

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0247 of 6 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Halfen Wedge Anchor HB-B

Mechanical fastener for use in concrete

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Herstellwerk HB1

15 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-07/0247 issued on 8 May 2018

European Technical Assessment ETA-07/0247

Page 2 of 15 | 6 December 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z117885.21 8.06.01-316/21

European Technical Assessment ETA-07/0247

Page 3 of 15 | 6 December 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Halfen Wedge Anchor HB-B is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B4, C1 and C2		
Characteristic resistance to shear load (static and quasi static action)	See Annex C3		
Displacements	See Annex C4		
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance				
Durability	See Annex B1				

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z117885.21 8.06.01-316/21

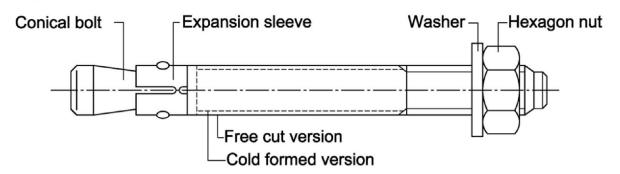
European Technical Assessment ETA-07/0247

Page 4 of 15 | 6 December 2021

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 6 December 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Baderschneider

Z117885.21 8.06.01-316/21

Table A1: Dimensions

Fastener		Fastener length L	Wrench size	
size Embedment depth hef,		Embedment depth hef,2	Embedment depth hef,3	[SW]
M6	$t_{fix hef, 1} + 47, 4$	$t_{fix,hef,2} + 57,4$	$t_{fix,hef,3} + 77,4$	10
M8	t _{fix hef,1} + 57,4	$t_{fix,hef,2} + 66,4$	$t_{fix,hef,3} + 92,4$	13
M10	t _{fix hef,1} + 68,0	$t_{fix,hef,2} + 74,0$	t _{fix,hef,3} + 106,0	17
M12	t _{fix hef,1} + 82,3	$t_{fix,hef,2} + 97,3$	t _{fix,hef,3} + 132,3	19
M16	$t_{\text{fix hef,1}} + 103,0$ $(t_{\text{fix hef,1}} + 101,8)^{1)}$	$t_{fix,hef,2}$ + 121,0 ($t_{fix,hef,2}$ + 117,8) ¹⁾	$t_{fix,hef,3} + 159,0$ $(t_{fix,hef,3} + 157,8)^{1)}$	24
M20	t _{fix hef,1} + 120,7	$t_{fix,hef,2} + 142,7$	t _{fix,hef,3} + 157,7	30

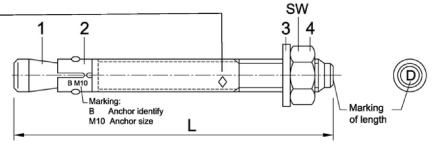
¹⁾ Fastener version HB-B A2 / HB-B A4 / HB-B HCR

215.9

228.6

241.3

Marking: e.g.: <> 15/21 − Identifying mark of manufacturing plant


15 maximum thickness of fixture for hef.2

maximum thickness of fixture for hef.1 21

additional marking:

stainless steel A2 A4 stainless steel

HCR high corrosion resistant steel

Marking of length	Α	В	С	D	Е	F	G	Н	ı	J	K	L	M
Length of fastener min ≥	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of fastener max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Marking of length	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
Length of fastener min >	203.2	215.9	228 6	241 3	254 0	279 4	304.8	330.2	355 6	381.0	406.4	431 8	457.2

