

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0158 of 8 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Heavy Duty Anchor BZ and BZ-IG

Mechanical fastener for use in concrete

MÜPRO Services GmbH Hessenstraße 11 65719 Hofheim-Wallau DEUTSCHLAND

MÜPRO Werk 1, Deutschland

36 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

ETA-05/0158 issued on 24 August 2016

European Technical Assessment ETA-05/0158

Page 2 of 36 | 8 June 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z51926.21 8.06.01-52/21

European Technical Assessment ETA-05/0158

Page 3 of 36 | 8 June 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Heavy Duty Anchor BZ and BZ-IG is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Fastener type Wedge Anchor BZ with external thread, washer and hexagon nut, sizes M8 to M27.
- Fastener type Wedge Anchor CF BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Fastener type Wedge Anchor CF BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Fastener type Wedge Anchor CF BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	BZ see Annex B4, B5, C1 to C4 BZ-IG see Annex B8, C11 and C12
Characteristic resistance to shear load (static and quasi-static loading)	BZ see Annex C5 BZ-IG see Annex C13
Displacements (static and quasi-static loading)	BZ see Annex C9 and C10 BZ-IG see Annex C15
Characteristic resistance and displacements for seismic performance categories C1 and C2	BZ see Annex C6, C9 and C10 BZ-IG No performance assessed
Durability	See Annex B1

Z51926.21 8.06.01-52/21

European Technical Assessment ETA-05/0158

Page 4 of 36 | 8 June 2021

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	BZ see Annex C7 and C8 BZ-IG see Annex C14

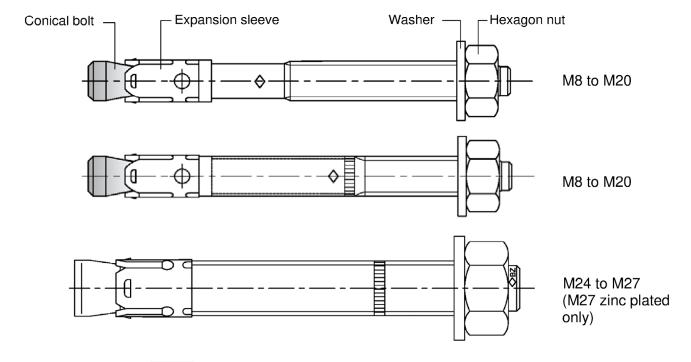
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

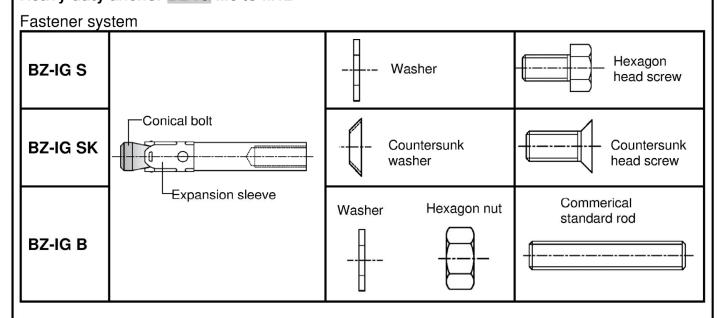
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 8 June 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock beglaubigt:
Head of Section Baderschneider

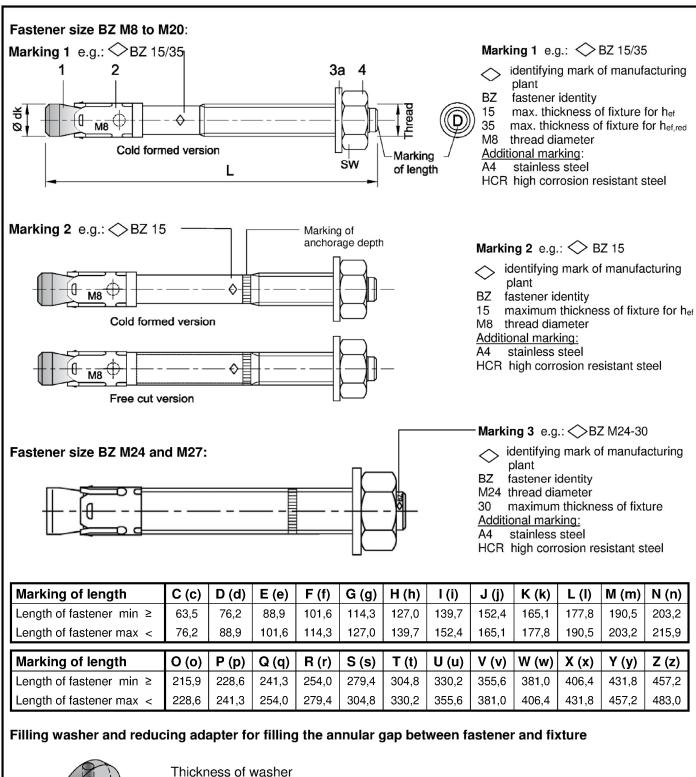

Z51926.21 8.06.01-52/21

Fastener version	Product description	Intended use	Performance			
i asterier version	Product description	interided use	renomiance			
BZ	Annex A1 - Annex A4	Annex B1 – Annex B7	Annex C1 – Annex C10			
BZ-IG	Annex A1 Annex A5 – Annex A7	Annex B1 – Annex B2 Annex B8 – Annex B10	Annex C11 – Annex C15			
Heavy duty anchor BZ						

Heavy duty anchor BZ-IG M6 to M12

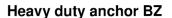
Heavy duty anchor BZ and BZ-IG Annex A1 **Product description** Fastener types

8.06.01-52/21 Z53633.21


Intended use Heavy duty anchor BZ h ≥ hmin,1 bzw. hmin,2 hef tfix df tfix hef,red h_{1,red} h≥hmin,3

