

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-09/0160 vom 1. Februar 2021

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Universalverbundtechnik UVT Top

Verbunddübel zur Verankerung im Beton

BTI Befestigungstechnik GmbH & Co. KG Salzstraße 51 74653 Ingelfingen DEUTSCHLAND

BTI Herstellwerk 1

34 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601, Edition 04/2020

ETA-09/0160 vom 20. Oktober 2015

Europäische Technische Bewertung ETA-09/0160

Seite 2 von 34 | 1. Februar 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-09/0160

Seite 3 von 34 | 1. Februar 2021

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Universalverbundtechnik UVT Top" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel UVT Top, UVT Top S oder UVT Top W und einem Stahlteil gemäß Anhang A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3 bis B 6, C 1 bis C 8
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 9 und C 10
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 11 bis C 14

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-09/0160

Seite 4 von 34 | 1. Februar 2021

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

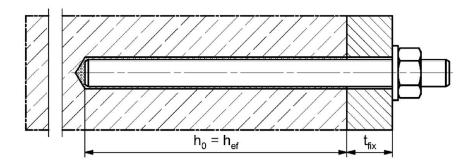
Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

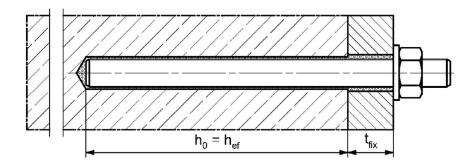
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

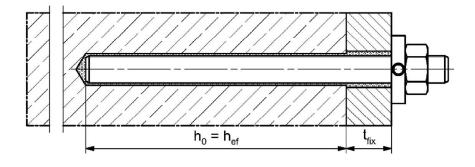
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 1. Februar 2021 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Einbauzustände Teil 1

Ankerstange UVT Top A


Vorsteckmontage

Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Vor- oder Durchsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

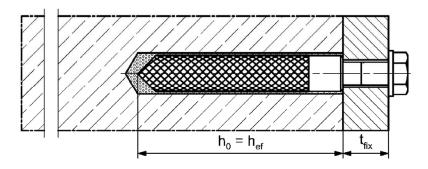
hef = Effektive Verankerungstiefe

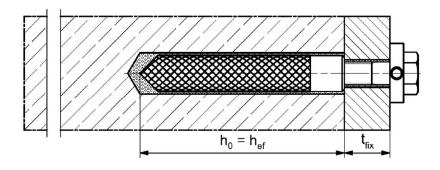
t_{fix} = Dicke des Anbauteils

Universalverbundtechnik UVT Top

Produktbeschreibung

Einbauzustände Teil 1


Anhang A 1


Einbauzustände Teil 2

Innengewindeanker UVT Top I

Vorsteckmontage

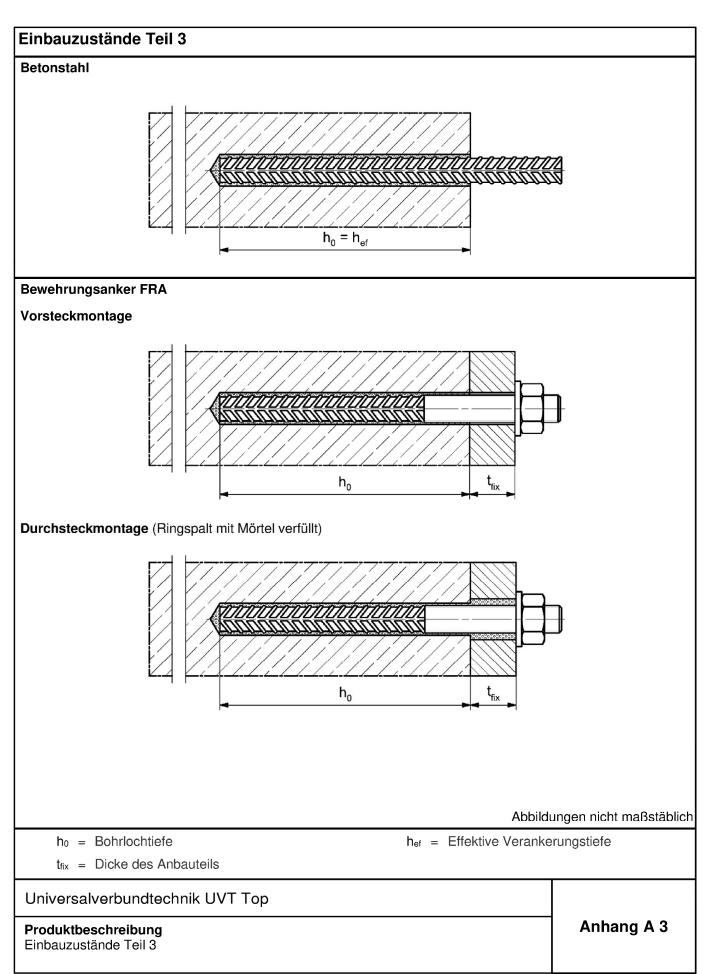
Vorsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

