

Allgemeine Bauartgenehmigung

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen: 16-1.17.1-120/12 22.10.2020

Nummer:

Z-17.1-1070

Antragsteller:

THERMOPOR GmbH Römerweg 2

86497 Horgau

Geltungsdauer

vom: 22. Oktober 2020 bis: 22. Oktober 2025

Gegenstand dieses Bescheides:

Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich genehmigt. Dieser Bescheid umfasst sieben Seiten und acht Anlagen. Der Gegenstand wurde erstmals am 27. März 2013 zugelassen.

Seite 2 von 7 | 22. Oktober 2020

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen Bauartgenehmigung ist die Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- 2 Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Anwender des Regelungsgegenstandes sind, unbeschadet weitergehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- 7 Dieser Bescheid bezieht sich auf die von dem Antragsteller im Genehmigungsverfahren zum Regelungsgegenstand gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Genehmigungsgrundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.
- Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.

Seite 3 von 7 | 22. Oktober 2020

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Anwendungsbereich

- (1) Gegenstand der allgemeinen Bauartgenehmigung ist die Planung, Bemessung und Ausführung von Mauerwerk aus
- Hochlochziegeln (P-Ziegel der Kategorie I) bezeichnet als THERMOPOR HLz EBS mit den in der Leistungserklärung nach EN 771-1 erklärten Leistungen gemäß der Anlage 8 und Lochbildern gemäß den Anlagen 1 bis 7 und
- Normalmauermörtel der Mörtelklasse M 5 oder M 10 nach EN 998-2 in Verbindung mit DIN 20000-412.
- (2) Die Hochlochziegel weisen folgende Abmessungen auf:
- Länge [mm]: 247, 307, 372 oder 497
- Breite [mm]: 115, 145, 150, 175, 200, 240, 250 oder 300
- Höhe [mm]: 238.
- (3) Die Hochlochziegel sind in die folgenden Rohdichteklassen und Druckfestigkeitsklassen eingestuft:

Rohdichteklassen: 0,8; 0,9; 1,0; 1,2 oder 1,4

- Druckfestigkeitsklassen: 8, 10, 12, 16 oder 20.
- (4) Das Mauerwerk darf als unbewehrtes Mauerwerk nach DIN EN 1996-1-1 in Verbindung mit DIN EN 1996-1-1/NA und DIN EN 1996-2 in Verbindung mit DIN EN 1996-2/NA ausgeführt werden.
- (5) Das Mauerwerk darf nicht als eingefasstes Mauerwerk nach DIN EN 1996-1-1 ausgeführt werden.

2 Bestimmungen für Planung, Bemessung und Ausführung

2.1 Allgemeines

Das Mauerwerk ist unter Beachtung der Technischen Baubestimmungen zu planen und zu bemessen und auszuführen, sofern im Folgenden nichts anderes bestimmt ist.

2.2 Zuordnung der Rohdichteklasse

Für die Zuordnung der deklarierten Mittelwerte und Einzelwerte der Brutto-Trockenrohdichte der Hochlochziegel in Rohdichteklassen gilt Tabelle 1.

Tabelle 1: Rohdichteklassen

Brutto-Trockenrohdichte Mittelwert kg/m³	Brutto-Trockenrohdichte Einzelwert kg/m³	Rohdichteklasse
705 bis 800	655 bis 850	0,8
805 bis 900	755 bis 950	0,9
905 bis 1000	855 bis 1050	1,0
1010 bis 1200	910 bis 1300	1,2
1210 bis 1400	1110 bis 1500	1,4