Heavy duty anchor BZ

Product description Installation situation BZ


Electronic copy of the ETA by DIBt: ETA-05/0158

Annex A2

for diameter < M24: t = 5 mm

< M24: t = 5 HIH $\ge M24$: t = 6 mm

Product description

Fastener sizes and marking

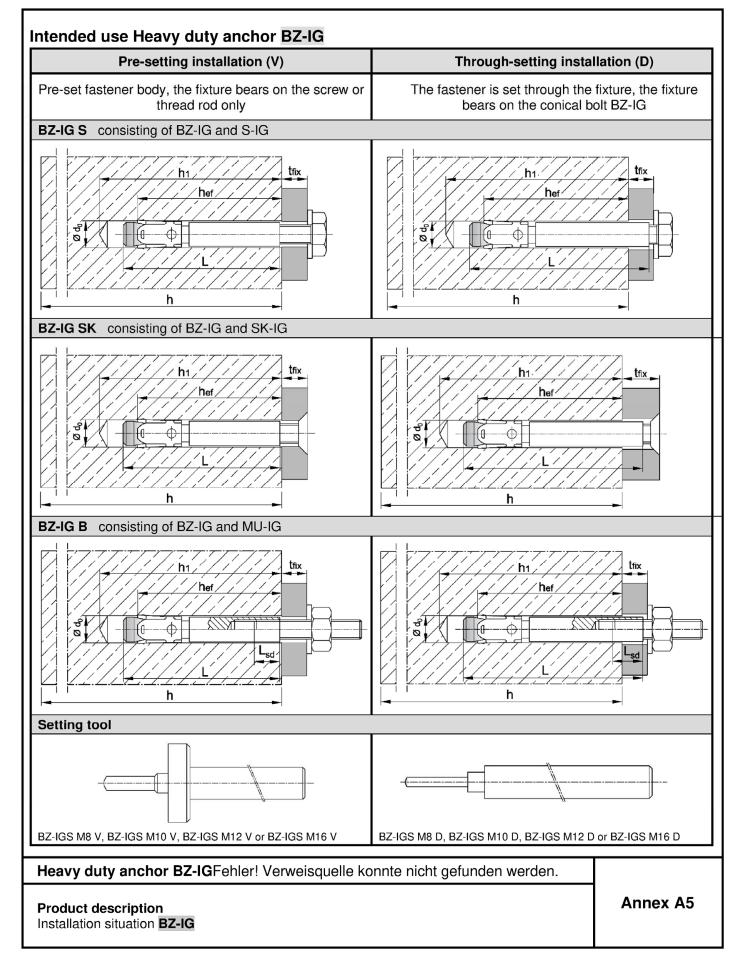
Annex A3

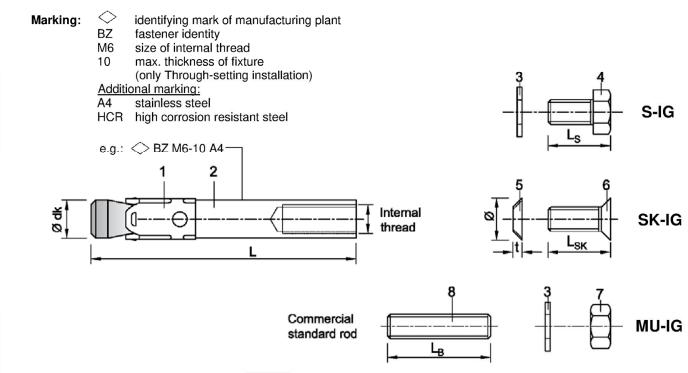
Electronic copy of the ETA by DIBt: ETA-05/0158

Table A1: Fastener dimensions BZ

Fastener size			М8	M10	M12	M16	M20	M24	M27
O		Thread	M8	M10	M12	M16	M20	M24	M27
Conical bolt		Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
Length of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
fastener ¹⁾	reduced anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	-	-	-
Hexagon nut		SW	13	17	19	24	30	36	41

¹⁾ With additional use of filling washer 3b the usable thickness of fixture will reduce 5mm (M8-M20) or 6mm (≥ M24)


Dimensions in mm


Table A2: Materials BZ

		BZ		BZ A4	BZ HCR	
No.	Part	Steel, z	inc plated	Stainless steel	High corrosion resistant steel	
		galvanized ≥ 5µm	sherardized ≥ 45µm	A 4	(HCR)	
1	Conical bolt M8 to M20: Cold formed or machined steel, sherardized, sherardized, cono plastic coated		M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated		
	Threaded bolt	M24 and M27:	M24 and M27: steel, sherardized	M24: Stainless steel (e.g. 1.4401,	M24: High corrosion resistant steel 1.4529	
	Threaded cone Steel, galvanized M24 and M27: Steel, galvanized		1.4404) EN 10088:2014	or 1.4565, EN 10088:2014		
2	Expansion sleeve	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel, zinc plated	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	
За	Washer	Steel, galvanized	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571)	High corrosion resistant steel 1.4529 or 1.4565.	
3b	Filling washer			EN 10088:2014	EN 10088:2014	
4	Hexagon nut	Steel, galvanized, coated	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated	

Heavy duty anchor BZ	
Product description Dimensions and materials	Annex A4

Table A3: Fastener dimensions BZ-IG

No.	Fastener size		М6	M8	M10	M12
	Conical bolt with internal thread		7,9	9,8	11,8	15,7
1	Pre-setting installation	L	50	62	70	86
	Through-setting installation	L	$50 + t_{fix}$	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	ble A4	
3	Washer			see ta	ıble A4	
	Hexagon head screw wid	dth across flats		13	17	19
4	Pre-setting installation	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Through-setting installation	gh-setting installation Ls		18 to 22	20 to 22	25 to 28
5	Countersunk Ø coul	Countersunk Ø countersunk		21,5	25,9	30,9
5	washer	t	3,9	5,0	5,7	6,7
6	Countersunk bit size		Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Pre-setting installation	Lsk	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Through-setting installation	L _{SK}	16 to 20	20 to 25	25	30
7	Hexagon nut width ac	ross flats	10	13	17	19
8	Commercial type V	L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
0	standard rod ¹⁾ type D	L _B ≥	21	28	34	41

