

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0001 of 2 February 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Würth Fixanchor W-FA

Mechanical fastener for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 1

15 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 12/2019

ETA-02/0001 issued on 10 August 2017

European Technical Assessment ETA-02/0001

Page 2 of 15 | 2 February 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-02/0001

Page 3 of 15 | 2 February 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Würth Fixanchor W-FA is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi static action)	See Annex C3
Displacements and Durability	See Annex C4 and B1
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-02/0001

Page 4 of 15 | 2 February 2021

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 2 February 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Baderschneider

Würth Wedge Anchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR

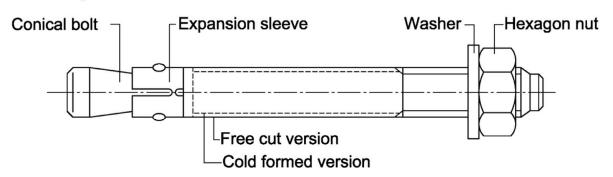
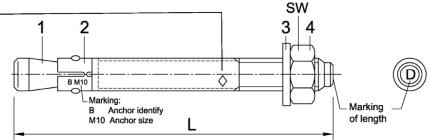


Table A1: Dimensions

Anchor size		Wrench size		
Alichor Size	Embedment depth hef,1	[SW]		
M6	$t_{\text{fix hef,1}} + 47,4$	$t_{fix,hef,2} + 57,4$	t _{fix,hef,3} + 77,4	10
M8	$t_{fix hef, 1} + 57,4$	$t_{fix,hef,2} + 66,4$	t _{fix,hef,3} + 92,4	13
M10	$t_{\text{fix hef,1}} + 68,0$	$t_{\text{fix,hef,2}} + 74,0$	t _{fix,hef,3} + 106,0	17
M12	$t_{\text{fix hef,1}}$ + 82,3	$t_{fix,hef,2} + 97,3$	t _{fix,hef,3} + 132,3	19
M16	$t_{\text{fix hef,1}} + 103,0$ $(t_{\text{fix hef,1}} + 101,8)^{1)}$	$t_{fix,hef,2} + 121,0$ $(t_{fix,hef,2} + 117,8)^{1)}$	$t_{fix,hef,3} + 159,0$ $(t_{fix,hef,3} + 157,8)^{1)}$	24
M20	$t_{\text{fix hef,1}} + 120,7$	$t_{\text{fix,hef,2}} + 142,7$	t _{fix,hef,3} + 157,7	30

 $^{^{\}rm 1)}\,\mbox{Anchor}$ version W-FA/A2 , W-FA/A4 , W-FA/HCR


15 maximum thickness of fixture for h_{ef,2}

21 maximum thickness of fixture for hef,1

additional marking:

A2 stainless steel
A4 stainless steel

HCR high corrosion resistant steel

Marking of length	Α	В	С	D	E	F	G	H		7	K	L	M
Length of anchor min ≥	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Mantelan at law with	L		_		_		-		W	14/	V	V	7

Marking of length	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z
Length of anchor min ≥	203,2	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2
Length of anchor max <	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	483,0

Dimensions in mm

Würth Fixanchor W-FA

Product descriptionMarking and Dimensions

Annex A1

Table A2: Materials

Part	Designation	Material
W-FA	/S electroplated	≥ 5 µm acc. to EN ISO 4042:1999
W-FA	/ F hot-dip galvanized	≥ 40 µm (in average 50 µm) acc. to EN ISO 10684:2011 or EN ISO 1461:2009
W-FA	/SH sherardized	≥ 45 µm acc. to EN ISO 17668:2016
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel according CRC II 1), acc. to EN 10088:2014
3	Washer	Steel, zinc plated
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012
W-FA	/A2	
1	Conical bolt	Stainless steel according CRC II 1), coated
2	Expansion sleeve	Stainless steel according CRC II 1), acc. to EN 10088:2014
3	Washer	Stainless steel according CRC II 1)
4	Hexagon nut	Stainless steel according CRC II ¹⁾ , property class 70, coated, EN ISO 3506-2:2009
W-FA	/A4	
1	Conical bolt	Stainless steel according CRC III 1), coated
2	Expansion sleeve	Stainless steel according CRC II 1) or CRC III 1), acc. to EN 10088:2014
3	Washer	Stainless steel according CRC III 1)
4	Hexagon nut	Stainless steel according CRC III ¹⁾ , property class 70, coated, EN ISO 3506-2:2009
W-FA	/HCR	
1	Conical bolt	Stainless steel according CRC V 1), coated
2	Expansion sleeve	Stainless steel according CRC III 1), acc. to EN 10088:2014
3	Washer	Stainless steel according CRC V 1)
4	Hexagon nut	Stainless steel according CRC V 1), property class 70, coated, EN ISO 3506-2:2009, EN 10088:2014