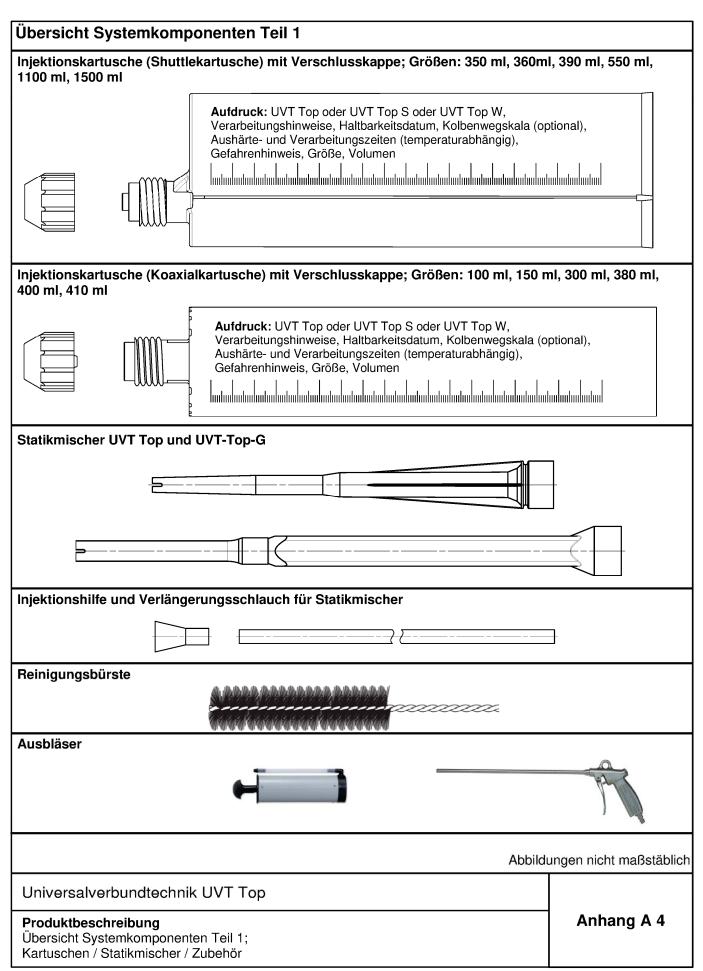
 h_0 = Bohrlochtiefe

hef = Effektive Verankerungstiefe

 t_{fix} = Dicke des Anbauteils


Universalverbundtechnik UVT Top

Produktbeschreibung


Einbauzustände Teil 2

Anhang A 2

Übersicht Systemkomponenten Teil 2 Ankerstange UVT Top A Größen: M6, M8, M10, M12, M16, M20, M24, M27, M30 Innengewindeanker UVT Top I Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter Verfüllscheibe mit Injektionshilfe **Betonstahl** Nenndurchmesser: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 28\$ Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich Universalverbundtechnik UVT Top Anhang A 5 Produktbeschreibung Übersicht Systemkomponenten Teil 2; Stahlteile

Teil	Bezeichnung		Material					
1	Injektionskartusche		Mörtel, Härter, Füllstoffe					
		Stahl	Nichtrostender Stahl R	Hochkorrosions- beständiger Stahl HCR				
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionswiderstands- klasse CRC III nach EN 1993-1-4:2015	gemäß EN 10088-1:201 der Korrosionswiderstand klasse CRC V nach EN 1993-1-4:2015				
2	Ankerstange	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 >$ 12% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4439; 1.4578; 1.4571; 1.4439; 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\% \text{ Bruchdehnung}$	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 7 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm ² $A_5 > 12\%$ Bruchdehnung				
			ing A5 > 8%, wenn keine Anford eistungskategorie C2 zu berück					
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014				
4	Sechskantmutter	Festigkeitsklasse 4, 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Innengewindeanker UVT Top I	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014				
6	Handelsübliche Schraube oder Gewindestange für Innengewindeanker UVT Top I	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 $A_5 > 8$ % Bruchdehnung				
7	Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014				
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rii gemäß NDP oder NCL der ge f _{uk} = f _{tk} = k·f _{yk}	ng, Klasse B oder C mit fyk und mäß EN 1992-1-1/NA	k				
Bewehrungsanker FRA Bewehrung								
Uni	versalverbundtechni	k UVT Top						

Spezifizierung des Verwendungszwecks (Teil 1) Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien **UVT Top mit ...** Beanspruchung der Verankerung Innengewinde-Betonstahl Bewehrungsanker Ankerstange anker UVT Top I FRA KKKKKKKKKKKKK Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (BTI Absaugbohrer SDS-plus /SDS max, fischer FHD, Bohrernenndurchmesser (d₀) Heller "Duster 12 mm bis 35 mm Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max") Tabelle: Tabelle: Tabelle: Tabelle: Alle Alle Alle ungerissenen C2.1 C3.2 Statische und C1.1 C3.1 Beton Größen Größen Größen Alle C4.1 C4.1 C4.1 quasi-statische C4.1 Größen M8 bis φ 10 to gerissenen C5.1 C6.1 C8.1 Belastung, im C7.1 _2) M30 φ 28 Beton C9.1 C9.2 C10.1 C10.2 Tabelle: M10 Seismische C11.1 C11) bis Leistungs-C12.1 M30 kategorie C13.1 _2) _2) 2) (nur Hammer-M12 Tabelle: bohren mit C11.1 M16 Standardbohrer / C21) M20 C12.1 Hohlbohrer) M24 C14.1 Trockener 11 oder nasser alle Größen Beton Nutzungskategorie Wasser-_2) _2) 12 gefülltes M 12 bis M 30 Alle Größen Bohrloch Einbaurichtung D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) $T_{i,min} = -10$ °C bis $T_{i,max} = +40$ °C Einbautemperatur Temperatur-(maximale Kurzzeittemperatur +80 °C; -40 °C bis +80 °C bereich I maximale Langzeittemperatur +50 °C) Gebrauchstemperaturbereiche Temperatur-(maximale Kurzzeittemperatur +120 °C; -40 °C bis +120 °C maximale Langzeittemperatur +72 °C) bereich II 1) Nicht geeignet für UVT Top S oder UVT Top W 2) Keine Leistung bewertet Universalverbundtechnik UVT Top Anhang B 1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

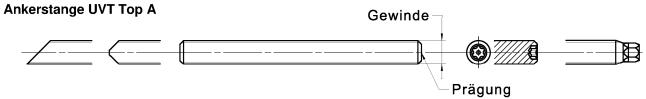
- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 6 Tabelle A6.1.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018.

Einbau:

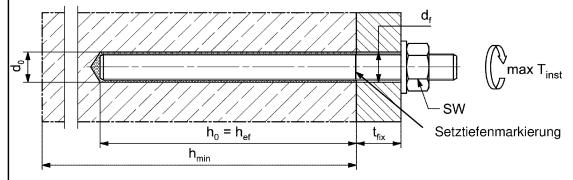
- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt


Universalverbundtechnik UVT Top

Verwendungszweck
Spezifikationen (Teil 2)

Anhang B 2

Ankerstangen			Gewinde	М6	M8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite		SW		10	13	17	19	24	30	36	41	46
Bohrernenndurchm	esser	d ₀	7	8	10	12	14	18	24	28	30	35
Bohrlochtiefe		h ₀						$h_0 = h_e$	f			
Effektive		h _{ef, min}		50	60	60	70	80	90	96	108	120
Verankerungstiefe		h _{ef, max}		72	160	200	240	320	400	480	540	600
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Durchmesser des	Vorsteck- montage	df		7	9	12	14	18	22	26	30	33
Durchgangsloch im Anbauteil	Durchsteck- montage	df		9	12	14	16	20	26	30	33	40
Minimale Dicke des Betonbauteils h _m		h _{min}			1 _{ef} + 30	(≥100)		ŀ	n _{ef} + 2d	0	
Maximales Montage	edrehmoment	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300


Prägung (an beliebiger Stelle) Ankerstange UVT Top A:

Stahl galvanisch verzinkt FK1 8.8	•oder+	Stahl feuerverzinkt FK ¹⁾ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	•	Hochkorrosionsbeständiger Stahl HCR FK1) 70	-
Hochkorrosionsbeständiger Stahl HCR FK 80	(Nichtrostender Stahl R FK 50	2
Nichtrostender Stahl R FK 80	*		

Alternativ: Farbmarkierung nach DIN 976-1:2016

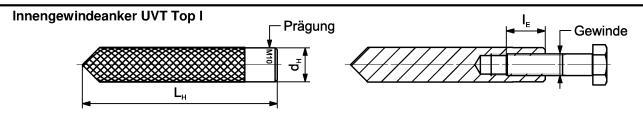
1) FK = Festigkeitsklasse

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 6, Tabelle A6.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