¹⁾ acc. to specifications (Table A4)

Dimensions in mm

Heavy duty anchor BZ-IG

Product description

Fastener parts, marking and dimensions BZ-IG

Annex A6

Electronic copy of the ETA by DIBt: ETA-05/0158

Table A4: Materials BZ-IG

		BZ-IG	BZ-IG A4	BZ-IG HCR
No.	Part	Steel, galvanized ≥ 5 µm acc. to EN ISO 4042:2018	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt BZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated
2	Expansion sleeve BZ-IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014
3	Washer S-IG / MU-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014
4	Hexagon head screw S-IG	Steel, galvanized, coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
5	Countersunk washer SK-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
7	Hexagon nut MU-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2020	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2020

Heavy duty anchor BZ-IG	
Product description Materials BZ-IG	Annex A7

Specifications of intended use

Heavy duty anchor BZ							
Standard anchorage depth	M8	M10	M12	M16	M20	M24	M27
Steel, galvanized	✓						
Steel, sherardized	✓						
Stainless steel A4 and high corrosion resistant steel HCR	√ -					-	
Static or quasi-static action	✓						
Fire exposure				✓			
Seismic action (C1 and C2) 1)			✓			-	-

Reduced anchorage depth 1)	М8	M10	M12	M16
Steel, galvanized			✓	
Steel, sherardized	✓			
Stainless steel A4 and high corrosion resistant steel HCR	✓			
Static or quasi-static action			✓	
Fire exposure	✓			·
Seismic action (C1 and C2)			_	

¹⁾ only cold formed anchors acc. to Annex A3

Heavy duty anchor BZ-IG	М6	M8	M10	M12
Steel, galvanized	✓			
Stainless steel A4 and high corrosion resistant steel HCR	✓			
Static or quasi-static action	✓			
Fire exposure		,	/	
Seismic action (C1 and C2)			-	

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- Cracked or uncracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (steel zinc plated, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Heavy duty anchor BZ and BZ-IG	
Intended use Specifications	Annex B1

English translation prepared by DIBt

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to EN 1992-4:2018 in conjunction with Technical Report TR 055, Edition February 2018

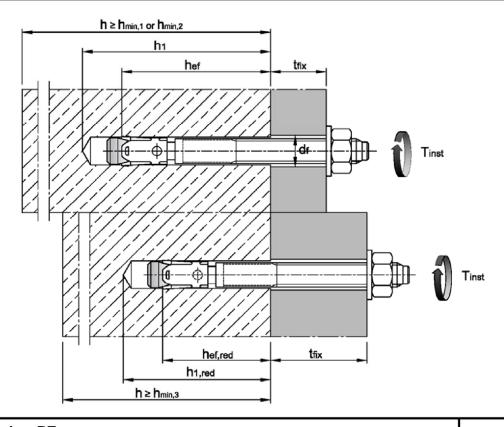
Installation:

Electronic copy of the ETA by DIBt: ETA-05/0158

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the BZ can be filled to reduce the clearance hole. For this purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength mortar with compressive strength ≥ 40 N/mm² (e.g. VMZ, VMU plus or VMH)
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Heavy duty anchor BZ and BZ-IG

Intended use
Specifications


Annex B2

753633 21 8 06 01-52/21

Table B1: Installation parameters, BZ

Fastener siz	e			M8	M10	M12	M16	M20	M24	M27
Nominal drill h	nole diameter	d₀	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Steel, galvanized	T_{inst}	[Nm]	20	25	45	90	160	200	300
Installation torque	Steel, sherardized	T _{inst}	[Nm]	16	22	40	90	160	260	300
torque	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	-
1	Diameter of clearance hole in the fixture		[mm]	9	12	14	18	22	26	30
Standard and	chorage depth									
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	$h_1\geq$	[mm]	60	75	90	110	125	155	-
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	-
Reduced anchorage depth										
Depth of drill	hole	$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
Reduced effed depth	ctive anchorage	h _{ef,red}	[mm]	35	40	50	65		-	-

Heavy duty anchor BZ

Intended use Installation parameters **Annex B3**

Table B2: Minimum	ensoinge and	odgo dietanoge	etandard anch	orago donth R7
i abie bz. Willillilli	Spacings and	leuge distances.	, Stanuaru anci	iorage deptir, bz

Fastener size			М8	M10	M12	M16	M20	M24	M27
Standard thickness of concrete	e member								
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	60	95	100	125
willimum spacing	für c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	Cmin	[mm]	40	45	60	60	95	100	180
	für s ≥	[mm]	80	90	140	180	200	220	540
Uncracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
	für c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	Cmin	[mm]	50	50	75	80	130	100	180
	für s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	
Cracked concrete									
Minimum spacing	Smin	[mm]	40	50	60	60	95	125	- - -
	für c ≥	[mm]	70	75	100	100	150	125	
Minimum edge distance	Cmin	[mm]	40	55	60	60	95	125	
	für s ≥	[mm]	80	90	140	180	200	125	
Uncracked concrete									
Minimum spacing	Smin	[mm]	40	50	60	65	90	125]
wiifiifidiff spacing	für c ≥	[mm]	80	75	120	120	180	125	
NAC CONTRACTOR	Cmin	[mm]	50	60	75	80	130	125] -
Minimum edge distance	für s ≥	[mm]	100	120	150	150	240	125	1
Minimum thickness of concrete	e membei	•							
Steel zinc plated, stainless stee	el A4. HCI	 R							
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140	-	-	_
Cracked concrete	,			1					
	Smin	[mm]	40	45	60	70			
Minimum spacing	für c ≥	[mm]	70	90	100	160			
Minimum ada adi terre	Cmin	[mm]	40	50	60	80	-	-	-
Minimum edge distance	für s ≥	[mm]	80	115	140	180			
Uncracked concrete									
Minimum angains	Smin	[mm]	40	60	60	80			
Minimum spacing	für c ≥	[mm]	80	140	120	180			
	Cmin	[mm]	50	90	75	90	-	-	-
Minimum edge distance	für s ≥	[mm]	100	140	150	200			

Fire exposure from or	ne side					
Minimum spacing s _{min,fi} [mm] See normal ambient temperature						
Minimum edge distance	Cmin,fi	[mm]	See normal ambient temperature			
Fire exposure from m	ore than one side					
Minimum spacing	Smin,fi	[mm]	See normal ambient temperature			
	Cmin,fi					

Intermediate values by linear interpolation.