Seite 4 von 7 | 22. Oktober 2020

2.3 Statische Berechnung

- (1) Für die Berechnung des Mauerwerks gelten die Bestimmungen der Normen DIN EN 1996-1-1 in Verbindung mit DIN EN 1996-1-1/NA, DIN EN 1996-1-1/NA/A1 und DIN EN 1996-1-1/NA/A2 sowie DIN EN 1996-3 in Verbindung mit DIN EN 1996-3/NA, DIN EN 1996-3/NA/A1 und DIN EN 1996-3/NA/A2 für Mauerwerk ohne Stoßfugenvermörtelung, soweit in diesem Bescheid nichts anderes bestimmt ist.
- (2) Der rechnerische Ansatz von zusammengesetzten Querschnitten (siehe z. B. DIN EN 1996-1-1, Abschnitt 5.5.3) ist nicht zulässig.
- (3) Für die charakteristischen Werte der Eigenlast gilt DIN EN 1991-1-1/NA, NCI Anhang NA.A, Tabelle NA.A 13.
- (4) Bei Mauerwerk, das rechtwinklig zu seiner Ebene belastet wird, dürfen Biegezugspannungen nicht in Rechnung gestellt werden. Ist ein rechnerischer Nachweis der Aufnahme dieser Belastung erforderlich, so darf eine Tragwirkung nur senkrecht zu den Lagerfugen unter Ausschluss von Biegezugspannungen angenommen werden.
- (5) Für die Zuordnung der deklarierten Mittelwerte der Druckfestigkeit der Mauerziegel senkrecht zur Lagerfläche in Druckfestigkeitsklassen und die charakteristischen Werte f_k der Druckfestigkeit des Mauerwerks gilt Tabelle 2.

Tabelle 2: Druckfestigkeiten

Mittelwert der Druckfestigkeit in N/mm²	Druckfestigkeits- klasse	charakteristisc Druckfestigk Normalma	eit in MN/m²
		M 5	M 10
≥ 8,4	8	3,9	4,4
≥ 10,5	10	4,5	5,0
≥ 12,5	12	5,0	5,6
≥ 16,7	16	5,9	6,6
≥ 20,9	20	6,7	7,5

- (6) Für die Ermittlung des Bemessungswertes des Tragwiderstandes bei Berechnung nach DIN EN 1996-1-1 in Verbindung mit DIN EN 1996-1-1/NA ist der Abminderungsfaktor Φ_m zur Berücksichtigung von Schlankheit und Ausmitte gemäß DIN EN 1996-1-1/NA, NCI Anhang NA.G zu berechnen.
- (7) Sofern gemäß DIN EN 1996-1-1/NA, NCI zu 5.5.3, bzw. DIN EN 1996-3/NA, NDP zu 4.1 (1)P, ein rechnerischer Nachweis der Schubtragfähigkeit erforderlich ist, ist dieser nach DIN EN 1996-1-1, Abschnitt 6.2, in Verbindung mit DIN EN 1996-1-1/NA, NCI zu 6.2, zu führen.

2.4 Witterungsschutz

Außenwände sind stets mit einem Witterungsschutz zu versehen. Die Schutzmaßnahmen gegen Feuchtebeanspruchung (z. B. Witterungsschutz bei Außenwänden mit Putz) sind so zu wählen, dass eine dauerhafte Überbrückung des Stoßfugenbereichs gegeben ist.

2.5 Wärmeschutz

Für den rechnerischen Nachweis des Wärmeschutzes gelten für das Mauerwerk die Bemessungswerte der Wärmeleitfähigkeit λ nach DIN 4108-4, Tabelle 1, Zeile 4.1.3 bzw. 4.1.2.

2.6 Schallschutz

- (1) Für die Anforderungen an die Luftschalldämmung gilt DIN 4109-1.
- (2) Der rechnerische Nachweis des Schallschutzes darf nach DIN 4109-2 geführt werden.