279.4

304.8

330.2

355.6

381.0

406.4

457,2 Dimensions in mm

483.0

431.8

Wedge Anchor HB-B / HB-B fvz / HB-B sh / HB-B A2 / HB-B A4 / HB-B HCR

254.0

Product description Marking and Dimensions

Length of fastener max <

Annex A1

Table A2: Materials

Part	Designation	Material
нв-в	electroplated	≥ 5 µm acc. to EN ISO 4042:2018
нв-в	fvz hot-dip galvanized	≥ 40 µm (in average 50 µm) acc. to EN ISO 10684:2011 or EN ISO 1461:2009
HB-B	sh sherardized	≥ 45 µm acc. to EN ISO 17668:2016
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel according CRC II 1), acc. to EN 10088:2014
3	Washer	Steel, zinc plated
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012
нв-в	A2	
1	Conical bolt	Stainless steel according CRC II 1), coated
2	Expansion sleeve	Stainless steel according CRC II 1), acc. to EN 10088:2014
3	Washer	Stainless steel according CRC II 1)
4	Hexagon nut	Stainless steel according CRC II ¹⁾ , property class 70, coated, EN ISO 3506-2:2020
нв-в	A4	
1	Conical bolt	Stainless steel according CRC III 1), coated
2	Expansion sleeve	Stainless steel according CRC II 1) or CRC III 1), acc. to EN 10088:2014
3	Washer	Stainless steel according CRC III 1)
4	Hexagon nut	Stainless steel according CRC III ¹⁾ , property class 70, coated, EN ISO 3506-2:2020
нв-в	HCR	
1	Conical bolt	Stainless steel according CRC V 1), coated
2	Expansion sleeve	Stainless steel according CRC III 1), acc. to EN 10088:2014
3	Washer	Stainless steel according CRC V 1)
4	Hexagon nut	Stainless steel according CRC V ¹⁾ , property class 70, coated, EN ISO 3506-2:2020, EN 10088:2014

¹⁾ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3

Wedge Anchor HB-B / HB-B fvz / HB-B sh / HB-B A2 / HB-B A4 / HB-B HCR

Product description Materials

Annex A2

Specifications of intended use

HB-B / HB-B fv	z / HB-B sh / HB-B A2 / HB-B A4 / HB-B HCR	M6	M8	M10	M12	M16	M20		
нв-в	electroplated	✓	✓	✓	✓	✓	✓		
HB-B fvz	hot-dip galvanized	-	\	✓	\	✓	✓		
HB-B sh	sherardized	✓	✓	✓	✓	✓	✓		
HB-B A2	stainless steel	✓	✓	✓	✓	✓	✓		
HB-B A4	stainless steel	✓	✓	✓	√	✓	✓		
HB-B HCR	high corrosion resistant steel	✓	√	✓	✓	✓	✓		
All versions	static or quasi-static action	✓							
All versions	uncracked concrete	✓							

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Fastener version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
HB-B A2	CRC II
HB-B A4	CRC III
HB-B HCR	CRC V

Design:

- Fasteners are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to
 reinforcement or to supports, etc.)
- Fasteners are designed according to EN 1992-4:2018 or Technical Report TR 055, Edition February 2018

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

Wedge Anchor HB-B / HB-B fvz / HB-B sh / HB-B A2 / HB-B A4 / HB-B HCR	
Intended use Specifications	Annex B1