Heavy duty anchor BZ

Intended use

Minimum spacings and edge distances for standard anchorage depth

Annex B4

Table B3: Minimum spacings and edge distances, reduced anchorage depth, BZ

Fastener size			M8	M10	M12	M16
Minimum thickness of concrete member	$h_{\text{min,3}}$	[mm]	80	80	100	140
Cracked concrete						
Minimum engoing	Smin	[mm]	50	50	50	65
Minimum spacing	für c ≥	[mm]	60	100	160	170
Minimum adae distance	C _{min}	[mm]	40	65	65	100
Minimum edge distance	für s ≥	[mm]	185	180	250	250
Uncracked concrete						
Minimum angoing	Smin	[mm]	50	50	50	65
Minimum spacing	für c ≥	[mm]	60	100	160	170
Minimum adae dietanee	Cmin	[mm]	40	65	100	170
Minimum edge distance	für s ≥	[mm]	185	180	185	65
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]	S	See normal amb	ient temperatu	re
Minimum edge distance	Cmin,fi	[mm]	S	See normal amb	ient temperatu	re
Fire exposure from more than one side	•					
Minimum spacing	Smin,fi	[mm]	S	See normal amb	ient temperatu	re
Minimum edge distance	Cmin,fi	[mm]		≥ 300) mm	

Intermediate values by linear interpolation.

Heavy o	luty ancl	hor BZ
---------	-----------	--------

Intended use

Minimum spacings and edge distances for reduced anchorage depth

Annex B5

Electronic copy of the ETA by DIBt: ETA-05/0158

5

Installation instructions BZ 90 Drill hole perpendicular to concrete surface. 1 If using a vacuum drill bit, proceed with step 3. Blow out dust. Alternatively vacuum clean down to the bottom of the 2 hole. 3 Check position of nut. Drive in fastener, such that her or her,red depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the fastener in accordance with Annex A3. $\mathbf{T}_{\mathsf{inst}}$

wrench.

Installation torque T_{inst} shall be applied by using calibrated torque

Heavy duty anchor BZ	
Intended use Installation instructions	Annex B6

Installation instructions BZ with filling of annular gap Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3a. Blow out dust. Alternatively vacuum clean down to the bottom of the hole. Check position of nut. 3a Fit the filling washer to the fastener. 3b The thickness of the filling washer must be taken into account with tfix. Drive in fastener with filling washer, such that hef or hef,red depth is met. This compliance is ensured, if the thickness of fixture is 5mm (or 6mm when ≥ M24) smaller than the maximum thickness of fixture marked on the fastener in accordance with Annex A3. $\mathsf{T}_{\mathsf{inst}}$ Installation torque Tinst shall be applied by using calibrated torque 5 wrench. Fill the annular gap between stud and fixture with mortar (compressive strength ≥ 40 N/mm² e.g. VMH, VMZ or VMU plus). Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out.

Heavy duty anchor BZ	
Intended Use Installation instructions with filling washer	Annex B7

Table B4: Installation parameters BZ-IG

Fastener size				М6	M8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter		d₀	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \geq$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{\text{sd}}^{2)} \geq$	[mm]	9	12	15	18
La skallation kannan		S	[Nm]	10	30	30	55
Installation torque, steel zinc plated	T_{inst}	SK	[Nm]	10	25	40	50
		В	[Nm]	8	25	30	45
	T _{inst}	S	[Nm]	15	40	50	100
Installation torque, stainless steel A4, HCR		SK	[Nm]	12	25	45	60
stainless steel A4, HON		В	[Nm]	8	25	40	80
Pre-setting installation							
Diameter of clearance hole in the fixture		d _f ≤	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Through-setting installation							
Diameter of clearance hole in the fixture		d _f ≤	[mm]	9	12	14	18
		S	[mm	5	7	8	9
Minimum thickness of fixture 1)	$t_{\text{fix}} \geq$	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of Pre-setting installation, if the shear load at steel failure is designed with lever arm.

Table B5: Minimum spacings and edge distances BZ-IG

Fastener size			М6	M8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum angoing	Smin	[mm]	50	60	70	80
Minimum spacing	für c ≥	[mm]	60	80	100	120
Minimum odgo diatango	Cmin	[mm]	50	60	70	80
Minimum edge distance	für s ≥	[mm]	75	100	100	120
Uncracked concrete						
A distinction are a single	Smin	[mm]	50	60	65	80
Minimum spacing	für c ≥	[mm]	80	100	120	160
Minimum adaa diatanaa	Cmin	[mm]	50	60	70	100
Minimum edge distance	für s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	
Minimum edge distance	Cmin,fi	[mm]		See normal	temperature	
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	
Minimum edge distance	Cmin,fi	[mm]		≥ 300) mm	
ntermediate values by linear interpolation.						