¹⁾ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3

Würth Fixanchor W-FA Product description Materials Annex A2

Specifications of intended use

Würth Fixanc	hor W-FA	M6	M8	M8 M10 M12 M16 F					
W-FA/S	electroplated	✓	✓	✓	✓	✓	✓		
W-FA/F	hot-dip galvanized	-	✓	✓	✓	✓	✓		
W-FA/SH	sherardized	V V V V					✓		
W-FA/A2	stainless steel	✓	✓	✓	✓	*	✓		
W-FA/A4	stainless steel	✓	✓	✓	✓	✓	✓		
W-FA/HCR	high corrosion resistant steel	✓	✓	✓	✓	✓	✓		
All versions	static or quasi-static action	✓							
All versions	uncracked concrete	1							

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

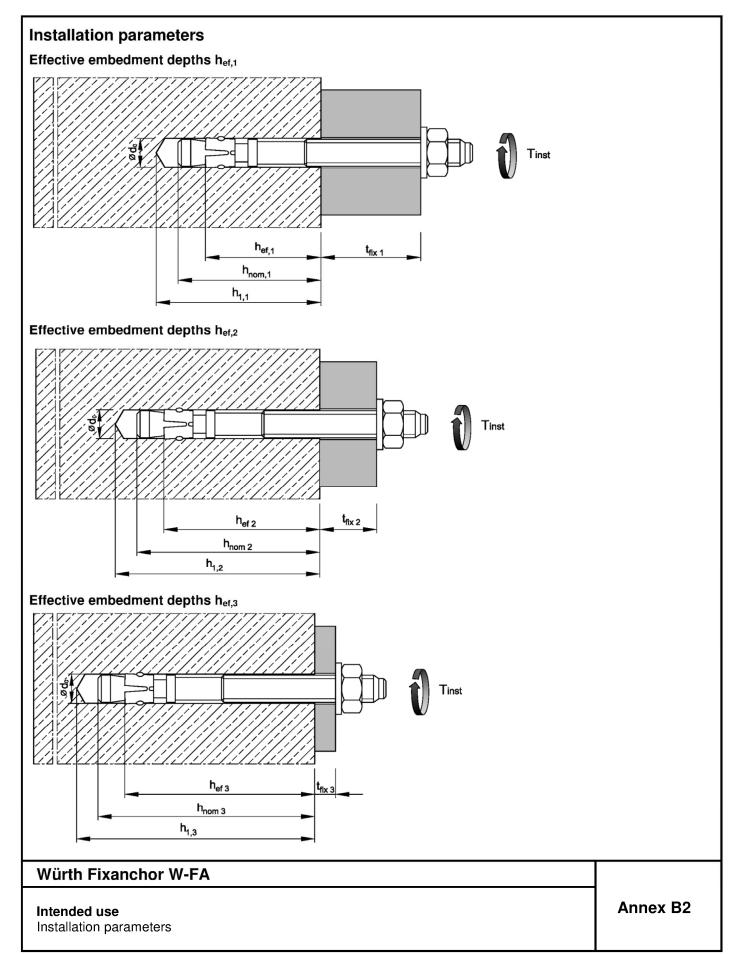
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
W-FA/A2	CRC II
W-FA/A4	CRC III
W-FA/HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed according to EN 1992-4:2018 or TR 055


Installation:

- Fastener installation carried out by appropriately qualified personnel and under the obligation of the person responsible for technical matters on site.
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