Seite 5 von 7 | 22. Oktober 2020

2.7 Feuerwiderstandsfähigkeit

- (1) Die Verwendung von tragenden Wänden, Wandabschnitten und Pfeilern aus Mauerwerk, an die Anforderungen an die Feuerwiderstandsfähigkeit und diesbezüglich die bauaufsichtliche Anforderung¹ "feuerhemmend", "hochfeuerhemmend" oder "feuerbeständig" und von Wänden, an die die Anforderung "Brandwand" gestellt werden, ist für die nachfolgenden Angaben nachgewiesen.
- (2) Für die Klassifizierung gemäß Tabelle 3 sind
- hinsichtlich der Klassifizierung des Feuerwiderstandes die in DIN EN 1996-1-2/NA, NPD zu Anhang B (5), und DIN 4102-4, Abschnitte 9.2 und 9.8, und
- hinsichtlich der Klassifizierung als Brandwand zusätzlich die in DIN EN 1996-1-2, Absatz 5.2 (6), und DIN 4102-4, Absätze 9.5.1 (3) bis (5),

aufgeführten Festlegungen zu beachten.

- (3) Die in Tabelle 3 angegebenen ()-Werte gelten für Wände bzw. Pfeiler mit beidseitigem bzw. allseitigem Putz (innenseitig mindestens 15 mm, außenseitig mindestens 20 mm) nach DIN 4102-4, Abschnitt 9.2.18.
- (4) Für die Ermittlung des Ausnutzungsfaktors im Brandfall α_1 gilt DIN EN 1996-1-2/NA, NDP zu 4.5 (3), Gleichung (NA.3).
- (5) Für die Anwendung von Tabelle 3 gilt:

$$K = \frac{25 - \frac{h_{\text{ef}}}{t}}{1,14 - 0,024 \cdot \frac{h_{\text{ef}}}{t}} \qquad \text{für } 10 < \frac{h_{\text{ef}}}{t} \le 25$$

$$K = \frac{15}{1,14 - 0,024 \cdot \frac{h_{\text{ef}}}{t}} \qquad \text{für } \frac{h_{\text{ef}}}{t} \le 10$$
(2)

$$K = \frac{15}{1,14 - 0,024 \cdot \frac{h_{\text{ef}}}{t}} \qquad \text{für } \frac{h_{\text{ef}}}{t} \le 10$$
 (2)

Dabei ist:

 h_{ef} die Knicklänge der Wand

die Dicke der Wand.

Einstufung des Mauerwerks in Feuerwiderstandsklassen bzw. als Brandwände Tabelle 3: gemäß DIN 4102-2 bzw. DIN 4102-3

tragende raumabschließende Wände (einseitige Brandbeanspruchung)			
Ausnutzungsfaktor	Mindestdicke <i>t</i> in mm für die Feuerwiderstandsklassebenennung		
	F 30-A	F 60-A	F 90-A
$\alpha_{fi} \leq 0.0379 \cdot \kappa$	(115)	(115)	(115)

Zuordnung der Feuerwiderstandklassen zu den bauaufsichtlichen Anforderungen gemäß Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVV TB), Teil A, Abschnitt A 2.1.3 in Verbindung mit Anhang 4, Abschnitt 4.1 und Tabelle 4.2.3.

Seite 6 von 7 | 22. Oktober 2020

Fortsetzung Tabelle 3:

tragende nichtraumabschließende Wände (mehrseitige Brandbeanspruchung)			
Ausnutzungsfaktor	Mindestdicke <i>t</i> in mm für die Feuerwiderstandsklassebenennung		
	F 30-A	F 60-A	F 90-A
α _{fi} ≤ 0,0379· <i>κ</i> ·	(115)	(115)	(115)

tragende Pfeiler bzw. nichtraumabschließende Wandabschnitte, Länge < 1,0 m (mehrseitige Brandbeanspruchung)				
Ausnutzungsfaktor	Mindestdicke t		tbreite <i>b</i> in mn rstandsklassel	
	mm	F 30-A	F 60-A	F 90-A
α _{fi} ≤ 0,0227· κ	115 175	(365) (240)	(490) (240)	(615) (240)
α _{fi} ≤ 0,0379· <i>κ</i>	115 175 240	(490) (240) (175)	(615) (240) (175)	(730) (365) (240)

Brandwände (einseitige Brandbeanspruchung)		
Ausnutzungsfaktor	Mindestdicke t in mm bei	
	einschaliger	zweischaliger
	Ausfü	hrung
$\alpha_{\rm fi} \leq 0.0284 \cdot \kappa$	365 (240)	2 x 240 (2 x 175)