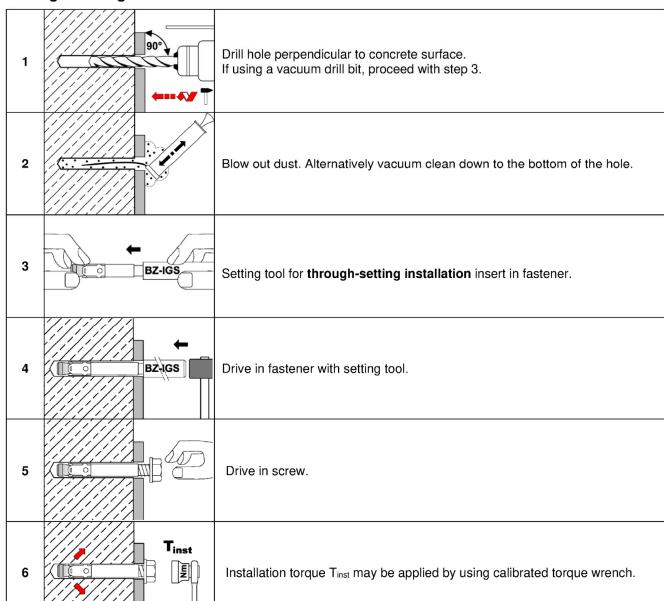
Heavy duty anchor BZ-IG

Intended use

Installation parameters, minimum spacings and edge distances BZ-IG

Annex B8

²⁾ see Annex A5


Installation instructions BZ-IG Pre-setting installation Drill hole perpendicular to concrete surface. If using vacuum drill bit, proceed with step 3. 2 Blow out dust. Alternatively vacuum clean down to the bottom of the hole. 3 Setting tool for pre-setting installation insert in fastener. Drive in fastener with setting tool. 5 Drive in srew. $\mathsf{T}_{\mathsf{inst}}$ Installation torque T_{inst} may be applied by using calibrated torque wrench. 6

Heavy duty anchor BZ-IG Intended Use Installation instructions for pre-setting installation BZ-IG Annex B9

Installation instructions BZ-IG

Through-setting installation

Heavy duty anchor BZ-IG

Intended Use

Installation instructions for through-setting installation BZ-IG

Annex B10

Table C1: Characteristic values for **tension loads**, BZ **zinc plated**, **cracked concrete**, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24	M27
Installation factor	γinst	[-]				1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	1,5		1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	36,0	44,4	50,3
Reduced anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	12,7	18,9	_3)	_3)	_3)
Increasing factor for N _{Rk,p}	ψс	[-]	$\left(\frac{f_{\rm ck}}{20}\right)^{0.5}$						
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_3)	_3)	_3)
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]				7,7			

¹⁾ Pull-out is not decisive

Performance
Characteristic values for tension loads, BZ zinc plated, cracked concrete, static and quasi-static action

Annex C1

²⁾ Use restricted to anchoring of structural components statically indeterminate

³⁾ No performance asessed

Table C2: Characteristic values for **tension loads**, BZ **A4** / **HCR**, **cracked concrete**, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24
Installation factor	γinst	[-]				1,0		
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1,	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	36,0	40
Reduced anchorage depth								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	12,7	18,9	_3)	_3)
Increasing factor for N _{Rk,p}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_3)	_3)
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]			7	,7		

¹⁾ Pull-out is not decisive

Heavy duty anchor BZ	
Performance Characteristic values for tension loads, BZ A4 / HCR, cracked concrete, static and quasi-static action	Annex C2

²⁾ Use restricted to anchoring of structural components statically indeterminate

³⁾ No performance asessed

Table C3: Characteristic values for **tension loads**, BZ **zinc plated**, **uncracked concrete**, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24	M27
Installation factor	γinst	[-]				1,0	l		
Steel failure	·								
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]		53	1	,5	1,6		,5
Pull-out	71110		.,			,-	.,-		, -
Standard anchorage depth									
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	51,0	62,9	71,3
Reduced anchorage depth									
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	9	18,0	26,7	_3)	_3)	_3)
Splitting									
Standard anchorage depth									
Splitting for standard thickness of							se 2 may b	e applied;	
c _{cr,sp} may be linearly interpolated for th							000	000	050
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1				1	Г	ı			
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	62,3	50
Edge distance	C cr,sp	[mm]				1,5 h _{ef}			
Case 2									
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	50,5	62,3	70,6
Edge distance	C _{cr,sp}	[mm]		2	h _{ef}		2,2 h _{ef}	1,5 h _{ef}	2,5 h _e
Splitting for minimum thickness	of concrete	memb	<u>er</u>						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	_3)	_3)	_3)
Edge distance	C _{cr,sp}	[mm]		2,5	h _{ef}				
Reduced anchorage depth									
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			
Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	7,5	9	17,9	26,5	_3)	_3)	_3)
Edge distance	C _{cr,sp}	[mm]	100	100	125	150			
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}		35 ²⁾	40	50	65	_3)	_3)	_3)
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]		1	I	11,0	I	l	I .
						,-			

¹⁾ Pull-out is not decisive

Heavy duty anchor BZ

Performance

Characteristic values for tension loads, BZ zinc plated, uncracked concrete, static and quasi-static action

Annex C3

²⁾ Use restricted to anchoring of structural components statically indeterminate

³⁾ No performance asessed

Table C4: Characteristic values for **tension loads**, BZ **A4** / **HCR**, **uncracked concrete**, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24
Installation factor	γinst	[-]			1	,0		
Steel failure	·							
Characteristic resistance	N _{Rk.s}	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]			,5	1	1,68	1,5
Pull-out	7100				,-		1,00	, ,,,
Standard anchorage depth								
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	36,0	50,3
Reduced anchorage depth								
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	9	18,0	26,7	_3)	_3)
Splitting					•			
Standard anchorage depth								
Splitting for standard thickness of $c_{cr,sp}$ may be linearly interpolated for the						case 2 may	be applied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1	, , _	[]	100	120	110	100		
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	9	12	20	30	40	_3)
Edge distance	C cr,sp	[mm]			1,5 h _{ef}	1		_3)
Case 2					.,			
Characteristic resistance in uncracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	50,5	70,6
Edge distance	C _{cr,sp}	[mm]	115	125	140	200	220	250
Splitting for minimum thickness of	concrete me	mber			•	'		'
Minimum thickness of concrete	h _{min,2} ≥	 [mm]	80	100	120	140		
Characteristic resistance in uncracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	_3)	_3)
Edge distance	Ccr,sp	[mm]		2,5]			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	7,5	9	17,9	26,5	_3)	_3)
Edge distance	C _{cr,sp}	[mm]	100	100	125	150		
Increasing factor for N _{Bk,p} and N ⁰ _{Bk,sp}	ψс	[-]	$\left(rac{\mathrm{f_{ck}}}{20} ight)^{0.5}$					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_3)	_3)
ت ا ن	$k_1 = k_{ucr,N}$	[-]	_	L		1,0	1	

