

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0162 of 3 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR

Mechanical fastener for use in concrete

MÜPRO Services GmbH Hessenstraße 11 65719 Hofheim-Wallau DEUTSCHLAND

MÜPRO Werk 1, Deutschland

15 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-05/0162 issued on 8 May 2018

European Technical Assessment ETA-05/0162

Page 2 of 15 | 3 June 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-05/0162

Page 3 of 15 | 3 June 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B4, C1 and C2			
Characteristic resistance to shear load (static and quasi static action)	See Annex C3			
Displacements	See Annex C4			
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Class A1				
Resistance to fire	No performance assessed				

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

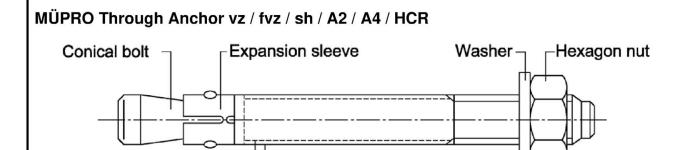
In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-05/0162

Page 4 of 15 | 3 June 2021

English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 3 June 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

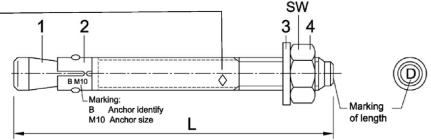
Free cut version

Cold formed version

Table A1: Dimensions

Ancher size		Wrench size		
Anchor size	Embedment depth hef,1	Embedment depth hef,2	Embedment depth hef,3	[SW]
M6	$t_{fix hef, 1} + 47,4$	$t_{fix,hef,2} + 57,4$	$t_{fix,hef,3} + 77,4$	10
M8	$t_{\text{fix hef},1} + 57,4$	t _{fix,hef,2} + 66,4	t _{fix,hef,3} + 92,4	13
M10	t _{fix hef,1} + 68,0	$t_{fix,hef,2} + 74,0$	t _{fix,hef,3} + 106,0	17
M12	$t_{\text{fix hef,1}} + 82,3$	$t_{\text{fix,hef,2}} + 97,3$	$t_{fix,hef,3} + 132,3$	19
M16	$t_{\text{fix hef,1}} + 103,0$ $(t_{\text{fix hef,1}} + 101,8)^{1)}$	$t_{fix,hef,2} + 121,0$ $(t_{fix,hef,2} + 117,8)^{1)}$	$t_{fix,hef,3} + 159,0$ $(t_{fix,hef,3} + 157,8)^{1)}$	24
M20	$t_{fix\ hef,1} + 120,7$	$t_{fix,hef,2} + 142,7$	$t_{fix,hef,3} + 157,7$	30

 $^{^{1)}\,\}mbox{Anchor version Through Anchor A2 / A4 / HCR}$


15 maximum thickness of fixture for hef.2

21 maximum thickness of fixture for hef,1

additional marking:

A2 stainless steel
A4 stainless steel

HCR high corrosion resistant steel

Marking of length	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М
Length of anchor min ≥	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Marking of length	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
Marking of length Length of anchor min ≥	N 203,2	O 215,9	P 228,6	Q 241,3		S 279,4	T 304,8	U 330,2	V 355,6		X 406,4	Y 431,8	Z 457,2

Dimensions in mm

MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR

Product descriptionMarking and Dimensions

Annex A1

Table A2: Materials

	AZ. Wateriais						
Part	Designation	Material					
Throug Ancho		≥ 5 µm acc. to EN ISO 4042:2018					
Through Ancho		≥ 40 µm (in average 50 µm) acc. to EN ISO 10684:2011 or EN ISO 1461:2009					
Through Ancho		≥ 45 µm acc. to EN ISO 17668:2016					
1	Conical bolt	Cold formed or machined steel					
2	Expansion sleeve	Stainless steel according CRC II 1), acc. to EN 10088:2014					
3	Washer	Steel, zinc plated					
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012					
Throu	gh Anchor A2						
1	Conical bolt	Stainless steel according CRC II 1), coated					
2	Expansion sleeve	Stainless steel according CRC II 1), acc. to EN 10088:2014					
3	Washer	Stainless steel according CRC II 1)					
4	Hexagon nut	Stainless steel according CRC II 1), property class 70, coated, EN ISO 3506-2:2020					
Throu	gh Anchor A4						
1	Conical bolt	Stainless steel according CRC III 1), coated					
2	Expansion sleeve	Stainless steel according CRC II 1) or CRC III 1), acc. to EN 10088:2014					
3	Washer	Stainless steel according CRC III 1)					
4	Hexagon nut	Stainless steel according CRC III 1), property class 70, coated, EN ISO 3506-2:2020					
Throu	gh Anchor HCR						
1	Conical bolt	Stainless steel according CRC V 1), coated					
2	Expansion sleeve	Stainless steel according CRC III 1), acc. to EN 10088:2014					
3	Washer	Stainless steel according CRC V 1)					
4	Hexagon nut	Stainless steel according CRC V 1), property class 70, coated, EN ISO 3506-2:2020, EN 10088:2014					

