheitsbeiwert gemäß EN 1992-1-2:2004+AC:2008.

Für den Nachweis unter Brandbeanspruchung sind die Verankerungslängen nach EN 1992-1-1:2004+AC:2010 Gleichung 8.3 mit der temperaturabhängigen Verbundspannung f_{bd,fi} zu ermitteln.

Beispielkurve des Abminderungsfaktor $k_{fi}(\theta)$ für Betonfestigkeitsklasse C20/25 bei guter Verbundbedingung:

B+BTec Injektionssystem BIS- E Epoxy für Bewehrungsanschlüsse	
Leistungen Bemessungswert der Verbundspannung f _{bd,fi} unter Brandbeanspruchung	Anhang C 2