Würth Fixanchor W-FA	
Intended use Specifications	Annex B1

Electronic copy of the ETA by DIBt: ETA-02/0001

Table B1: Installation parameters

Anch	nor size	•		М6	М8	M10	M12	M16	M20
Nominal drill hole diameter d ₀ =		[mm]	6	8	10	12	16	20	
Cuttii	ng diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
ane	W-FA/S	T _{inst} =	[Nm]	8	15	30	50	100	200
n tor	W-FA/F	T _{inst} =	[Nm]	-	15	30	40	90	120
Installation torque	W-FA/SH	T _{inst} =	[Nm]	5	15	30	40	90	120
Insta	W-FA/A2 , W-FA/A4 , W-FA/HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
	eter of clearance hole	d _f ≤	[mm]	7	9	12	14	18	22
Emb	edment depth h _{ef,1}	-							
Effec	tive embedment depth	h _{ef,1} ≥	[mm]	30	35	42	50	64	78
Dept	h of drill hole	$h_{1,1}\geq$	[mm]	45	55	65	75	95	110
Emb	edment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Emb	edment depth h _{ef,2}	-					-		
Effec	tive embedment depth	h _{ef,2} ≥	[mm]	40	44	48	65	82 (80)1)	100
Dept	h of drill hole	h _{1,2} ≥	[mm]	55	65	70	90	110	130
Emb	Embedment depth h _{nom,2} ≥		[mm]	49	56	62	82	102	121
Emb	edment depth h _{ef,3}							_	
Effec	tive embedment depth	h _{ef,3} ≥	[mm]	60	70	80	100	120	115
Depth of drill hole $h_{1,3} \ge$		[mm]	75	91	102	125	148	145	
Emb	edment depth	h _{nom,3} ≥	[mm]	69	82	94	117	140	136

 $^{^{\}mbox{\tiny 1)}}$ Anchor version W-FA/A2 , W-FA/A4 , W-FA/HCR

Würth Fixanchor W-FA	
Intended use Installation data	Annex B3

Table B2: Minimum spacings and edge distances for W-FA/S, W-FA/F1), W-FA/SH

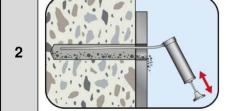
Anchor size			М6	M8	M10	M12	M16	M20		
Embedment depth h _{ef,1}										
Minimum member thickness	h_{min}	[mm]	80	80	100	100	130	160		
Minimum spacing	Smin	[mm]	35	40	55	100	100	140		
Minimum edge distance	Cmin	[mm]	40	45	65	100	100	140		
Embedment depth h _{ef,2}										
Minimum member thickness	h_{min}	[mm]	100	100	100	130	170	200		
Minimum spacing	Smin	[mm]	35	40	55	75	90	105		
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125		
Embedment depth hef,3						-				
Minimum member thickness	$h_{\text{min}} \\$	[mm]	120	126	132	165	208	215		
Minimum spacing	Smin	[mm]	35	40	55	75	90	105		
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125		

¹⁾ Anchor version W-FA/F: M8-M20

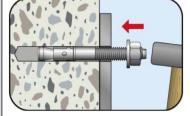
Table B3: Minimum spacings and edge distances for W-FA/A2, W-FA/A4, W-FA/HCR

Anchor size			М6	М8	M10	M12	M16	M20
Embedment depth h _{ef,1}							-	
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	Cmin	[mm]	40	60	65	100	110	140
Embedment depth h _{ef,2}	•							
Minimum member thickness	h_{min}	[mm]	100	100	100	130	160	200
Minimum spacing	Smin	[mm]	35	35	45	60	80	100
	for c ≥	[mm]	40	65	70	100	120	150
Minimum edge distance	Cmin	[mm]	35	45	55	70	80	100
	for s ≥	[mm]	60	110	80	100	140	180
Embedment depth h _{ef,3}	-						-	
Minimum member thickness	h_{min}	[mm]	120	126	132	165	200	215
Minimum angaing	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150
Minimum adaa diatanaa	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180

Intermediate values by linear interpolation

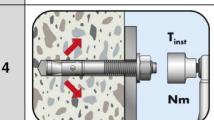

Würth Fixanchor W-FA	
Intended use Minimum spacings and edge distances	Annex B4

Installation instructions


1

Drill hole perpendicular to concrete surface, positioning of the drill holes without damaging the reinforcement.

If using a vacuum drill bit, proceed with step 3.



Blow out dust. Alternatively, vacuum clean down to the bottom of the hole.

3

Drive in anchor, such that the selected embedment depth is met.

Apply installation torque T_{inst} as specified in Table B1.