¹⁾ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3

MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR Product description Materials Annex A2

Specifications of intended use

MÜPRO Through Anchor v	MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR			M10	M12	M16	M20
Through Anchor vz	electroplated	✓	✓	✓	✓	✓	✓
Through Anchor fvz	hot-dip galvanized	-	✓	✓	✓	✓	✓
Through Anchor sh sherardized		✓	✓	✓	✓	✓	✓
Through Anchor A2	stainless steel	✓	✓	✓	✓	✓	✓
Through Anchor A4	stainless steel	✓	✓	✓	✓	✓	✓
Through Anchor HCR	high corrosion resistant steel	✓	✓	✓	✓	✓	✓
all versions	static or quasi-static action	✓					
all versions	uncracked concrete	√					

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
Through Anchor A2	CRC II
Through Anchor A4	CRC III
Through Anchor HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed according to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR	
Intended use Specifications	Annex B1

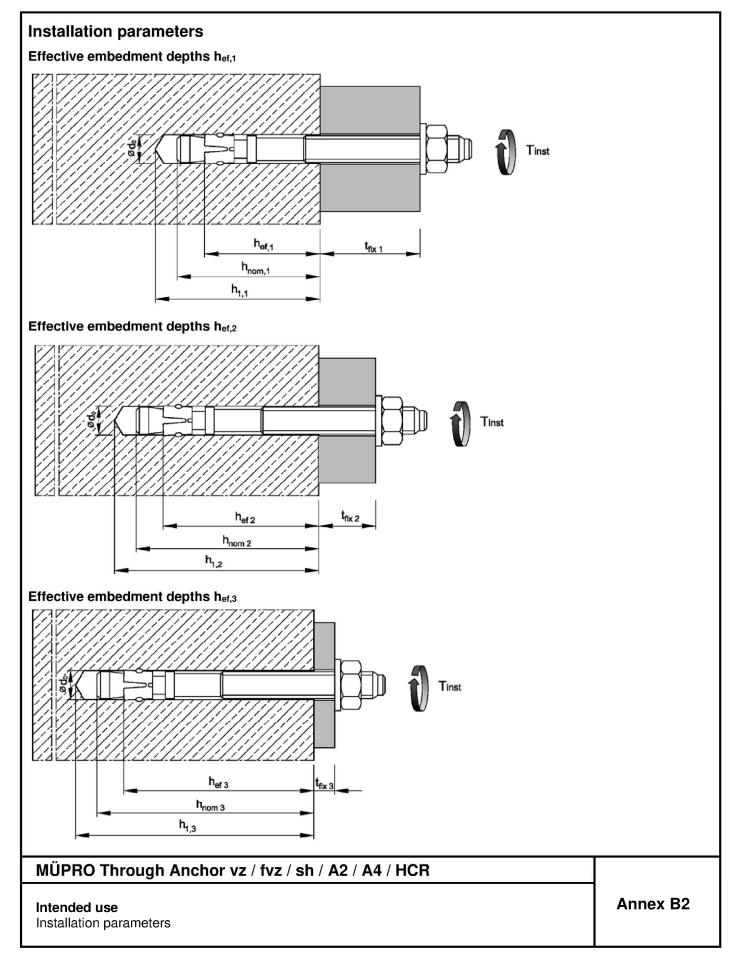


Table B1: Installation parameters

Anch	nor size			М6	М8	M10	M12	M16	M20
Nom	nal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cuttii	ng diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
ane	Through Anchor vz	T _{inst} =	[Nm]	8	15	30	50	100	200
n tor	Through Anchor fvz	T _{inst} =	[Nm]	-	15	30	40	90	120
Installation torque	Through Anchor sh	T _{inst} =	[Nm]	5	15	30	40	90	120
Inst	Through Anchor A2 / A4 / HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
	eter of clearance hole e fixture	d _f ≤	[mm]	7	9	12	14	18	22
Emb	edment depth h _{ef,1}								
Effec	tive embedment depth	$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Dept	n of drill hole	$h_{1,1}\geq$	[mm]	45	55	65	75	95	110
Embe	edment depth h	I _{nom,1} ≥	[mm]	39	47	56	67	84	99
Emb	edment depth h _{ef,2}								
Effec	tive embedment depth	$h_{\text{ef,2}} \geq$	[mm]	40	44	48	65	82 (80)1)	100
Dept	n of drill hole	h _{1,2} ≥	[mm]	55	65	70	90	110	130
Embe	edment depth h	n _{om,2} ≥	[mm]	49	56	62	82	102	121
Emb	edment depth h _{ef,3}								
Effec	tive embedment depth	h _{ef,3} ≥	[mm]	60	70	80	100	120	115