¹⁾ Pull-out is not decisive

Heavy duty anchor BZ

Performance

Characteristic values for tension loads, BZ A4 / HCR, uncracked concrete, static and quasi-static action

Annex C4

²⁾ Use restricted to anchoring of structural components statically indeterminate

³⁾ No performance asessed

Table C5: Characteristic values for **shear loads**, BZ, **cracked** and **uncracked concrete**, static or quasi static action

Fastener size				M8	M10	M12	M16	M20	M24	M27
Installation factor		γinst	[-]				1,0			
Steel failure withou	ut lever arm, Steel	zinc pla	ted							
Characteristic resist	ance	$V^0_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Ductility factor		k ₇	[-]	1,0						
Partial factor		γMs	[-]	1,25 1,33			1,25	1,25		
Steel failure withou	ut lever arm, Stainl	ess ste	el A 4, F	ICR						
Characteristic resist	ance	V^0 Rk,s	[kN]	13	20	30	55	86	123,6	
Ductility factor k ₇		[-]	1,0						_2)	
Partial factor γ _{Ms}		[-]		1,	25	1,4	1,25			
Steel failure with le	ever arm, Steel zind	c plated								
Characteristic bendi	ng resistance	M^0 Rk,s	[Nm]	23	47	82	216	363	898	1331,5
Partial factor		γMs	[-]		1,	25		1,33	1,25	1,25
Steel failure with le	ever arm, Stainless	steel A	4, HCR	!						
Characteristic bending resistance M ⁰ Rk,s		[Nm]	26	52	92	200	454	785,4	_2)	
Partial factor	Partial factor γ _{Ms}		[-]	1,25				1,4 1,25		
Concrete pry-out fa	ailure									
Pry-out factor		k ₈	[-]	2,4			2,8			
Concrete edge fail	ure									
Effective length of fastener in shear	Steel zinc plated	l _f	[mm]	46	60	70	85	100	115	125
loading with h ef	Stainless steel A4, HCR	lf	[mm]	46	60	70	85	100	125	_2)
Effective length of fastener in shear	Steel zinc plated	$I_{f,red}$	[mm]	35 ¹⁾	40	50	65	_2)	_2)	_2)
loading with h ef,red	Stainless steel A4, HCR	$I_{f,red}$	[mm]	35 ¹⁾	40	50	65	/		,
Outside diameter of	fastener	d_{nom}	[mm]	8	10	12	16	20	24	27

¹⁾ Use restricted to anchoring of structural components statically indeterminate

Performance
Characteristic values for shear loads, BZ,
cracked and uncracked concrete, static or quasi static action

Annex C5

²⁾ No performance assessed

Table C6: Characteristic resistance for seismic loading, BZ, standard anchorage depth, performance category C1 and C2

Fastener siz	œ			М8	M10	M12	M16	M20		
Tension load	ls									
Installation fa	ctor	γinst	[-]	1,0						
Steel failure,	Steel zinc plate	ed								
Characteristic	resistance C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	60	86		
Characteristic	resistance C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	60	86		
Partial factor		γMs	[-]	1,	1,53 1,5					
Steel failure,	Stainless steel	A4, HCR								
Characteristic	resistance C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	64	108		
Characteristic	resistance C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	64	108		
Partial factor γ_{Ms} [-]					1,68					
Pull-out (stee	el zinc plated, sta	inless steel	A4 ar	nd HCR)						
Characteristic	resistance C1	N _{Rk,p,eq,C1}	[kN]	5	9	16	25	36		
Characteristic resistance C2 N _{Rk,p,eq,C2}		[kN]	2,3	3,6	10,2	13,8	24,4			
Shear loads										
Steel failure	without lever ar	m, Steel zi	nc pla	ted						
Characteristic	resistance C1	$V_{Rk,s,eq,C1}$	[kN]	9,3	20	27	44	69		
Characteristic	resistance C2	$V_{Rk,s,eq,C2}$	[kN]	6,7	14	16,2	35,7	55,2		
Partial factor		γMs	[-]		1,33					
Steel failure	without lever ar	m, Stainles	ss ste	el A4, HCR						
Characteristic	resistance C1	$V_{Rk,s,eq,C1}$	[kN]	9,3	20	27	44	69		
Characteristic	resistance C2	$V_{Rk,s,eq,C2}$	[kN]	6,7	14	16,2	35,7	55,2		
Partial factor		γMs	[-]		1,	25		1,4		
Factor for	without filling of annular gap	$lpha_{ extsf{gap}}$	[-]		-	0,5	_	-		
annular gap	with filling of annular gap	$lpha_{ extsf{gap}}$	[-]			1,0				

Heavy duty anchor BZ	
Performance Characteristic resistance for seismic loading, BZ, standard anchorage depth, performance category C1 and C2	Annex C6

Table C7: Characteristic values **for tension and shear load** under **fire exposure**, BZ, **standard anchorage depth**, cracked and uncracked concrete C20/25 to C50/60