2.8 Ausführung

- (1) Für die Ausführung des Mauerwerks gelten die Bestimmungen der Normen DIN EN 1996-1-1 in Verbindung mit DIN EN 1996-1-1/NA und DIN EN 1996-2 in Verbindung mit DIN EN 1996-2/NA, soweit im Folgenden nichts anderes bestimmt ist.
- (2) Das Mauerwerk ist als Einstein-Mauerwerk ohne Stoßfugenvermörtelung auszuführen.
- (3) Die Hochlochziegel sind dicht aneinander ("knirsch") gemäß DIN EN 1996-1-1/NA, NCL zu 8.1.5, zu stoßen, anzudrücken und lot- und fluchtgerecht in ihre endgültige Lage zu bringen.

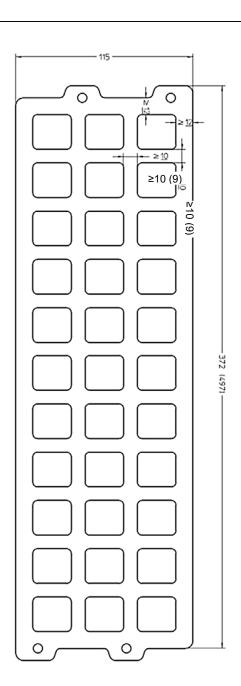
Normenverzeichnis

EN 771-1:2011+A1:2015	Festlegungen für Mauersteine - Teil 1: Mauerziegel (in Deutschland umgesetzt durch DIN EN 771-1:2015)
EN 998-2:2016	Festlegungen für Mörtel im Mauerwerksbau; Teil 2: Mauermörtel (in Deutschland umgesetzt durch DIN EN 998-2:2017)
DIN EN 1745:2012-07	Mauerwerk und Mauerwerksprodukte - Verfahren zur Bestimmung von wärmeschutztechnischen Eigenschaften
DIN EN 1991-1-1/NA:2010-12	Nationaler Anhang - National festgelegte Parameter - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-1: Allgemeine Einwirkungen auf Tragwerke - Wichten, Eigengewicht und Nutzlasten im Hochbau

BD Dipl.-Ing. Andreas Kummerow

Abteilungsleiter

Seite 7 von 7 | 22. Oktober 2020


DIN EN 1996-1-1:2013-02	Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk
DIN EN 1996-1-1/NA:2012-05	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk
DIN EN 1996-1-1/NA/A1:2014-03	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk; Änderung A1
DIN EN 1996-1-1/NA/A2:2015-01	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk; Änderung A2
DIN EN 1996-1-2/NA:2013-06	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall
DIN EN 1996-2:2010-12	Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 2: Planung, Auswahl der Baustoffe und Ausführung von Mauerwerk; Deutsche Fassung EN 1996-2:2006 + AC:2009
DIN EN 1996-2/NA:2012-01	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 2: Planung, Auswahl der Baustoffe und Ausführung von Mauerwerk
DIN EN 1996-3:2010-12	Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten; Deutsche Fassung EN 1996-3:2006 + AC:2009
DIN EN 1996-3/NA:2012-01	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten
DIN EN 1996-3/NA/A1:2014-03	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten; Änderung A1
DIN EN 1996-3/NA/A2:2015-01	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten; Änderung A2
DIN 4108-4:2017-03	Wärmeschutz und Energie-Einsparung in Gebäuden – Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte –
DIN 4109-1:2018-01	Schallschutz im Hochbau - Teil 1: Mindestanforderungen
DIN 4109-2:2018-01	Schallschutz im Hochbau - Teil 2: Rechnerische Nachweise der Erfüllung der Anforderungen
DIN 20000-412:2019-06	Anwendung von Bauprodukten in Bauwerken - Teil 412: Regeln für die Verwendung von Mauermörtel nach DIN EN 998-2:2017-02