Würth Fixanchor W-FA

Intended use Installation instructions **Annex B5**

Z11451.21

Electronic copy of the ETA by DIBt: ETA-02/0001

8.06.01-733/20

Table C1: Characteristic values for tension loads for W-FA/S, W-FA/F1), W-FA/SH

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33,9 49,2 55 $(f_{ck} \over 20)^{0,5}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33,9 49,2 55				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33,9 49,2 55				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33,9 49,2 55				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33,9 49,2 55				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49,2 55				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49,2 55				
C20/25 for $h_{ef,3}$ $N_{Rk,p}$ $[kN]$ 10 13 16,4 26 40 Increasing factor for $N_{Rk,p}$ ψ_{C} $[-]$ $\left(\frac{f_{ck}}{20}\right)^{0,5}$ $\left(\frac{f_{ck}}{20}\right)^{0,29}$ $\left(\frac{f_{ck}}{20}\right)^{0,33}$	55				
Increasing factor for $N_{Rk,p}$ ψ_{C} [-] $\left(\frac{f_{ck}}{20}\right)^{0,5}$ $\left(\frac{f_{ck}}{20}\right)^{0,29}$ $\left(\frac{f_{ck}}{20}\right)^{0,33}$ (Seplitting Characteristic resistance in uncracked concrete C20/25 $N_{Rk,sp}$ [kN] $N_{Rk,p}$	- 05				
Increasing factor for $N_{Rk,p}$ ψc [-] $\left(\frac{J_{ck}}{20}\right)$ $\left(\frac{I_{ck}}{20}\right)$ \left	$\left(\frac{f_{ck}}{20}\right)^{0.5}$				
Characteristic resistance in uncracked concrete C20/25 [kN] min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾ [kN] Embedment depth h _{ef,1}					
in uncracked concrete C20/25 NORK,sp [KN] min [NRK,p; NORK,c 3)					
Spacing s _{cr,sp} [mm] 180 210 230 240 320					
	400				
Edge distance c _{cr,sp} [mm] 90 105 115 120 160	200				
Embedment depth h _{ef,2}					
Spacing s _{cr,sp} [mm] 160 220 240 330 410	500				
Edge distance c _{cr,sp} [mm] 80 110 120 165 205	250				
Embedment depth h _{ef,3}					
Spacing s _{cr,sp} [mm] 360 240 480 600 720	690				
Edge distance c _{cr,sp} [mm] 180 210 240 300 360	345				
Concrete cone failure					
for $h_{ef,1} \ge [mm] 30^{2} 35^{2} 42 50 64$	78				
Effective embedment depth for $h_{ef,2} \ge [mm]$ 40 44 48 65 82	100				
for h _{ef,3} ≥ [mm] 60 70 80 100 120	115				
Spacing	3 h _{ef (1,2,3)}				
Edge distance	1,5 h _{ef (1,2,3)}				
Factor uncracked concrete k _{ucr,N} [-] 11,0					
cracked concrete $k_{cr,N}$ [-] No performance assessed					

¹⁾ Anchor version W-FA/F: M8-M20

Würth Fixanchor W-FA Performance Characteristic values for tension loads for W.FA/S , W-FA/F , W-FA/SH Annex C1

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{^{3)}}$ $N^0_{\,\text{Rk,c}}$ according to EN 1992-4:2018

English translation prepared by DIBt

Deutsches
Institut
für
Bautechnik

Table C2: Characteristic values for tension loads for W-FA/A2, W-FA/A4, W-FA/HCR

Anchor size				М6	М8	M10	M12	M16	M20	
Installation factor	stallation factor γ_{inst} [-]					1	,0			
Steel failure	-									
Characteristic resistance	N	Rk,s [k	N]	10	18	30	44	88	134	
Partial factor		γMs [[-]			1,50			1,68	
Pull-out Pull-out										
Characteristic resistance in	for h _{ef,1} N	_{Rk,p} [k	[N]	6,5 ¹⁾	9 1)	12	17,4	25,2	33,9	
Characteristic resistance in uncracked concrete C20/25	for h _{ef,2} N	_{Rk,p} [k	N]	8	15	16,4	25	35,2	49,2	
uncracked concrete G20/25	for h _{ef,3} N	_{Rk,p} [k	N]	8	15	16,4	25	42	60	
Increasing factor for N _{Rk,p}		ψc [-] $\left(\frac{f_{ck}}{20}\right)^{0.5}$								
Splitting	•	•								
Characteristic resistance in uncracked concrete C20/25	N ⁰ F	_{k,sp} [k	:N]			min [N _{Rk} ,	p; N ⁰ Rk,c ²⁾]		
Embedment depth h _{ef,1}										
Spacing	S	_{cr,sp} [m	nm]	180	180	180	180	180	180	
Edge distance	Ccr,sp			90	90	90	90	90	90	
Embedment depth h _{ef,2}										
The higher one of the decisive	e resistances	of Cas	se 1 a	and Case	2 is applic	able				
Case 1										
Characteristic resistance in uncracked concrete C20/25	N ⁰ F	_{k,sp} [k	N]	6	9	12	20	30	40	
Spacing	S	_{cr,sp} [m	ım]	3 h _{ef}						
Edge distance	C	_{cr,sp} [m	nm]			1,5	h _{ef}			
Increasing factor for N ⁰ Rk,sp		ψc [[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$						
Case 2		1.								
Spacing			nm]	160	220	240	340	410	560	
Edge distance	C	_{cr,sp} [m	ım]	80	110	120	170	205	280	
Embedment depth h _{ef,3}		٠,	, 1	000	0.10	400	000	700	000	
Spacing			ım]	360	240	480	600	720	690	
Edge distance		_{cr,sp} [m	ım] [180	210	240	300	360	345	
Concrete cone failure			T	00.1)	0.5.1)	10				
	for her		ım]	30 1)	35 ¹⁾	42	50	64	78	
Effective Embedment depth	for her		nm]	40	44	48	65	80	100	
Conning	for h _{ef}		nm]	60	70	80	100	120	115	
Spacing			1m]	3 h _{ef}						
Edge distance			nm]				h _{ef}			
Factor uncracked o			[-] [-]	11,0						
cracked c	cracked concrete k _{cr,N}				No	performa	nce asses:	sed		