Fastener size				M8	M10	M12	M16	M20	M24	M27							
Tension load																	
Steel failure																	
Steel, zinc plate	ed																
	R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6							
Characteristic	R60	$N_{Rk,s,fi}$	[kN]	1,1	1,9	3,0	5,6	8,2	11,8	15,3							
resistance	R90	TARK,S,II	[ניוא]	0,8	1,4	2,4	4,4	6,9	10,0	13,0							
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8							
Stainless steel	A4, HCR																
	R30			3,8	6,9	12,7	23,7	33,5	48,2								
Characteristic	R60	NI	[LAI]	2,9	5,3	9,4	17,6	25,0	35,9	_1)							
resistance	R90	$N_{Rk,s,fi}$	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	/							
	R120			1,6	2,8	4,5	8,4	12,1	17,4								
Shear load																	
Steel failure wit	thout lever ar	m															
Steel, zinc plate	ed																
•	R30			1,6	2,6	4,1	7,7	11	16	20,6							
Characteristic	R60			1,5	2,5	3,6	6,8	11	15	19,8							
resistance	R90	− V _{Rk,s,fi} −	V Rk,s,fi -	⁻ VRk,s,fi -	[kN]	1,2	2,1	3,5	6,5	10	15	19,0					
	R120									·	•			1,0	2,0	3,4	6,4
Stainless steel	A4, HCR				•	•											
	R30			3,8	6,9	12,7	23,7	33,5	48,2	_1)							
Characteristic	R60			2,9	5,3	9,4	17,6	25,0	35,9								
resistance	R90	$V_{Rk,s,fi}$	[kN]	2,0	3,6	6,1	11,5	16,4	23,6								
	R120			1,6	2,8	4,5	8,4	12,1	17,4								
Steel failure wit	th lever arm				•	•											
Steel, zinc plate	ed																
- •	R30			1,7	3,3	6,4	16,3	29	50	75							
Characteristic	R60		,	1,6	3,2	5,6	14	28	48	72							
resistance	R90	M^0 _{Rk,s,fi}	[Nm]	1,2	2,7	5,4	14	27	47	69							
	R120			1,1	2,5	5,3	13	26	46	68							
Stainless steel				*													
	R30			3,8	9,0	19,7	50,1	88,8	153,5								
Characteristic	R60	0		2,9	6,8	14,6	37,2	66,1	114,3	41							
resistance	R90	M^0 _{Rk,s,fi}	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	_1)							
	R120			1,6	3,6	7,0	17,8	32,1	55,5								

¹⁾ No performance assessed

Heavy duty anchor BZ

Performance

Characteristic values for tension and shear load under fire exposure, BZ, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C7

Table C8: Characteristic values **for tension and shear load** under **fire exposure**, BZ, **reduced anchorage depth**, cracked and uncracked concrete C20/25 to C50/60

Fastener size				M8	M10	M12	M16
Tension load							
Steel failure							
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic	R60	N ₌₁ ,	[[/N]]	1,1	1,9	3,0	5,6
resistance	R90	─ N _{Rk,s,fi}	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4,	HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60	_	FL-N 17	2,5	5,3	9,4	17,6
resistance	R90	— N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120	_		1,6	2,8	4,5	8,4
Shear load							
Steel failure withou	ut lever arm						
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic	R60	_	FL-N 17	1,1	1,9	3,0	5,6
resistance R90	R90	$$ $V_{Rk,s,fi}$	[kN]	0,8	1,3	1,9	3,5
			0,6	1,0	1,3	2,5	
Stainless steel A4,	HCR						
	R30		[kN]	3,2	6,9	12,7	23,7
Characteristic	R60	_		2,5	5,3	9,4	17,6
resistance	R90	$ V_{Rk,s,fi}$		1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Steel failure with le	ever arm			•		•	•
Steel, zinc plated							
•	R30			1,5	3,3	6,4	16,3
Characteristic	R60		FA 1 2	1,2	2,5	4,7	11,9
resistance	R90	— M ⁰ Rk,s,fi	[Nm]	0,8	1,7	3,0	7,5
	R120			0,6	1,2	2,1	5,3
Stainless steel A4,	HCR			•		•	•
	R30			3,2	8,9	19,7	50,1
Characteristic	R60	— han	TAL 3	2,6	6,8	14,6	37,2
resistance	R90	─ M ⁰ Rk,s,fi	[Nm]	2,0	4,7	9,5	24,2
	R120	_		1,6	3,6	7,0	17,8

Heavy duty anchor BZ

Performance

Characteristic values for tension and shear load under fire exposure, BZ, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C8

Table C9: Displacements under tension load, B

Fastener size			М8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δηο	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
Displacement	δ _{N∞}	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in uncracked concrete	Ν	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δηο	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
Displacement	δ _{N∞}	[mm]	0,	,8	1,4		0,8		1,4
Displacements under seismic tension lo	ads C2								
Displacements for DLS	$\delta_{\text{N,eq,(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1	1)1)	
Displacements for ULS	δ N,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	-''	-''
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
	δηο	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	_1)
Displacement	 δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in uncracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
5	δηο	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	_1)
Displacement	$- \delta_{N^{\infty}}$	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Displacements under seismic tension lo	ads C2								
Displacements for DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1	_1)	_1)
Displacements for ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	8,2	13,8	15,7	9,5	15,2	-''	-''
Reduced anchorage depth									
Steel zinc plated, stainless steel A4,	HCR								
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			
5	δηο	[mm]	0,8	0,7	0,5	1,0	_1)	_1)	_1)
Displacement		[mm]	1,2	1,0	0,8	1,1	1		
Tension load in uncracked concrete	N	[kN]	3,7	4,3	8,5	12,6			
	δηο	[mm]	0,1	0,2	0,2	0,2	_1)	_1)	_1)
Displacement		[mm]	0,7	0,7	0,7	0,7			

No performance assessed

Performance Displacements under tension load Annex C9

	Table C10:	Displacements under shear loa	d, BZ
--	------------	-------------------------------	-------

Fastener size			М8	M10	M12	M16	M20	M24	M27
Standard anchorage depth				l		l			
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Diaplacement	δνο	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seismi	c shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7	_1)	_1)
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1	= "/	- "/
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	11
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	_1)
	δν∞	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seismi	c shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7	_1)	_1)
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1	,	2 ',
Reduced anchorage depth									
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	_1)	_1)	_1)
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4	4.	4.	4.
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	_1)	_1)	_1)
Displacement	δν∞	[mm]	2,9	3,6	5,9	6,4			

¹⁾ No performance assessed

Heavy duty anchor BZ	
Performance Displacements under shear load	Annex C10

Table C11: Characteristic values for **tension loads**, **BZ-IG**, **cracked concrete**, static and quasi-static action