Z56569.20 1.17.1-120/12

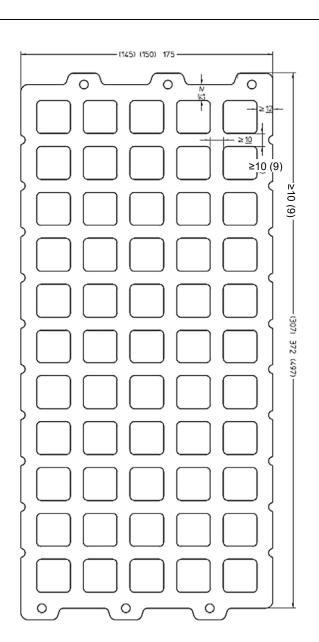
Beglaubigt

Hemme

Ziegelbreite	Lochreihenanzahl
115	3 oder 4

Ziegellänge	Lochreihenanzahl
372	10, 11 oder 12
497	14 oder 15

Gesamtlochquerschnitt RDK 0,8 ≤ 47,0 % Gesamtlochquerschnitt RDK ≥ 0,9 ≤ 45,0 %


Summe der Querstegdicken: $\sum s_q \ge 290 \text{ mm/m}$ Summe der Längsstegdicken: $\sum s_l \ge 340 \text{ mm/m}$ Einzellochquerschnitt: $\le 5,5 \text{ cm}^2$ Grifflöcher: $\le 16,0 \text{ cm}^2$

Für Ziegel der Rohdichteklasse 0,8 gelten für die Innenstegdicken die ()-Werte.

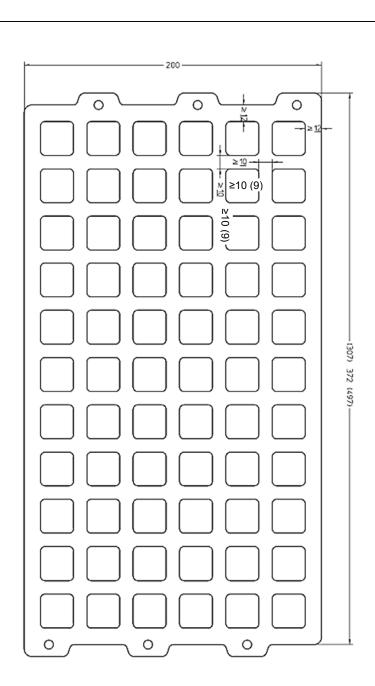
Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS	
Form und Ausbildung Hochlochziegel THERMOPOR HLz EBS Breite 115 mm, Länge 372 mm	Anlage 1

Z64307.16 1.17.1-120/12

Ziegelbreite	Lochreihenanzahl
145	4 oder 5
150	4 oder 5
175	4 oder 5

Ziegellänge	Lochreihenanzahl	
307	8 oder 9	
372	10, 11 oder 12	
497	14 oder 15	

Gesamtlochquerschnitt RDK 0,8 ≤ 47,0 % Gesamtlochquerschnitt RDK ≥ 0,9 ≤ 45,0 %


Summe der Querstegdicken: $\sum s_q \ge 290 \text{ mm/m}$ Summe der Längsstegdicken: $\sum s_l \ge 340 \text{ mm/m}$ Einzellochquerschnitt: $\le 5,5 \text{ cm}^2$ Grifflöcher: $\le 16,0 \text{ cm}^2$

Für Ziegel der Rohdichteklasse 0,8 gelten für die Innenstegdicken die ()-Werte.