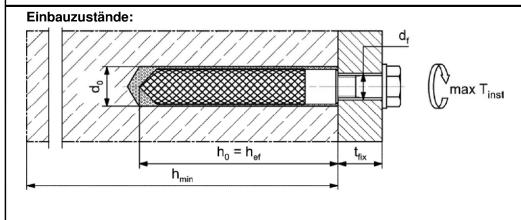
Abbildungen nicht maßstäblich


Universalverbundtechnik UVT Top

Verwendungszweck
Montagekennwerte Ankerstangen

Anhang B 3

Tabelle B4.1: Montage	ekennwert	e für In	nengewir	deanker U	IVT Top I						
Innengewindeanker UVT Top I	Ge	ewinde	М8	M10	M12	M16	M20				
Hülsendurchmesser	$d_{nom} = d_H$		12	16	18	22	28				
Bohrernenn- durchmesser	d_0		14	18	20	24	32				
Bohrlochtiefe	h ₀	$h_0 = h_{ef} = L_H$									
Effektive Verankerungstiefe ($h_{ef} = L_H$)	h _{ef}		90	90	125	160	200				
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	55	65	75	95	125				
Durchmesser des Durch- gangsloch im Anbauteil	df		9	12	14	18	22				
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260				
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45				
Minimale Einschraubtiefe	I _{E,min}		8	10	12	16	20				
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80	120				



Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 6, Tabelle A6.1 entsprechen

Abbildungen nicht maßstäblich

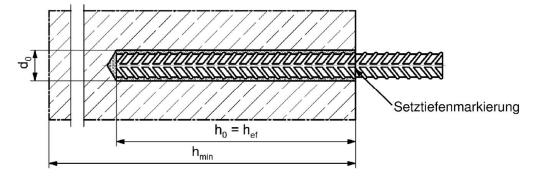
Universalverbundtechnik UVT Top

Verwendungszweck

Montagekennwerte Innengewindeanker UVT Top I

Anhang B 4

Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28				
Bohrernenndurchmesser	d ₀		10 12	12 14	14 16	18	20	25	30	35				
Bohrlochtiefe	h ₀		$h_0 = h_{ef}$											
Effektive	h _{ef,min}		60	60	70	75	80	90	100	112				
Verankerungstiefe	h _{ef,max}		160	200	240	280	320	400	500	560				
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130				
Mindestdicke des Betonbauteils	h _{min}			ef + 30 ≥ 100)		h _{ef} + 2d ₀								


¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ ($\phi = \text{Stabnenndurchmesser}$, $h_{rib} = \text{Rippenhöhe}$)

Einbauzustände:

Abbildungen nicht maßstäblich

Universalverbundtechnik UVT Top

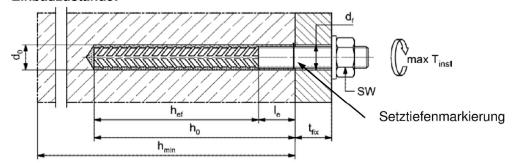
Verwendungszweck

Montagekennwerte Betonstahl

Anhang B 5

Bewehrungsanke	r FRA	Ge	ewinde	M1:	2 ¹⁾	M16	M20	M24			
Stabnenndurchme	sser	ф		12	2	16	20	25			
Schlüsselweite		SW		19	9	24	30	36			
Bohrernenndurchn	nesser	d_0		14	14 16 20		25	30			
Bohrlochtiefe		h ₀				h _{ef}	+ le				
Effektive		h _{ef,min}		70)	80	90	96			
Verankerungstiefe		h _{ef,max}		14	0	220	300	380			
sbstand Betonoberfläche zur Schweißstelle		l _e	F		100						
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	55	5	65	85	105			
Durchmesser des	Vorsteck- montage	≤ d _f		14	4	18	22	26			
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		18	3	22	26	32			
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30		h ₀ + 2d ₀					
Maximales Montagedrehmom	ent	max T _{inst}	[Nm]	40)	60	120	150			

¹⁾ Beide Bohrernenndurchmesser sind möglich


Bewehrungsanker FRA

Prägung stirnseitig z. B.: FRA (für nichtrostenden Stahl);

FRA HCR (für hochkorrosionsbeständigen Stahl)

Einbauzustände:

Abbildungen nicht maßstäblich

Universalverbundtechnik UVT Top

Verwendungszweck

Montagekennwerte Bewehrungsanker FRA

Anhang B 6

Tabelle B7.1: Kennwerte der Reinigungsbürsten (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Stahlbürsten- durchmesser BS	d _b	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Tabelle B7.2 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

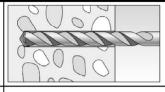
Temperatur im	Maxim	ıale Verarbeitur t _{work}	ngszeit	Minimale Aushärtezeit ¹⁾ t _{cure}				
Verankerungsgrund [°C]	UVT Top W	UVT Top	UVT Top S	UVT Top W	UVT Top	UVT Top S		
-10 bis -5 ²⁾	-	-	-	12 h	-	-		
> -5 bis 0 ²⁾	5 min	-	-	3 h	24 h	-		
> 0 bis 5 ²⁾	5 min	13 min	-	3 h	3 h	6 h		
> 5 bis 10	3 min	9 min	20 min	50 min	90 min	3 h		
> 10 bis 20	1 min	5 min	10 min	30 min	60 min	2 h		
> 20 bis 30	-	4 min	6 min	-	45 min	60 min		
> 30 bis 40	-	2 min	4 min	-	35 min	30 min		

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

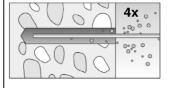
Universalverbundtechnik UVT Top

Verwendungszweck
Kennwerte der Reinigungsbürsten
Verarbeitungs- und Aushärtezeiten

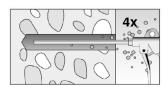
Anhang B 7


²⁾ Minimale Kartuschentemperatur +5°C

Montageanleitung Teil 1

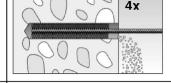

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

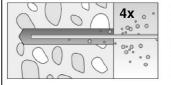


Bohrloch erstellen. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B3.1**, **B4.1**, **B5.1**, **B6.1**

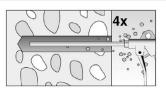
2



Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen


Bei h_{ef} > 12d und / oder d₀ ≥ 18 mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

3



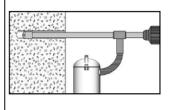
Bohrloch viermal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B7.1**

4

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen

Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 5 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

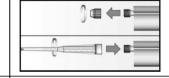
Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. BTI M-Staubsauger NTS 20 A-M-P / P1 oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B3.1**, **B4.1**, **B5.1**, **B6.1**

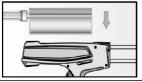
Mit Schritt 5 fortfahren


Universalverbundtechnik UVT Top

Verwendungszweck Montageanleitung Teil 1 Anhang B 8

Montageanleitung Teil 2

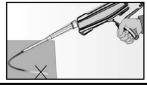
Kartuschenvorbereitung



Verschlusskappe abschrauben

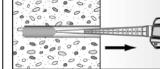
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

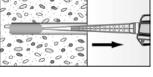
5



Kartusche in die Auspresspistole legen.