English translation prepared by DIBt

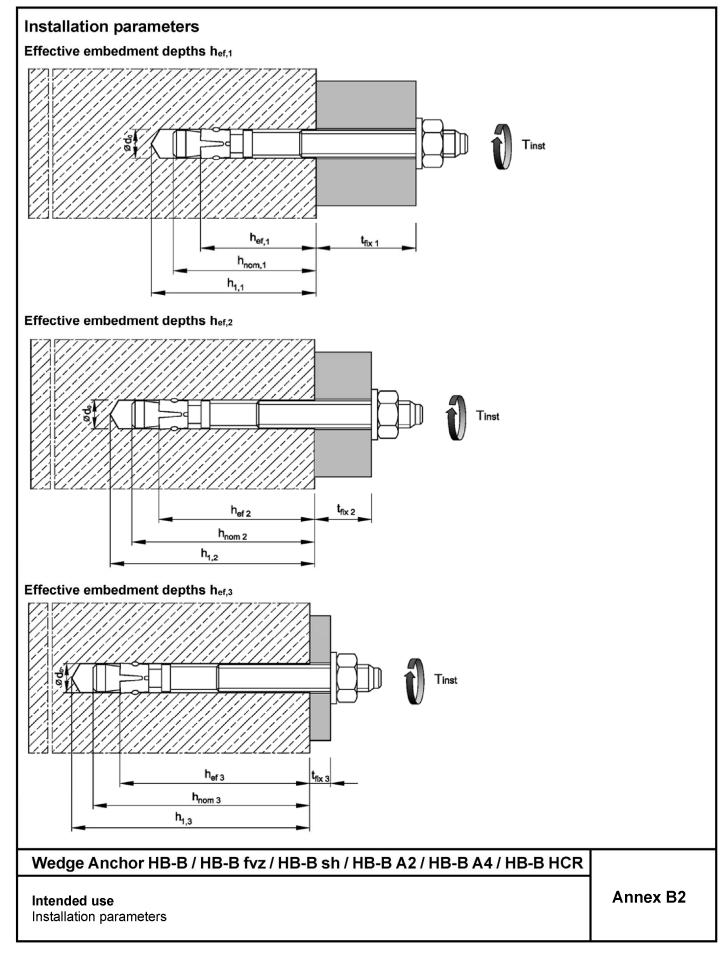


Table B1: Installation parameters

Faste	ener size			M6	M8	M10	M12	M16	M20
Nom	inal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cuttii	Cutting diameter of drill bit d _{cut} ≤		[mm]	6,40	8,45	10,45	12,5	16,5	20,55
ank	НВ-В	T _{inst} =	[Nm]	8	15	30	50	100	200
n torc	HB-B fvz	T _{inst} =	[Nm]	-	15	30	40	90	120
Installation torque	HB-B sh	T _{inst} =	[Nm]	5	15	30	40	90	120
Insta	HB-B A2 / HB-B A4 / HB-B HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
	eter of clearance hole e fixture	$d_f \! \leq \!$	[mm]	7	9	12	14	18	22
Emb	edment depth h _{ef,1}								
Effec	tive embedment depth	h _{ef,1} ≥	[mm]	30	35	42	50	64	78
Dept	h of drill hole	$h_{1,1}\geq$	[mm]	45	55	65	75	95	110
Embe	edment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Emb	edment depth h _{ef,2}								
Effec	tive embedment depth	h _{ef,2} ≥	[mm]	40	44	48	65	82 (80) ¹⁾	100
Dept	h of drill hole	h _{1,2} ≥	[mm]	55	65	70	90	110	130
Embe	edment depth	h _{nom,2} ≥	[mm]	49	56	62	82	102	121
Emb	edment depth h _{ef,3}								
Effec	tive embedment depth	h _{ef,3} ≥	[mm]	60	70	80	100	120	115
Depth of drill hole h _{1,3} ≥		[mm]	75	91	102	125	148	145	
Embe	edment depth	h _{nom,3} ≥	[mm]	69	82	94	117	140	136

¹⁾ Fastener version HB-B A2 / HB- B A4 / HB-B HCR

Intended use Installation data **Annex B3**

Table B2: Minimum spacings and edge distances for HB-B / HB-B fvz¹⁾ / HB-B sh

Fastener size			M6	M8	M10	M12	M16	M20	
Embedment depth h _{ef,1}									
Minimum member thickness	h_{min}	[mm]	80	80	100	100	130	160	
Minimum spacing	Smin	[mm]	35	40	55	100	100	140	
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140	
Embedment depth h _{ef,2}									
Minimum member thickness	$h_{\text{min}} \\$	[mm]	100	100	100	130	170	200	
Minimum spacing	Smin	[mm]	35	40	55	75	90	105	
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125	
Embedment depth hef,3									
Minimum member thickness	$h_{\text{min}} \\$	[mm]	120	126	132	165	208	215	
Minimum spacing	Smin	[mm]	35	40	55	75	90	105	
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125	