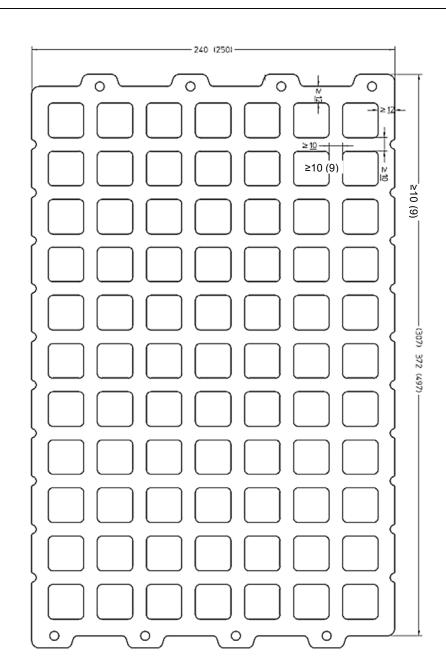
Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS	
Form und Ausbildung Hochlochziegel THERMOPOR HLz EBS Breite 175 mm, Länge 372 mm	Anlage 2

Z64307.16 1.17.1-120/12

Ziegelbreite	Lochreihenanzahl
200	6

Ziegellänge	Lochreihenanzahl	
307	8 oder 9	
372	10, 11 oder 12	
497	14 oder 15	

Gesamtlochquerschnitt RDK $0.8 \le 47.0 \%$ Gesamtlochquerschnitt RDK $\ge 0.9 \le 45.0 \%$


Summe der Querstegdicken: $\sum s_q \ge 290 \text{ mm/m}$ Summe der Längsstegdicken: $\sum s_l \ge 340 \text{ mm/m}$ Einzellochquerschnitt: $\le 5,5 \text{ cm}^2$ Grifflöcher: $\le 16,0 \text{ cm}^2$

Für Ziegel der Rohdichteklasse 0,8 gelten für die Innenstegdicken die ()-Werte.

Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS	
Form und Ausbildung Hochlochziegel THERMOPOR HLz EBS Breite 200 mm, Länge 372 mm	Anlage 3

Z64307.16 1.17.1-120/12

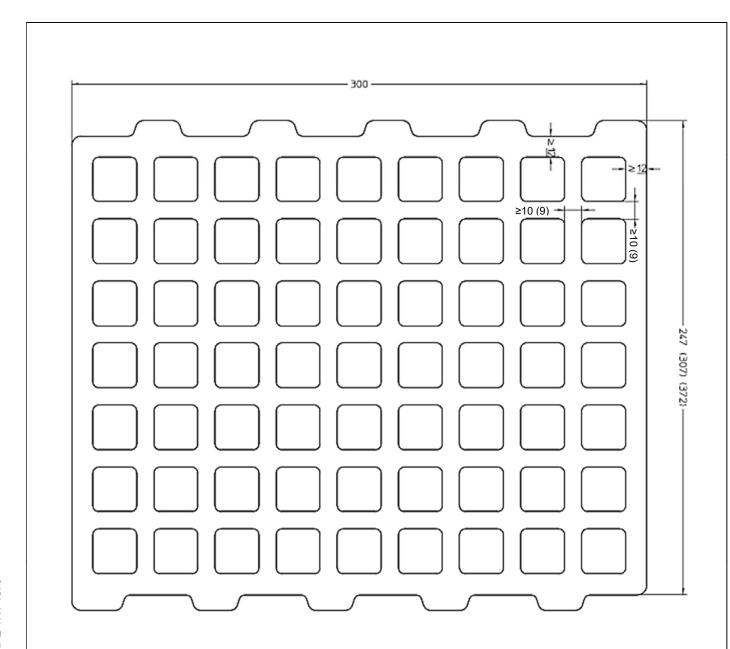
Ziegelbreite	Lochreihenanzahl
240	6 oder 7
250	6 oder 7

Ziegellänge	Lochreihenanzahl	
307	8 oder 9	
372	10, 11 oder 12	
497	14 oder 15	

Gesamtlochquerschnitt RDK $0.8 \le 47.0 \%$ Gesamtlochquerschnitt RDK $\ge 0.9 \le 45.0 \%$

Summe der Querstegdicken: $\sum s_q \ge 290 \text{ mm/m}$ Summe der Längsstegdicken: $\sum s_i \ge 340 \text{ mm/m}$ Einzellochquerschnitt: $\le 5,5 \text{ cm}^2$ Grifflöcher: $\le 16,0 \text{ cm}^2$

Für Ziegel der Rohdichteklasse 0,8 gelten für die Innenstegdicken die ()-Werte.


Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS

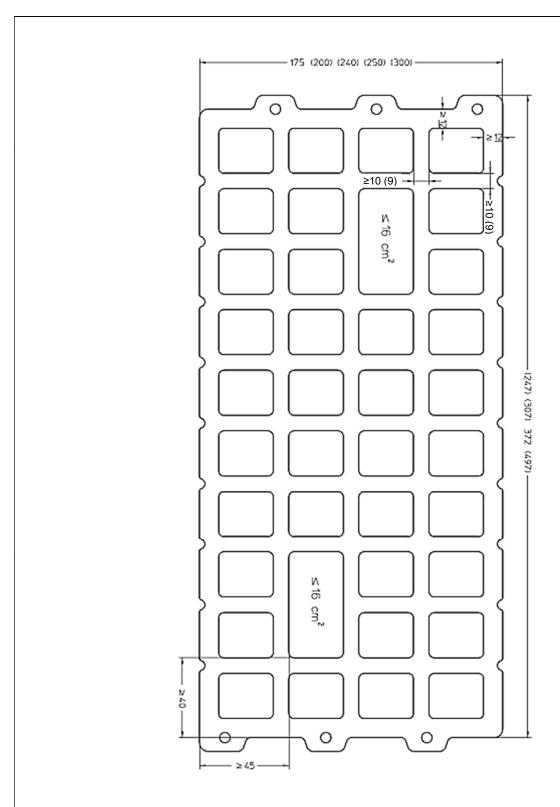
Form und Ausbildung Hochlochziegel THERMOPOR HLz EBS

Breite 240 mm, Länge 372 mm

Anlage 4

Ziegelbreite	Lochreihenanzahl
300	9 oder 10

Ziegellänge	Lochreihenanzahl	
247	6 oder 7	
307	8 oder 9	
372	10, 11 oder 12	

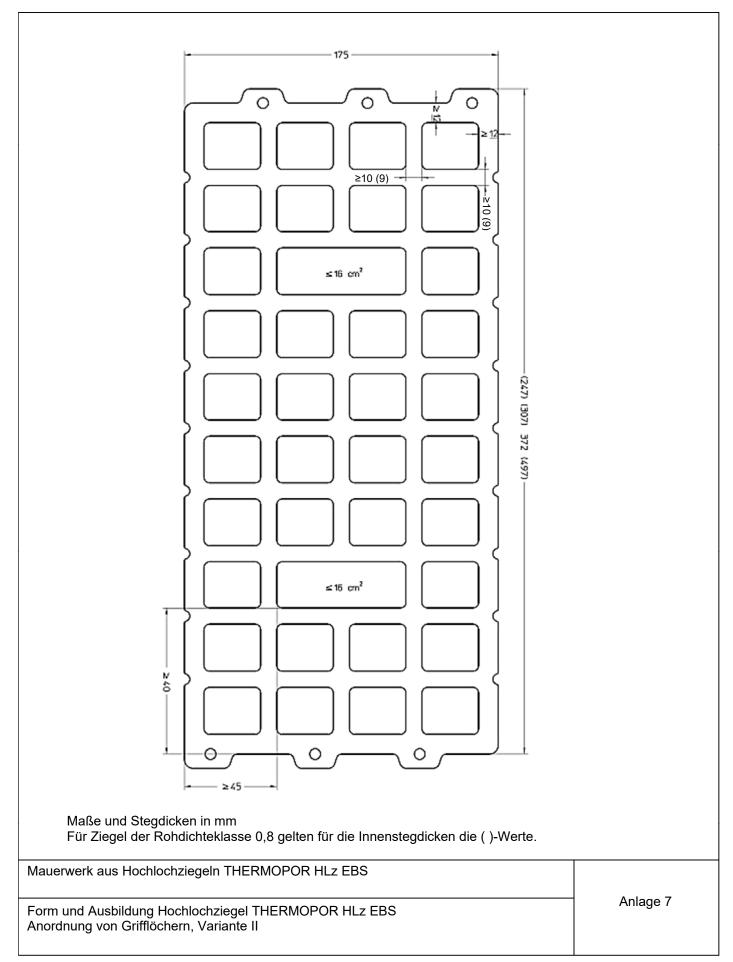

Gesamtlochquerschnitt RDK 0,8 \leq 47,0 % Gesamtlochquerschnitt RDK \geq 0,9 \leq 45,0 %