8

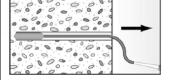


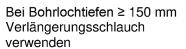


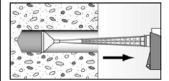
Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Mit Schritt 8 fortfahren

Mörtelinjektion






Ca. 2/3 des Bohrlochs mit Mörtel

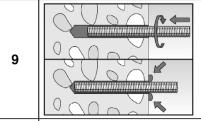
füllen. Immer am Bohrlochgrund

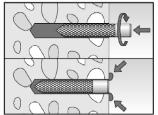
beginnen und Blasen vermeiden

Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

Mit Schritt 9 fortfahren

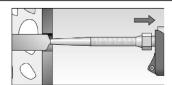
Universalverbundtechnik UVT Top


Verwendungszweck Montageanleitung Teil 2 Anhang B 9


Z99775.20

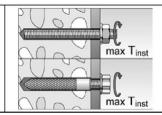
Montageanleitung Teil 3

Montage Ankerstange und Innengewindeanker UVT Top I

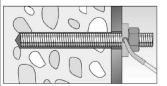


Nur saubere und ölfreie Stahlteile verwenden. Setztiefe des Stahlteiles markieren. Die Ankerstange oder den Innengewindeanker UVT Top I mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Stahlteiles muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage das Stahlteil mit Keilen (z.B. Zentrierkeile) fixieren

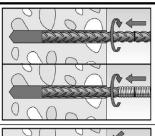

Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

10

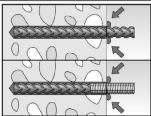

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7.2**

11

Montage des Anbauteils, max T_{inst} siehe **Tabellen B3.1 und B4.1**


Option

Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die Verfüllscheibe mit Mörtel befüllt werden.Druckfestigkeit ≥ 50 N/mm² (z.B. Injektionsmörtel UVT Top oder UVT Top-Z).


ACHTUNG: Bei Verwendung der Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

Montage Betonstahl und Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10

Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

11

Aushärtezeit abwarten, tcure siehe **Tabelle B7.2**

12

Montage des Anbauteils, max T_{inst} siehe **Tabelle B6.1**

Universalverbundtechnik UVT Top

Verwendungszweck Montageanleitung Teil 3 Anhang B 10

Z99775.20

Tabelle C1.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- / Querzugbe- anspruchung von **Ankerstangen UVT Top A** und **Standard-Gewindestangen**

	anspruch	ung vo	n A	nker	stang	en UV	Т Тор	A und	d Stan	dard-	Gewin	idesta	ngen	
Anker- /	Gewindestange				М6	М8	M10	M12	M16	M20	M24	M27	M30	
Zugtrag	fähigkeit, Stahlversa	gen ³⁾												
s,x			4.8		8	15(13)	23(21)	33	63	98	141	184	224	
	ahl, verzinkt	<u>γ</u>	5.8		10	19(17)	29(27)	43	79	123	177	230	281	
raki		stigkeit Klasse	8.8	[LN]	16	29(27)	47(43)	68	126	196	282	368	449	
Charakt erstand <u>z</u>	chtrostender Stahl R	Festigkeits- klasse	50	[kN]	10	19	29	43	79	123	177	230	281	
<u>ĕ</u> ur	nd Hochkorrosions-	Ъ	70		14	26	41	59	110	172	247	322	393	
≥ be	eständiger Stahl HCR		80		16	30	47	68	126	196	282	368	449	
Teilsich	erheitsbeiwerte 1)													
, h			4.8						1,50					
eji N. St	ahl, verzinkt	ţ.	5.8		1,50									
r 'z		stigkeit klasse	8.8	r 1					1,50					
eilsicherheits- beiwert ms.n in ig sp	chtrostender Stahl R	Festigkeits- klasse	50	[-]					2,86					
	nd Hochkorrosions-	Ψ.	70		1,50 ²⁾ / 1,87									
⊢ be	eständiger Stahl HCR		80						1,60					
Quertrag	gfähigkeit, Stahlversa	gen ³⁾												
Ohne He	ebelarm													
Ж, s			4.8		4	9(8)	14(13)	20	38	59	85	110	135	
Š St	ahl, verzinkt	ţ	5.8		6	11(10)	17(16)	25	47	74	106	138	168	
Charakt. erstand V ⁰ Rc,s : Z ∽ Ω		stigkeit Klasse	8.8	[kN]	8	15(13)	23(21)	34	63	98	141	184	225	
h sts Ni	chtrostender Stahl R	Festigkeits- klasse	50		5	9	15	21	39	61	89	115	141	
j o ur	nd Hochkorrosions-	Ä	70		7	13	20	30	55	86	124	161	197	
	eständiger Stahl HCR		80		8	15	23	34	63	98	141	184	225	
Duktilität			k 7	[-]					1,0					
Mit Heb	elarm								•					
Charakt. derstand M° _{RK,s}			4.8		6		30(27)	52	133	259	448	665	899	
t; St	ahl, verzinkt	its-	5.8		7	19(16)	37(33)	65	166	324	560	833	1123	
Charakt. erstand № Z 9		Festigkeits- klasse	8.8	[Nm]	12		60(53)	105	266	519	896	1333	1797	
St Si	chtrostender Stahl R	esti. Kla	50	[]	7	19	37	65	166	324	560	833	1123	
ိုမ္မီ ur	nd Hochkorrosions-	டீ	70		10	26	52	92	232	454	784	1167	1573	
	eständiger Stahl HCR		80		12	30	60	105	266	519	896	1333	1797	
Teilsich	erheitsbeiwerte 1)													
لیٰ ا			4.8						1,25					
Teit Ms, St	ahl, verzinkt	its-	5.8						1,25					
eilsicherheits- beiwert ms.v n <u>e</u> p		Festigkeits- klasse	8.8	_[-]					1,25					
sick N iiwe	chtrostender Stahl R	esti ₍ Kla	50	-l l_l ⊦					2,38					
∄aur	nd Hochkorrosions-	_	70					1,	25 ²⁾ / 1,	56				
be	beständiger Stahl HCR		80						1,33					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Universalverbundtechnik UVT Top

Leistungen

Charakteristische Werte für die Stahltragfähigheit unter Zug- / Querzugbeanspruchung von Ankerstangen UVT Top Aund Standard-Gewindestangen