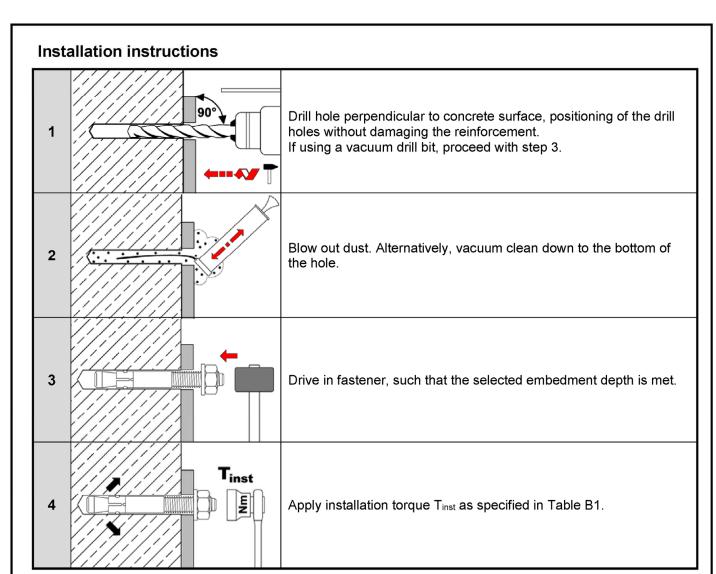
¹⁾ Fastener version HB-B fvz: M8-M20

Table B3: Minimum spacings and edge distances for HB-B A2 / HB-B A4 / HB-B HCR

Fastener size				М8	M10	M12	M16	M20
Embedment depth hef,1								
Minimum member thickness	$h_{\text{min}} \\$	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140
Embedment depth h _{ef,2}								
Minimum member thickness	h_{min}	[mm]	100	100	100	130	160	200
Minimum spacing	Smin	[mm]	35	35	45	60	80	100
	for c ≥	[mm]	40	65	70	100	120	150
Minimum adap diatama	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180
Embedment depth hef,3								
Minimum member thickness	h_{min}	[mm]	120	126	132	165	200	215
Minimum	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150
Minimum adaa diatanaa	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180

Intermediate values by linear interpolation

Wedge Anchor HB-B / HB-B fvz / HB-B sh / HB-B A2 / HB-B A4 / HB-B HCR


Intended use

Minimum spacings and edge distances

Annex B4

Electronic copy of the ETA by DIBt: ETA-07/0247

Wedge Anchor HB-B / HB-B fvz / HB-B sh / HB-B A2 / HB-B A4 / HB-B HCR
Intended use
Installation instructions

Annex B5

Table C1: Characteristic values for tension loads for HB-B / HB-B fvz1) / HB-B sh

Fastener size	M6	M8	M10	M12	M16	M20			
Installation factor	γίι	st [-]	1,0						
Steel failure									
Characteristic resistance	N _{RI}	,s [kN]	8,7	15,3	26	35	65	107	
Partial factor	γι	1s [-]		1	,5		1,6		
Pull-out									
Characteristic resistance	for h _{ef,1} N _R	,p [kN]	6,5 ²⁾	10,22)	13,4	17,4	25,2	33,9	
in uncracked concrete	for h _{ef,2} N _R	,p [kN]	10	13	16,4	25,8	36,5	49,2	
C20/25	for h _{ef,3} N _R	,p [kN]	10	13	16,4	26	40	55	
Increasing factor for $N_{Rk,p}$ $N_{Rk,p}=\psi_c\cdot N_{Rk,p}(C20/25)$	Ψ	c [-]		$\left(\frac{f_{ck}}{20}\right)^{0.5}$		$\left(\frac{f_{ck}}{20}\right)^{0,29}$	$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	
Splitting									
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,s	[kN]		min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾]					
Embedment depth h _{ef,1}		•	•						
Spacing	Scr,s	[mm]	180	210	230	240	320	400	
Edge distance	C _{Cr,s}	[mm]	90	105	115	120	160	200	
Embedment depth h _{ef,2}									
Spacing	S _{cr,s}	[mm]	160	220	240	330	410	500	
Edge distance	C _{cr,s}	[mm]	80	110	120	165	205	250	
Embedment depth h _{ef,3}									
Spacing	S cr,s	[mm]	360	420	480	600	720	690	
Edge distance	C _{cr,s}	[mm]	180	210	240	300	360	345	
Concrete cone failure									
	for h _{ef,1}	≥ [mm]	30 ²⁾	35 ²⁾	42	50	64	78	
Effective embedment depth	for h _{ef,2}	≥ [mm]	40	44	48	65	82	100	
	for h _{ef,3}	≥ [mm]	60	70	80	100	120	115	
Spacing	N [mm]		3 h _{ef (1,2,3)}						
Edge distance	N [mm]		1,5 h _{ef (1,2,3)}						
Factor uncracked concre	te kucr	Kucr,N [-] 11,0							
cracked concrete	k _{cr} ,	N [-]	No performance assessed						