¹⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

Würth Fixanchor W-FA

Performance

Characteristic values for tension loads for W-FA/A2, W-FA/A4, W-FA/HCR

Annex C2

²⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Table C3: Characteristic values for shear loads

Anchor size					М6	М8	M10	M12	M16	M20	
Installation factor γ _{inst} [-]					1,0						
Steel failure without le											
Characteristic	W-FA/S , W W-FA/SH	/-FA/F ¹⁾ ,	V ⁰ Rk.s	[kN]	5	11	17	25	44	69	
resistance	W-FA/A2, W-FA/HCR	•	$V^0_{Rk,s}$	[kN]	7	12	19	27	50	86	
Ductility factor	k ₇ [-]			[-]			1	1,0			
Steel failure with lever arm											
W-FA/S, Characteristic bending W-FA/SH		/-FA/F ¹⁾ ,	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363	
resistance	W-FA/A2, W-FA/HCR		M ⁰ Rk,s	[Nm]	10	24	49	85	199	454	
	W-FA/S , W W-FA/SH	V-FA/S,W-FA/F ¹⁾ , V-FA/SH		[-]	1,25					,33	
$V^0_{\text{Rk,s}}$ and $M^0_{\text{Rk,s}}$	W-FA/A2, W-FA/HCR		γMs	[-]	1,25					1,4	
Concrete pry-out failu	re	-			•						
W-FA , W-FA/F ¹⁾ , W-FA/SH W-FA/A2 , W-FA/A4 , W-FA/HCR		k ₈	[-]	1,0	2,3	2,5	2,9	2,8	3,1		
			k ₈	[-]	1,0	2,3	2,8	2,8	3,0	3,3	
Concrete edge failure	-	-				_	-		-		
Effective length of anchor in shear		for h _{ef,1}	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
		for h ef,2	l _f	[mm]	40	44	48	65	82 (80) ³⁾	100	
		for h _{ef,3}	lf	[mm]	60	70	80	100	120	115	
Outside diameter of anchor d _{nom}			[mm]	6	8	10	12	16	20		

¹⁾ Anchor version W-FA/F: M8-M20

Würth Fixanchor W-FA Performance Characteristic values for shear loads Annex C3

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Anchor version W-FA/A2 , W-FA/A4 , W-FA/HCR

Deutsches
Institut
für
Bautechnik

Table C5: Displacements under tension loads

Anchor size			М6	M8	M10	M12	M16	M20
Embedment depth hef,1				!		•		
W-FA/S , W-FA/F¹¹ , W-FA/SH								
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6
Disals	δηο	[mm]	0,3			0,4		
Displacement	δ _{N∞}	[mm]	0,6			1,8		
W-FA/A2 , W-FA/A4 , W-FA/HCR								
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δ_{N0}	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
	δ _{N∞}	[mm]			1,3			2,9
Embedment depth hef,2 and hef,3	-			-	-	-	-	
W-FA/S , W-FA/F¹) , W-FA/SH								
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8
Diaglacoment	δηο	[mm]	0,4			0,5		
Displacement	δn∞	[mm]	0,7			2,3		
W-FA/A2 , W-FA/A4 , W-FA/HCR								
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Diantagement	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	δη∞	[mm]			1,8			4,2

¹⁾ Anchor version W-FA/F: M8-M20

Table C6: Displacements under shear loads

Anchor size			М6	М8	M10	M12	M16	M20
W-FA/S , W-FA/F¹) , W-FA/SH								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δ_{V0}	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δν∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
W-FA/A2 , W-FA/A4 , W-FA/HCR								
Shear load	٧	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δνο	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δν∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version W-FA/F: M8-M20

Würth Fixanchor W-FA	
Performance Displacements	Annex C4