Anhang C 1

²⁾ Nur zulässig für hochkorrosionsbest. Stahl HCR, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12 \%$ (z.B. Ankerstangen UVT Top A)

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

1,56

1,56

Tabelle C2.1:	Cha	rakteristisc	he W		für die Sta	hltragfähig	ı kait unter	7ua- /	
						gewindear	•	•	
Innengewindean	ıker UV	/T Top I			M8	M10	M12	M16	M20
Zugtragfähigkeit	t, Stahl	versagen							
_		Festigkeits-	5.8		19	29	43	79	123
Charakt. Widerstand mit	N _{Rk.s}	klasse	8.8	[kN]	29	47	68	108	179
Schraube	INRk,s	Festigkeits-	R	[KIN]	26	41	59	110	172
		Klasse 70	HCR		26	41	59	110	172
Teilsicherheitsb	eiwerte	(1و							
		Festigkeits-	5.8				1,50		
Teilsicherheits-	••	klasse	8.8				1,50		
beiwerte	γMs,N	Festigkeits-	R	[-]			1,87		
		Klasse 70	HCR				1,87		
Quertragfähigke	it, Star	ılversagen							
Ohne Hebelarm									
		Festigkeits- klasse Festigkeits-	5.8		9,2	14,5	21,1	39,2	62,0
Charakt. Widerstand mit	$V^0_{Rk,s}$		8.8	[kN]	14,6	23,2	33,7	54,0	90,0
Schraube	V HK,S		_R	[[[,]]	12,8	20,3	29,5	54,8	86,0
		Klasse 70	HCR		12,8	20,3	29,5	54,8	86,0
Duktilitätsfaktor			k ₇	[-]			1,0		
Mit Hebelarm							·	1	
		Festigkeits-	5.8		20	39	68	173	337
Charakt. Widerstand mit	M ⁰ Rk,s	klasse	8.8	[Nm]	30	60	105	266	519
Schraube	IVI FIK,5	Festigkeits-	_R	ן ניייי <i>י</i> ין	26	52	92	232	454
		Klasse 70	HCR		26	52	92	232	454
Teilsicherheitsbe	eiwerte	(1و							
		Festigkeits-	5.8				1,25		
Teilsicherheits-	^/\ 4_ \/	klasse	8.8	[-]			1,25		
beiwerte	γ Ms,V	Festiakeits-	R	ו ניו			1.56		

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

HCR

Festigkeits-Klasse 70

Universalverbundtechnik UVT Top Anhang C 2 Leistungen Charakteristische Werte für die Stahltragfähigkeiten unter Zug-/ Querzugbeanspruchung von Innengewindeankern UVT Top I

Fabelle C3.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- / Querzugbeanspruchung von Betonstahl										
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28
Zugtragfähigkeit, Stahlversagen)									
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	$A_s \cdot f_{uk}^{1)}$							
Quertragfähigkeit, Stahlversage	n									
Ohne Hebelarm										
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]				0,5 · A	∖s · f uk¹)			
Duktilitätsfaktor	k ₇	[-]	1,0							
Mit Hebelarm										
harakteristischer Widerstand M ⁰ Rk,s [Nm] 1,2 · W _{el} · f _{uk} ¹⁾										

¹⁾ fuk bzw. fyk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C3.2: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug-/ Querzugbeanspruchung von **Bewehrungsankern FRA**

Bewehrungsanker FRA			M12	M16	M20	M24		
Zugtragfähigkeit, Stahlversagen								
Charakteristischer Widerstand	N _{Rk,s}	[kN]	63	111	173	270		
Teilsicherheitsbeiwert 1)								
Teilsicherheitsbeiwert	γMs,N	[-]		1	,4			
Quertragfähigkeit, Stahlversagen								
Ohne Hebelarm								
Charakteristischer Widerstand	V^0 Rk,s	[kN]	30	55	86	124		
Duktilitätsfaktor	k ₇	[-]		1	,0			
Mit Hebelarm								
Charakteristischer Widerstand	M^0 Rk,s	[Nm]	92	233	454	785		
Teilsicherheitsbeiwert 1)				•				
Teilsicherheitsbeiwert	γMs,V	[-]		1,	56			

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Universalverbundtechnik UVT Top

Leistungen
Charakteristische Werte für die Stahltragfähigkeiten unter Zug- /
Querzugbeanspruchung von Betonstahl und Bewehrungsanker FRA

Größe							All	le Grö	ßen			
Zugbelastung												
Montagebeiwert	t	γinst	[-]		Sieh	e Anhä	nae C :	5 bis C	8 und	C 13 bi	s C14	
	etondruckfestigkei											
	C25/30							1,05				
_	C30/37			1,10								
- Erhöhungs-	C35/45	\ - /	,					1,15				
faktor für τ _{Rk}	C40/50	Ψ_{c}	[-]					1,19				
-	C45/55							1,22				
-	C50/60							1,26				
Versagen durc	h Spalten											
_	h / h _{ef} ≥ 2,0							1,0 h	əf			
Randabstand	$2.0 > h / h_{ef} > 1.3$	C _{cr,sp}	[mm]				4,6	h _{ef} -	1,8 h			
	h / h _{ef} ≤ 1,3		_ [!''''']					2,26 h	lef			
Achsabstand		S _{cr,sp}						2 c _{cr,s}	p			
	h kegelförmigen B	etonau	ısbrucl	1								
Ungerissener B		k _{ucr,N}	- [-]					11,0				
Gerissener Beto	on	k cr,N						7,7				
Randabstand		Ccr,N	[mm]					1,5 h				
Achsabstand		S _{cr} ,N	[]					2 c _{cr,l}	N			
Faktor für Daue	rzugbelastung											
Temperaturbereich [-] 50 °C / 80 °C						72 °C / 120 °C						
Faktor Ψ^0_{sus} [-] 0,74					0,8	37						
Querzugbelast	ung											
Montagebeiwert		γinst	[-]					1,0				
Betonausbruch	h auf der lastabgew	andte	n Seite)								
Faktor für Betor	nausbruch	k 8	[-]					2,0				
Betonkantenau												
Effektive Länge unter Querzugb	elastung	lf	[mm]			1≤ 24 m 1> 24 m) 300 mm)		
Rechnerische l	Durchmesser											
Größe				M6	M8	M10	M12	M16	M20) M24	M27	M36
Ankerstange U\ Standard-Gewir	ndestange	d _{nom}	[mm]	6	8	10	12	16	20	24	27	30
Innengewindear	•	d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)
Bewehrungsank		d _{nom}		_1)	_1)	_1)	12	16	20	25	_1)	_1)
Stabnenndurchr	messer		ф	8	10	12			16	20	25	28
Betonstahl		d_{nom}	[mm]	8	10	12	1.	4	16	20	25	28
Betonstahl	messer nte nicht Bestandteil		[mm]	8 8	+	12				20		
Universalve Leistungen	rbundtechnik UV	Т Тор		ragfähiç						An	hang (2 4