¹⁾ Fastener version HB-B fvz: M8-M20

Performance

Characteristic values for tension loads for HB-B / HB-B fvz / HB-B sh

Annex C1

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{^{3)}\} N^0_{Rk,c}$ according to EN 1992-4:2018

Fastener size				M6	M8	M10	M12	M16	M20		
Installation factor		γinst	[-]			1	,0				
Steel failure											
Characteristic resistance		N _{Rk,s}	[kN]	10	18	30	44	88	134		
Partial factor		γMs	[-]			1,50	•		1,68		
Pull-out											
0, , , , , , , ,	for hef,1	N _{Rk,p}	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9		
Characteristic resistance in uncracked concrete C20/25	for h _{ef,2}	N _{Rk,p}	[kN]	8	15	16,4	25	35,2	49,2		
uncracked concrete C20/25	for h _{ef,3}	N _{Rk,p}	[kN]	8	15	16,4	25	42	60		
Increasing factor for $N_{Rk,p}$ $N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$		ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5				
Splitting											
Characteristic resistance in uncracked concrete C20/25		N ⁰ Rk,sp	[kN]			min [N _{Rk,}	p; N ⁰ Rk,c ²⁾]			
Embedment depth hef,1											
Spacing		S _{cr,sp}	[mm]	180	180	180	180	180	180		
Edge distance		C _{cr,sp}	[mm]	90	90	90	90	90	90		
Embedment depth h _{ef,2}											
The higher one of the decisiv	e resistan	ces of	Case 1	and Case	2 is applic	able					
Case 1											
Characteristic resistance in uncracked concrete C20/25		N ⁰ Rk,sp	[kN]	6	9	12	20	30	40		
Spacing		S cr,sp	[mm]	3 h _{ef}							
Edge distance		C _{cr,sp}	[mm]	1,5 h _{ef}							
Increasing factor for $N^0_{Rk,sp}$ $N^0_{Rk,sp} = \psi_c \cdot N^0_{Rk,sp}$ (C20/25)		ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{z}{1}\right)^{0.5}$				
Case 2											
Spacing		S _{cr,sp}	[mm]	160	220	240	340	410	560		
Edge distance		C _{cr,sp}	[mm]	80	110	120	170	205	280		
Embedment depth h _{ef,3}											
Spacing		Scr,sp	[mm]	360	420	480	600	720	690		
Edge distance		C _{cr,sp}	[mm]	180	210	240	300	360	345		
Concrete cone failure											
	for	^ h _{ef,1} ≥	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78		
Effective Embedment depth	for h _{ef,2} ≥		[mm]	40	44	48	65	80	100		
	for	r h _{ef,3} ≥	[mm]	60	70	80	100	120	115		
Spacing		S _{cr,N}	[mm]	3 h _{ef}							
Edge distance		C _{cr,N}	[mm]		1,5 h _{ef}						
Factor uncracked o	oncrete	k ucr,N	[-]	11,0							
cracked o	concrete	k _{cr,N}	[-]	No performance assessed							