Fastener size			M6	М8	M10	M12	
Installation factor	γinst	[-]		1,	2		
Steel failure							
Characteristic resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6	
Partial factor	γMs	[-]		1,5			
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
	γMs	[-]	1,87				
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Increasing factor for N _{Rk,p}	ψс	[-]	$\left(rac{\mathrm{f_{ck}}}{20} ight)^{0.5}$				
Concrete cone failure		'					
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]	7,7				

Heavy duty anchor BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Annex C11

Table C12: Characteristic values for **tension loads**, **BZ-IG**, **uncracked concrete**, static and quasi-static action

Fastener size	М6	M8	M10	M12			
Installation factor	γinst	[-]	1,2				
Steel failure							
Characteristic resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6	
Partial factor	γMs	[-]	1,5				
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
Partial factor	γ̃Ms	[-]		1,	87		
Pull-out							
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30	
Splitting (the higher resistance of Case 1 and	d Case 2 may	be applie	d)				
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160	
Case 1							
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	16	25	
Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef}				
Case 2							
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30	
Edge distance	C _{cr,sp}	[mm]	2,5 h _{ef}				
Increasing factor for $N_{\text{Rk},p}$ and $N^0_{\text{Rk},\text{sp}}$	ψс	[-]	$\left(rac{\mathrm{f_{ck}}}{20} ight)^{0.5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]		11	1,0		

Heavy duty anchor BZ-	G
-----------------------	---

Performance

Characteristic values for **tension loads**, **BZ-IG**, **uncracked concrete**, static and quasi-static action

Annex C12

Table C13: Characteristic values for shear loads, BZ-IG, cracked and uncracked concrete, static and quasi-static action

Fastener size			М6	M8	M10	M12
Installation factor	γinst	[-]		1	,0	
BZ-IG, steel zinc plated						
Steel failure without lever arm, Pre-setting	installati	ion				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, Through-s	etting ins	tallation				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, Pre-setting in	stallation					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, Through-setting	ng installa	ation				
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207
Partial factor for V _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]	1,25			
Ductility factor	k ₇	[-]	1,0			
BZ-IG, stainless steel A4, HCR						
Steel failure without lever arm, Pre-setting	j installati	ion				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial factor	Partial factor γ _{Ms} [-] 1,25					
Steel failure without lever arm, Through-s	etting ins	tallation				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Partial factor	γMs	[-]		1,	25	
Steel failure with lever arm, Pre-setting in	stallation					
Characteristic bending resistance	M^0 Rk,s	[Nm]	10,7	26,2	52,3	91,6
Partial factor	γMs	[-]		1,	56	
Steel failure with lever arm, Through-setti	ng installa	ation				_
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	28,2	44,3	69,9	191,2
Partial factor	γMs	[-]		1,	25	
Ductility factor	k ₇	[-]	1,0			
Concrete pry-out failure						
Pry-out factor	k ₈	[-]	1,5	1,5	2,0	2,0
Concrete edge failure						
Effective length of fastener in shear loading	lf	[mm]	45	58	65	80
Effective diameter of fastener	d _{nom}	[mm]	8	10	12	16

Heavy duty anchor BZ-IG	
Performance Characteristic values for shear loads, BZ-IG, cracked and uncracked concrete, static and quasi-static action	Annex C13

Table C14: Characteristic values for **tension** and **shear load** under **fire exposure**, **BZ-IG**, cracked and uncracked concrete C20/25 to C50/60

Fastener size				М6	М8	M10	M12
Tension load						•	
Steel failure							
Steel zinc plated	I						
	R30			0,7	1,4	2,5	3,7
Characteristic resistance	R60	- N _{Rk,s,fi}	[LVI]	0,6	1,2	2,0	2,9
	R90		[kN] -	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel A	4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60			1,9	3,8	6,3	9,2
resistance	R90	$N_{Rk,s,fi}$	[kN]	1,0	2,1	3,9	5,7
	R120	•		0,5	1,3	2,7	4,0
Shear load						•	
Steel failure with	nout lever arm						
Steel zinc plated	l						
Characteristic	R30			0,7	1,4	2,5	3,7
	R60	$V_{Rk,s,fi}$	[kN] -	0,6	1,2	2,0	2,9
resistance	R90	¥ Hk,s,fi	[[[,]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel A	A4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	V	[[[]	1,9	3,8	6,3	9,2
resistance	R90	$V_{Rk,s,fi}$	[kN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Steel failure with	n lever arm						
Steel zinc plated							
	R30			0,5	1,4	3,3	5,7
Characteristic	R60	$M^0_{\text{Rk,s,fi}}$	 [Nm]	0,4	1,2	2,6	4,6
resistance	R90	IVI HK,S,fi	[[[[0,4	0,9	2,0	3,4
	R120			0,3	0,8	1,6	2,8
Stainless steel A	4, HCR						
	R30			2,2	5,5	11,2	19,6
Characteristic	R60	$M^0_{Rk,s,fi}$	 [Nm] -	1,5	3,9	8,1	14,3
resistance	R90	IVI Hk,s,fi	[[[[]]	0,7	2,2	5,1	8,9
	R120			0,4	1,3	3,5	6,2

Heavy duty anchor BZ-IG

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **BZ-IG** cracked and uncracked concrete C20/25 to C50/60

Annex C14

Table C15: Displacements under tension load, BZ-IG

Fastener size			М6	M8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Diamlagamenta	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
Displacements	δ _{N∞}	[mm]	0,8	0,8	1,2	1,4
Tension load in uncracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacements	δηο	[mm]	0,4	0,5	0,7	0,8
	δ _{N∞}	[mm]	0,8	0,8	1,2	1,4

Table C16: Displacements under shear load, BZ-IG

Fastener size			М6	M8	M10	M12
Shear load in cracked and uncracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δνο	[mm]	2,8	2,9	2,5	3,6
	δν∞	[mm]	4,2	4,4	3,8	5,3

Heavy duty anchor BZ-IG

PerformanceDisplacements under tension load and under shear load **BZ-IG**

Annex C15

Electronic copy of the ETA by DIBt: ETA-05/0158