Tabelle C5.1:	Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen
	UVT Top A und Standard-Gewindestangen im hammergebohrten;
	ungerissener oder gerissener Beton

ungerissener oder gerissener Beton												
Anker- / G	ewindestange			М6	M8	M10	M12	M16	M20	M24	M27	M30
Kombinie	rtes Versagen durc	h Herau	ısziehen ι	ınd Be	tonaus	bruch						
Rechnerisc	cher Durchmesser	d	[mm]	6	8	10	12	16	20	24	27	30
Ungerisse	ner Beton											
Charakter	Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25											
Hammerbo	ohren mit Standard-	<u>oder Hol</u>	<u>nlbohrer (t</u>	rocken	er oder	nasser	Beton)					
Tempe- ratur- —	I: 50 °C / 80 °C	_	[N]/mm21	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
bereich	II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammerbo	hren mit Standard-	oder Ho	hlbohrer (\	vasser	gefülltes	Bohrlo	ch) 1)		•	•		
Tempe-	I: 50 °C / 80 °C		FB.17 23	_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
ratur- – bereich	II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Montageb	Montagebeiwerte											
Trockener	oder nasser Beton							1,0				
Wassergef	ülltes Bohrloch	γinst	[-]	_2)	_2)	_2)			1,2	2 1)		
Gerissene	er Beton											
Charakter	istische Verbundtr	agfähig	keit im ge	rissen	en Beto	on C20/	25					
Hammerbo	<u>ohren mit Standard-</u>	oder Ho	<u>hlbohrer (t</u>	rocken	<u>er oder</u>	nasser	Beton)					
Tempe- ratur- —	I: 50 °C / 80 °C	_	[N/mm ²]	_2)	5,5	6,0	6,0	6,0	5,5	4,5	4,0	4,0
bereich	II: 72 °C / 120 °C	τ _{Rk,cr}	[18/11111-]	_2)	4,5	5,0	6,0	6,0	5,0	4,0	3,5	3,5
Hammerbo	hren mit Standard-	oder Ho	hlbohrer (\	wasser	gefülltes	Bohrlo	ch) 1)		•	•		
Tempe-	I: 50 °C / 80 °C		53.17	_2)	_2)	_2)	5,0	5,0	4,5	4,0	3,5	3,5
ratur- — bereich	II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	3,5	3,0	3,0
Montageb	eiwerte					1	ı			1		
Trockener	oder nasser Beton		[]					1,0				
Wassergef	ülltes Bohrloch	γinst	[-]	_2)	_2)	_2)			1,2	2 1)		

¹⁾ Nur Koaxialkartuschen: 380 ml, 400 ml, 410 ml

Universalverbundtechnik UVT Top

Leistungen
Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen UVT Top A und Standard-Gewindestangen

²⁾ Keine Leistung bewertet

Tabelle C6.1:	Charakteristische Werte für die Zugtragfähigkeit von Innengewindeankern
	UVT Top I im hammergebohrten Bohrloch; ungerissener Beton

) I		M8	M10	M12	M16	M20			
Kombiniertes Versagen durch Herausziehen und Betonausbruch									
d	[mm]	12	16	18	22	28			
Ungerissener Beton									
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25									
oder Hol	nlbohrer (t	rockener ode	r nasser Betc	<u>on)</u>					
-	[N]/mm ²]	10,5	10,0	9,5	9,0	8,5			
€ Rk,ucr	[14/111111]	9,0	8,0	8,0	7,5	7,0			
<u>oder Hol</u>	hlbohrer (wassergefüllt	es Bohrloch ¹))					
	[N/mm ²]	10,0	9,0	9,0	8,5	8,0			
€ Rk,ucr		7,5	6,5	6,5	6,0	6,0			
Montagebeiwerte									
•	r 1	1,0							
Yinst	[-]			1,2 ¹⁾					
	d agfähigl oder Hol	th Herausziehen d [mm] agfähigkeit im ur oder Hohlbohrer (to	th Herausziehen und Betonau d [mm] 12 agfähigkeit im ungerissenen oder Hohlbohrer (trockener ode $\tau_{Rk,ucr}$ [N/mm²] $\frac{10,5}{9,0}$ oder Hohlbohrer (wassergefüllte $\tau_{Rk,ucr}$ [N/mm²] $\frac{10,0}{7,5}$	th Herausziehen und Betonausbruch d [mm] 12 16 agfähigkeit im ungerissenen Beton C20/29 oder Hohlbohrer (trockener oder nasser Beton C20/29 $\tau_{Rk,ucr}$ [N/mm²] $10,5$ $10,0$ $9,0$ $8,0$ $10,0$ 10	th Herausziehen und Betonausbruch d [mm] 12 16 18 agfähigkeit im ungerissenen Beton C20/25 oder Hohlbohrer (trockener oder nasser Beton) $\tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,5 10,0 9,5 9,0 8,0 8,0$ oder Hohlbohrer (wassergefülltes Bohrloch 1) $\tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,0 9,0 9,0$ $\tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,0 9,0$ $\tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,0 9,0$ $\tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,0$	th Herausziehen und Betonausbruch d [mm] 12 16 18 22 agfähigkeit im ungerissenen Beton C20/25 oder Hohlbohrer (trockener oder nasser Beton) $ \tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,5 10,0 9,5 9,0 9,0 8,0 8,0 7,5 00 oder Hohlbohrer (wassergefülltes Bohrloch 1) \tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,0 9,0 9,0 8,5 0 \tau_{Rk,ucr} \begin{bmatrix} N/mm^2 \end{bmatrix} = 10,0 9,0 9,0 8,5 0 7,5 6,5 6,5 6,5 6,0 $			

¹⁾ Nur für Koaxialkartuschen: 380 ml, 400 ml, 410 ml

Universalverbundtechnik UVT Top	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von Innengewindeankern UVT Top I	Anhang C 6

Tabelle C7.1: Charakteristische Werte für die Zugtragfähigkeit von Betonstahl im hammergebohrten Bohrloch; ungerissener oder gerissener Beton										
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28
Kombiniertes Versagen durch I	Heraus	sziehen u	ınd Bet	onausbi	uch					
Rechnerischer Durchmesser	d	[mm]	8	10	12	14	16	20	25	28
Ungerissener Beton										
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25										
Hammerbohren mit Standard- oder	Hohlbo	ohrer (troc	kener o	der nasse	er Beton)					
Tempe- I: 50 °C / 80 °C		[N.1/ma.ma.2]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
ratur- bereich II: 72 °C / 120 °C	Rk,ucr L	[N/mm²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Montagebeiwerte										
Trockener oder nasser Beton	γinst	[-]				1,	,0			
Gerissener Beton										
Charakteristische Verbundtrag	fähigke	eit im ge	rissene	n Beton	C20/25					
Hammerbohren mit Standard- od	<u>er Hohl</u>	lbohrer (t	rockene	r oder na	asser Be	ton)				
Tempe- I: 50 °C / 80 °C	_	[N]/mama21	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
ratur τ bereich II: 72 °C / 120 °C	CRk,cr L	[N/mm²] -	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Montagebeiwerte										
Trockener oder nasser Beton	γinst	[-]				1,	,0			