 $^{^{1)}}$ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only $^{2)}\,N^0_{Rk,c}$ according to EN 1992-4:2018

Performance

Characteristic values for tension loads for HB-B A2 / HB-B A4 / HB-B HCR

Annex C2

Table C3: Characteristic values for shear loads

Fastener size					М6	M8	M10	M12	M16	M20	
Installation factor			γinst	[-]	1,0						
Steel failure without le	ever arm										
Characteristic	HB-B / HB-E HB-B sh	3 fvz ¹⁾ /	V^0 Rk.s	[kN]	5	11	17	25	44	69	
resistance	HB-B A2 / H HB-B HCR	IB-B A4 /	V^0 Rk,s	[kN]	7	12	19	27	50	86	
Ductility factor			k ₇	[-]							
Steel failure with lever	r arm										
Characteristic bending H resistance	HB-B / HB-E HB-B sh	B fvz ¹⁾ /	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363	
	HB-B A2 / H HB-B HCR	IB-B A4 /	M ⁰ Rk,s	[Nm]	10	24	49	85	199	454	
Partial factor for	HB-B / HB-B fvz ¹⁾ / HB-B sh		γMs	[-]	1,25 1					,33	
$V^0_{Rk,s}$ and $M^0_{Rk,s}$	HB-B A2 / HB-B A4 / HB-B HCR		γMs	[-]	1,25					1,4	
Concrete pry-out failu	re				•						
Factorifori	HB-B / HB-E HB-B sh	3 fvz ¹⁾ /	k ₈	[-]	1,0	2,3	2,5	2,9	2,8	3,1	
Factor for h ef	HB-B A2 / H HB-B HCR	IB-B A4 /	k ₈	[-]	1,0	2,3	2,8	2,8	3,0	3,3	
Concrete edge failure											
		for h _{ef,1}	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
		for h ef,2	l _f	[mm]	40	44	48	65	82 (80) ³⁾	100	
		for h ef,3	I _f	[mm]	60	70	80	100	120	115	
Outside diameter of fastener d			d _{nom}	[mm]	6	8	10	12	16	20	

¹⁾ Fastener version HB-B fvz: M8-M20

Performance

Characteristic values for shear loads

Annex C3

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Fastener version HB-B A2 / HB-B A4 / HB-B HCR

Table C5: Displacements under tension loads

Fastener size			M6	M8	M10	M12	M16	M20		
Embedment depth h _{ef,1}										
HB-B / HB-B fvz ¹⁾ / HB-B sh										
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6		
Displacement	δηο	[mm]	0,3	0,4						
	δ_{N^∞}	[mm]	0,6			1,8				
HB-B A2 / HB-B A4 / HB-B HCR										
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6		
Displacement	δηο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5		
	δ _{N∞}	[mm]			1,3			2,9		
Embedment depth hef,2 and hef,3										
HB-B / HB-B fvz ¹⁾ / HB-B sh										
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8		
Disals seems	δηο	[mm]	0,4			0,5				
Displacement	δ _{N∞}	[mm]	0,7	2,3						
HB-B A2 / HB-B A4 / HB-B HCR										
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0		
Dianlacement	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1		
Displacement	δ _{N∞}	[mm]			1,8			4,2		

¹⁾ Fastener version HB-B fvz: M8-M20

Table C6: Displacements under shear loads

Fastener size			М6	M8	M10	M12	M16	M20
HB-B / HB-B fvz ¹⁾ / HB-B sh								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δ_{V0}	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	$\delta_{V^{\infty}}$	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
HB-B A2 / HB-B A4 / HB-B HCR								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δ_{V0}	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δν∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Fastener version HB-B fvz: M8-M20

Wedge Anchor HB-B / HB-B fvz / HB-B sh / HB-B A2 / HB-B A4 / HB-B HCR

Performance Displacements Annex C4