Summe der Querstegdicken: $\sum sq \ge 290 \text{ mm/m}$ Summe der Längsstegdicken: $\sum s_i \ge 340 \text{ mm/m}$ Einzellochquerschnitt: $\le 5,5 \text{ cm}^2$ Grifflöcher: $\le 16,0 \text{ cm}^2$

Für Ziegel der Rohdichteklasse 0,8 gelten für die Innenstegdicken die ()-Werte.

Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS	
Form und Ausbildung Hochlochziegel THERMOPOR HLz EBS Breite 300 mm, Länge 247 mm	Anlage 5

Maße und Stegdicken in mm Für Ziegel der Rohdichteklasse 0,8 gelten für die Innenstegdicken die ()-Werte.


Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS

Form und Ausbildung Hochlochziegel THERMOPOR HLz EBS

Anlage 6

Anordnung von Grifflöchern, Variante I

	P-Ziegel 372 x	- Katego (175 x 2			
Mauerziegel fi	ür tragendes und n	ichttrageı	ndes, gesc	hütztes M	lauerwerk
				Länge	372
Maße			mm	Breite	175
				Höhe	238
			mm	Länge	-10/ +8
	Mittelwert	Klasse Tm		Breite	-7/ +3
Grenzabmaße				Höhe	-5,0/ +5,0
Orenzabinaise		1.61		Länge	12
	Maßspanne	Klasse Rm	mm	Breite	8
				Höhe	6,0
Form und Ausbildung siehe Bescheid			Nr.	Z-17.1-1070, Anlagen 1 bis 7	
Druckfestigkeit (I Lagerfläche (For			N/mm ²	≥ 12,5	
Brutto-Trockenro	hdichte (MW)		kg/m³	760	
Brutto-Trockenro (Abmaßklasse)	hdichte		kg/m³	705 bis 800	
Netto-Trockenrohdichte (MW) (Scherbenrohdichte)			kg/m³	NPD	
Wärmeleitfähigkeit nach DIN EN 1745			W/(m·K)	NPD	
Gehalt an aktiven löslichen Salzen		Klasse		NPD (S	0)
Brandverhalten		Klasse		A1	
Wasserdampfdiffusionskoeffizient nach DIN EN 1745		μ		5 / 10	
Verbundfestigkei Wert nach DIN E		_	N/mm²	0,15	
Frostwiderstand		Klasse		NPD (F	<u>)</u>

Δ	ltω	rna	tiv

247	307	497				
115	145	150	200	240	250	300

-10/5	-10/8	-10/8				
-5/5	-6/3	-6/3	-7/3	-10/5	-10/5	-10/8

10	12	12				
6	7	7	8	10	10	12

Alternativ

≥ 8,4 ≥ 10,5 ≥ 16,7 ≥ 20,9

Alternativ

860	960	1110	1310
805	905	1010	1210
bis	bis	bis	bis
900	1000	1200	1400

Zusätzliche Herstellerangaben nach DIN EN 771-1

Brutto-Trockenrohdichte (EW)	min	kg/m³	≥ 655	
Brutto-Trockenrohdichte (EW)	max	kg/m³	≤ 850	

≥ 755	≥ 855	≥ 910	≥ 1110
≤ 950	≤ 1050	≤ 1300	≤ 1500

Mauerwerk aus Hochlochziegeln THERMOPOR HLz EBS	
Produktbeschreibung der Hochlochziegel THERMOPOR HLz EBS	Anlage 8