¹⁾ Keine Leistung bewertet

Universalverbundtechnik UVT Top

Leistungen
Charakteristische Werte für die Zugtragfähigkeit von Betonstahl

	Tabelle C8.1: Charakteristische Werte für die Zugtragfähigkeit von Bewehrungsankern FRA im hammergebohrten Bohrloch; ungerissener oder gerissener Beton							
Bewehrungsanker F	RA		M12	M16	M20	M24		
Kombiniertes Versag	gen durch Her	ausziehen	und Betonausbi	ruch				
Rechnerischer Durchr	messer d	[mm]	12	16	20	25		
Ungerissener Beton	Ungerissener Beton							
Charakteristische Ve	erbundtragfäh	igkeit im ur	ngerissenen Bet	on C20/25				
<u>Hammerbohren mit St</u>	<u>tandard- oder F</u>	lohlbohrer (trockener oder na	asser Beton)				
Tempe- I: 50 °C /		[NI/mm2]	11,0	10,0	9,5	9,5		
ratur- bereich II: 72 °C /	/ 120 °C τ _{Rk,υ}	er [N/mm²]	9,0	8,5	8,0	7,5		
Montagebeiwerte								
Trockener oder nasse	er Beton γ _{inst}	[-]		1,	.0			
Gerissener Beton								
Charakteristische Ve	erbundtragfäh	igkeit im ge	erissenen Beton	C20/25				
Hammerbohren mit Si	<u>tandard- oder l</u>	<u>łohlbohrer (</u>	trockener oder na	asser Beton)				
Tempe- I: 50 °C /		[N]/may ma 21	5,0	5,0	4,5	4,0		
ratur- II: 72 °C /	/ 120 °C τ _{Rk,c}	r [N/mm²]	4,5	4,5	4,0	3,5		
Montagebeiwerte								
Trockener oder nasse	er Beton γ _{inst}	[-]		1,	,0			

Universalverbundtechnik UVT Top	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von Bewehrungsanker FRA	Anhang C 8

Ankersta	ange	М6	М8	M10	M12	M16	M20	M24	M27	M30	
Verschiebungs-Faktoren für Zuglast¹)											
Ungerissener Beton; Temperaturbereich I, II											
δ _{N0-Faktor}	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
δN∞-Faktor	[111111/(14/111111-)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Gerissener Beton; Temperaturbereich I, II											
SN0-Faktor	[mm/(N/mm²)]	_3)	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15	
δN∞-Faktor	[[[]]]	_3)	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40	
Verschie	bungs-Faktor	en für Qu	erlast ²⁾								
Ungeriss	sener oder ger	issener B	eton; Ten	nperaturb	ereich I, II						
δv0-Faktor	[mm//cN]]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
δv∞-Faktor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C9.2: Verschiebungen für Innengewindeanker UVT Top I

UVT Top	windeanker) I	M8	M10	M12	M16	M20				
Verschie	/erschiebungs-Faktoren für Zuglast¹)									
Ungeris	sener oder ger	issener Beton; To	emperaturbereich	ı I, II						
δ _{N0-Faktor}	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14				
δ _{N∞-Faktor}	[[[]]]]	0,13	0,14	0,15	0,16	0,18				
Verschie	bungs-Faktor	en für Querlast²)								
Ungeris	sener oder ger	issener Beton; To	emperaturbereich	ı I, II						
δ v0-Faktor	[mm/kN]	0,12	0,12	0,12	0,12	0,12				
δv∞-Faktor	[mm/kN]	0,14	0,14	0,14	0,14	0,14				

1) Berechnung der effektiven Verschiebung:

 $\delta \text{N0} = \delta \text{N0-Faktor} \cdot \tau \text{Ed}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}} .$ Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Universalverbundtechnik UVT Top

Leistungen

Verschiebungen Ankerstangen und Innengewindeanker UVT Top I

Anhang C 9

²⁾ Berechnung der effektiven Verschiebung:

³⁾ Keine Leistung bewertet

Verschiebur Ungerissen			ı	12	14	16	20	25	28	
SNO-Eaktor	ou Doton. T	en für Zugl	last¹)		•					
δN0-Faktor	ier Beton; i	emperatur	bereich I, I	I						
[mr	ım/(N/mm²)]-	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11	
δ _{N∞-Faktor}	(\ / -	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13	
Gerissener Beton; Temperaturbereich I, II										
δN0-Factor	ım/(N/mm²)]-	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14	
δ _{N∞-Factor}	(\ / -	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37	
Verschiebungs-Faktoren für Querlast ²⁾										
Ungerissen	er oder ger	issener Be	ton; Temp	eraturbere	ich I, II					
δ V0-Faktor	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08	
δv∞-Faktor		0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09	
1) Berechnu	ung der effel	ktiven Vers	chiebung:		²⁾ Berechnu	ıng der effe	ktiven Vers	chiebung:		
$\delta_{N0} = \delta_{N0}$	0-Faktor · τEd				$\delta v_0 = \delta v_0$	Faktor · VEd				
$\delta_{N\infty}=\delta_{N\infty}$	∞-Faktor · τEd				$\delta_{V^\infty}=\delta_{V^\infty}$	-Faktor · VEd				
(τ _{Ed} : Bemessungswert der einwirkenden Zugspannung) (V _{Ed} : Bemessungswert der einwirkenden Querkraft)										

Bewehru FRA	ıngsanker	M20	M24		
Verschie	bungs-Faktor	en für Zuglast¹)			
Jngeris :	sener Beton; T	emperaturbereich I, II			
SN0-Faktor	[mm/(N/mm²)]	0,10	0,10	0,10	0,10
N∞-Faktor	[[111111/(14/111111-)]	0,12	0,12	0,12	0,13
Gerisser	ner Beton; Tem	nperaturbereich I, II			
SN0-Faktor	[mm/(N/mm²)]	0,12	0,13	0,13	0,13
N∞-Faktor	[[[[[[]]	0,30	0,30	0,30	0,35
/erschie	bungs-Faktor	en für Querlast ²⁾			
Jngeris:	sener oder ger	issener Beton; Tempe	eraturbereich I, II		
V0-Faktor	[mm/kN]	0,10	0,10	0,09	0,09
V∞-Faktor	[IIIII/KIN]	0,11	0,11	0,10	0,10
1) Bered	chnung der effe	ktiven Verschiebung:	²⁾ Berec	hnung der effektiven \	Verschiebung:
δνο =	δ N0-Faktor \cdot τ Ed		δνο =	δ vo-Faktor · V Ed	
$\delta_{N\infty} =$	δ _{N∞-Faktor} · τ _{Ed}		$\delta_{V\infty} =$	$\delta_{V\infty\text{-Faktor}}\cdot V_{\text{Ed}}$	
	Bemessungswe			Bemessungswert der	
einwi	rkenden Zugsp	annung)	einwii	rkenden Querkraft)	
Univer	rsalverbundte	echnik UVT Top			
Leistur Verschi		stahl und Bewehrungs	anker FRA		Anhang C 10