Dept	n of drill hole	h _{1,3} ≥	[mm]	75	91	102	125	148	145
Embe	edment depth h	1 _{nom,3} ≥	[mm]	69	82	94	117	140	136

¹⁾ Anchor version Through Anchor A2 / A4 / HCR

Intended use Installation data **Annex B3**

Table B2: Minimum spacings and edge distances for Through Anchor vz / fvz1) / sh

Anchor size			M6	M8	M10	M12	M16	M20	
Embedment depth h _{ef,1}									
Minimum member thickness	h_{min}	[mm]	80	80	100	100	130	160	
Minimum spacing	Smin	[mm]	35	40	55	100	100	140	
Minimum edge distance	Cmin	[mm]	40	45	65	100	100	140	
Embedment depth hef,2									
Minimum member thickness	h _{min}	[mm]	100	100	100	130	170	200	
Minimum spacing	Smin	[mm]	35	40	55	75	90	105	
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125	
Embedment depth hef,3									
Minimum member thickness	h _{min}	[mm]	120	126	132	165	208	215	
Minimum spacing	Smin	[mm]	35	40	55	75	90	105	
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125	

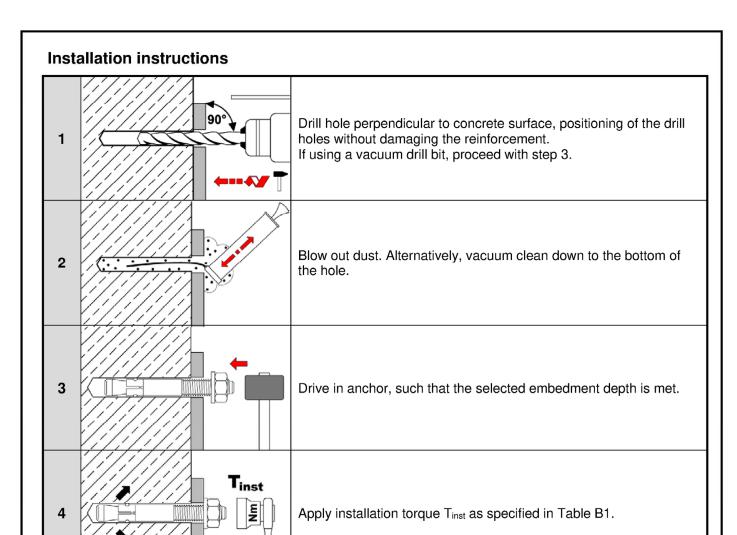

¹⁾ Anchor version Through Anchor fvz: M8-M20

Table B3: Minimum spacings and edge distances for Through Anchor A2 / A4 / HCR

Anchor size			М6	М8	M10	M12	M16	M20	
Embedment depth hef,1									
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160	
Minimum spacing	Smin	[mm]	35	60	55	100	110	140	
Minimum edge distance	Cmin	[mm]	40	60	65	100	110	140	
Embedment depth hef,2									
Minimum member thickness	h_{min}	[mm]	100	100	100	130	160	200	
Minimum anasina	Smin	[mm]	35	35	45	60	80	100	
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150	
Minimum adap diatana	Cmin	[mm]	35	45	55	70	80	100	
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180	
Embedment depth hef,3									
Minimum member thickness	h_{min}	[mm]	120	126	132	165	200	215	
Minimum	Smin	[mm]	35	35	45	60	80	100	
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150	
Minimum adaa diatanaa	Cmin	[mm]	35	45	55	70	80	100	
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180	

Intermediate values by linear interpolation

MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR Intended use Minimum spacings and edge distances Annex B4

MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR	
Intended use Installation instructions	Annex B5

Table C1: Characteristic values for tension loads for Through Anchor vz / fvz1) / sh

Anchor size	e				М6	M8	M10	M12	M16	M20		
Installation factor γ_{inst}					1,0							
Steel failure	•											
Characterist	ic resistance		N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107		
Partial factor				[-]		1,	5		1	,6		
Pull-out												
Characterist	ic resistance	for h _{ef,1}	$N_{Rk,p}$	[kN]	6,5 ²⁾	10,22)	13,4	17,4	25,2	33,9		
in uncracked	d concrete	for h _{ef,2}	$N_{Rk,p}$	[kN]	10	13	16,4	25,8	36,5	49,2		
C20/25		for h _{ef,3}	$N_{Rk,p}$	[kN]	10	13	16,4	26	40	55		
Increasing fa	ψς	[-]		$\left(\frac{f_{ck}}{20}\right)^{0.5}$		$\left(\frac{f_{ck}}{20}\right)^{0,29}$	$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$				
Splitting												
Characteristic resistance in uncracked concrete C20/25				[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾]							
Embedmen	t depth h _{ef,1}											
Spacing			S _{cr,sp}	[mm]	180	210	230	240	320	400		
Edge distand	ce		C _{cr,sp}	[mm]	90	105	115	120	160	200		
Embedmen	t depth h _{ef,2}											
Spacing			S _{cr,sp}	[mm]	160	220	240	330	410	500		
Edge distand	ce		C _{cr,sp}	[mm]	80	110	120	165	205	250		
Embedmen	t depth h _{ef,3}											
Spacing			S _{cr,sp}	[mm]	360	420	480	600	720	690		
Edge distan	ce		C _{cr,sp}	[mm]	180	210	240	300	360	345		
Concrete co	one failure											
			for h _{ef,1}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78		
Effective em	bedment depth		for h _{ef,2}	[mm]	40	44	48	65	82	100		
			for h _{ef,3}	[mm]	60	70	80	100	120	115		
Spacing			S _{cr,N}	[mm]			3 h _e	f (1,2,3)	-			
Edge distand	ce		C _{cr,N}	[mm]			1,5 h	ef (1,2,3)				
Factor	uncracked concr	ete	k _{ucr,N}	[-]	11,0							
i acioi	cracked concrete		k _{cr,N}	[-]	No performance assessed							

¹⁾ Anchor version Through Anchor fvz: M8-M20

Performance

Characteristic values for tension loads for Through Anchor vz / fvz / sh

Annex C1

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

³⁾ N⁰Rk,c according to EN 1992-4:2018

Table C2: Characteristic values for tension loads for Through Anchor A2 / A4 / HCF
--

Anchor size				М6	М8	M10	M12	M16	M20			
Installation factor		γinst	[-]			1	,0					
Steel failure												
Characteristic resistance		N _{Rk,s}	[kN]	10	18	30	44	88	134			
Partial factor		γMs	[-]			1,50			1,68			
Pull-out						•			,			
	, for h _{ef,}	1 N _{Rk,p}	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9			
Characteristic resistance	for b-4		[kN]	8	15	16,4	25	35,2	49,2			
uncracked concrete C20	$\frac{1}{1}$ for $h_{ef,i}$		[kN]	8	15	16,4	25	42	60			
Increasing factor for $N_{Rk,p}$ ψ_C				$\left(\frac{f_{ck}}{20}\right)^{0.5}$								
Splitting												
Characteristic resistance in uncracked concrete C20/25 N ⁰ _{Rk,sp}						min [N _{Rk} ,	p; N ⁰ Rk,c ²⁾]				
Embedment depth hef,1												
Spacing		S _{cr,sp}	[mm]	180	180	180	180	180	180			
Edge distance		Ccr,sp	[mm]	90	90	90	90	90	90			
Embedment depth hef,2												
The higher one of the de	cisive resista	nces of	Case 1	and Case	2 is applic	able						
Case 1												
Characteristic resistance uncracked concrete C20,		N ⁰ Rk,sp	[kN]	6	9	12	20	30	40			
Spacing		S _{cr,sp}	[mm]	3 h _{ef}								
Edge distance		C _{cr,sp}	[mm]	1,5 h _{ef}								
Increasing factor for $N^0_{Rk,sp}$ ψ_C				$\left(\frac{f_{ck}}{20}\right)^{0.5}$								
Case 2								1				
Spacing		S _{cr,sp}	[mm]	160	220	240	340	410	560			
Edge distance		C _{cr,sp}	[mm]	80	110	120	170	205	280			
Embedment depth hef,3												
Spacing		S _{cr,sp}	[mm]	360	420	480	600	720	690			
Edge distance			[mm]	180	210	240	300	360	345			
Concrete cone failure												
		for h _{ef,1}	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78			
Effective Embedment de	pth	for h _{ef,2}	[mm]	40	44	48	65	80	100			
		for h _{ef,3}	[mm]	60	70	80	100	120	115			
Spacing		S _{cr,N}	[mm]			3	h _{ef}					
Edge distance		C cr,N	[mm]			1,5	h _{ef}					
uncrack Factor uncrack	ked concrete	k ucr,N	[-]			1.	1,0					

 $^{^{1)}}$ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only $^{\rm 2)}~N^0_{\text{Rk,c}}$ according to EN 1992-4:2018

Performance

Characteristic values for tension loads for Through Anchor A2 / A4 / HCR

Annex C2

Table C3: Characteristic values for shear loads

Anchor size					М6	М8	M10	M12	M16	M20	
Installation factor			γinst	[-]							
Steel failure without le	ever arm										
Characteristic	Through Anchor vz / fvz ¹⁾ / sh		V ⁰ Rk.s	[kN]	5	11	17	25	44	69	
esistance	Through Anchor A2 / A4 / HCR		V^0 Rk,s	[kN]	7	12	19	27	50	86	
Ductility factor			k ₇	[-]	1,0						
Steel failure with lever arm											
Characteristic bending	Through A vz / fvz ¹⁾ / s		M ⁰ Rk.s	[Nm]	9	23	45	78	186	363	
resistance	Through A A2 / A4 / H		M ⁰ Rk,s	[Nm]	10	24	49	85	199	454	
Through A Partial factor for vz / fvz¹) /			γMs	[-]	1,25 1,					,33	
$V^0_{\text{Rk},s}$ and $M^0_{\text{Rk},s}$	Through Anchor A2 / A4 / HCR		γMs	[-]	1,25					1,4	
Concrete pry-out failu	re										
Factor for h ef	Through A vz / fvz ¹⁾ / s		k ₈	[-]	1,0	2,3	2,5	2,9	2,8	3,1	
ractor for Hef	Through Anchor A2 / A4 / HCR		k ₈	[-]	1,0	2,3	2,8	2,8	3,0	3,3	
Concrete edge failure											
		for h ef,1	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
Effective length of anch loading	or in shear	for h ef,2	l _f	[mm]	40	44	48	65	82 (80) ³⁾	100	
		for h ef,3	If	[mm]	60	70	80	100	120	115	
Outside diameter of and	chor		d _{nom}	[mm]	6	8	10	12	16	20	

¹⁾ Anchor version Through Anchor fvz: M8-M20

Performance

Characteristic values for shear loads

Annex C3

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Anchor version Through Anchor A2 / A4 / HCR

Table C5: Displacements under tension loads

A a la a a a			MC	MO	N440	N440	NAC	N400		
Anchor size			M6	M8	M10	M12	M16	M20		
Embedment depth hef,1										
Through Anchor vz / fvz1) / sh										
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6		
Dianlacement	δηο	[mm]	0,3	0,4						
isplacement -	δ _{N∞}	[mm]	0,6	1,8						
Through Anchor A2 / A4 / HCR										
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6		
Dianlacement	δηο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5		
isplacement	δ _{N∞}	[mm]			1,3			2,9		
Embedment depth hef,2 and hef,3										
Through Anchor vz / fvz¹) / sh										
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8		
Displacement	δηο	[mm]	0,4	0,5						
Displacement	δ _{N∞}	[mm]	0,7			2,3				
Through Anchor A2 / A4 / HCR										
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0		
Dianlacement	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1		
Displacement	δ _{N∞}	[mm]			1,8			4,2		

¹⁾ Anchor version Through Anchor fvz: M8-M20

Table C6: Displacements under shear loads

Anchor size			М6	М8	M10	M12	M16	M20
Through Anchor vz / fvz1) / sh								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δνο	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δν∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
Through Anchor A2 / A4 / HCR								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Diaplacement	δνο	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
Displacement	δν∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version Through Anchor fvz: M8-M20

MÜPRO Through Anchor vz / fvz / sh / A2 / A4 / HCR

Performance Displacements

Annex C4