Tabelle C11.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- und Querzugbelastung von Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

Colomicono Edictarigonatogorio O 1 Gaoi O 2											
Anker- /	Gewindestange				M10	M12	M16	M20	M24	M27	M30
Zugtragt	lähigkeit, Stahlversage	n ¹⁾									
Ankersta	angen UVT Top A und S	Stand	ard-0	Gewi	ndestang	en, Leist	ungskate	egorie C1	2)		
7 -	Otablessonials		5.8		29(27)	43	79	123	177	230	281
Vide k,s,c	Stahl, verzinkt	e its	8.8		47(43)	68	126	196	282	368	449
	Nichtrostender Stahl R	stigkeit klasse	50	[kN]	29	43	79	123	177	230	281
Charakt. Widerstand N _{RK,S,C1}	und Hochkorrosions-	Festigkeits klasse	70		41	59	110	172	247	322	393
Ch.	beständiger Stahl HCR	1	80		47	68	126	196	282	368	449
Ankersta	angen UVT Top A und S	 Stand	ard-0	Gewi	ndestang	en, Leist	ungskate	egorie C2	2)		
	Stahl galvanisch		5.8		_4)	39	72	108	_4)	_4)	_4)
Charakt. Widerstand NRK,S,C2	verzinkt Nichtrostender Stahl R und Hochkorrosions-	Festigkeits- klasse			_4)	61	116	173	_4)	_4)	_4)
Charakt. /iderstan N _{Rk,s,C2}	Nichtrostender Stahl R	igka	8.8 50	[kN]	_4)	39	72	108	_4)	_4)	_4)
£ § z		est F	70		_4)	53	101	152	_4)	_4)	_4)
	beständiger Stahl HCR	ш	80		_4)	61	116	173	_4)	_4)	_4)
Quertraç	gfähigkeit, Stahlversag	en oh	ne H	ebela	arm ¹⁾						
Ankersta	angen UVT Top A, Leis	tungs	skate	gorie	C1 ²⁾						
	Stahl, verzinkt Wichtrostender Stahl R und Hochkorrosions- beständiger Stahl HCR		5.8		17(16)	25	47	74	106	138	168
Nid R,s, C		eits	8.8		23(21)	34	63	98	141	184	225
 	Nichtrostender Stahl R	Festigkeits- klasse	50	[kN]	15	21	39	61	89	115	141
aral	und Hochkorrosions-	isi ≥	70		20	30	55	86	124	161	197
- 당 5	beständiger Stahl HCR		80		23	34	63	98	141	184	225
Standar	d-Gewindestangen, Lei	stung	skat	egor	ie C1 ²⁾						
70	Ctable variable		5.8		12(11)	17	33	52	74	97	118
Charakt. Widerstand V _{RK,S, C1}	Stahl, verzinkt	Festigkeits- klasse	8.8		16(14)	24	44	69	99	129	158
Charakt. /iderstan V _{Rk,s, C1}	Nichtrostender Stahl R	tigkeit asse	50	[kN]	11	15	27	43	62	81	99
₽≧ <i>></i>		Fest F	70		14	21	39	60	87	113	138
	beständiger Stahl HCR		80		16	24	44	69	99	129	158
Ankerst	angen UVT Top A und S	Stand	ard-(Gewi	ndestang	en, Leist	ungskate	gorie C2			
٥	Stahl, verzinkt	<u>ب</u>	5.8		_4)	14	27	43	_4)	_4)	_4)
Charakt. Widerstand V _{Rk,s, C2}		Festigkeits- klasse	8.8		_4)	22	44	69	_4)	_4)	_4)
Chara //iderst V _{Rk,s, (}	Nichtrostender Stahl R	stigkeit klasse	50	[kN]	_4)	14	27	43	_4)	_4)	_4)
°§>	und Hochkorrosions- beständiger Stahl HCR	a Fee			_4)	20	39	60	_4)	_4)	_4)
F 1	_		80		_4)	22	44	69	_4)	_4)	_4)
-aktor fü	r den Ringspalt	αgap		[-]				0,5 (1,0) ³⁾			

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C12.1; für Ankerstangen UVT Top A beträgt der Duktilitätsfaktor für Stahl 1,0

Universalverbundtechnik UVT Top

Leistungen

Charakteristische Werte für die Stahltragfähigkeiten von Ankerstangen UVT Top A und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 11

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Der Wert in Klammer gilt für gefüllte Ringspalte zwischen der Ankerstange und dem Durchgangsloch im Anbauteil. Die Verfüllscheibe ist zu verwenden nach Anhang A 1

⁴⁾ Keine Leistung bewertet

Tabelle C12.1: Teilsicherheitsbeiwerte von Ankerstangen UVT Top A, Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

Anker- / Gewindestange				M10	M12	M16	M20	M24	M27	M30
Zugtragfähigkeit, Stahlversa	agen¹)									
្ទុំ ∠ Stahl, verzinkt		5.8					1,50			
Stahl, verzinkt Jegus Stahl, verzinkt Nichtrostender Stahl R Jegus Stahl, verzinkt Jegus Stahl, verzinkt	e e	8.8		1,50						
Nichtrostender Stahl R	Festigkeits Klasse	50	[-]				2,86			
Nichtrostender Stahl R und Hochkorrosions-		70				1	,50 ²⁾ / 1,8	7		
beständiger Stahl HCR		80					1,60			
Quertragfähigkeit, Stahlvers	sagen ¹⁾									
ģ > Stahl, verzinkt		5.8		1,25						
£ \$\frac{\x}{2} = \frac{\x}{2} = \frac{\x}{2}	e e	8.8		1,25						
Nichtrostender Stahl R	Festigkeits- klasse	50	[-]				2,38			
्रि हे und Hochkorrosions-		70		1,25 ²⁾ / 1,56						
beständiger Stahl HCR		80					1,33			

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Universalverbundtechnik UVT Top

Leistungen
Teilsicherheitsbeiwerte von Ankerstangen UVT Top A und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 12

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl HCR, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. Ankerstangen UVT Top A)

Tabelle C13.1: Charakteristische Werte für die **Tragfähigkeit** von **Ankerstangen UVT Top A** und **Standard-Gewindestangen** für die seismische Leistungskategorie **C1** im hammergebohrten Bohrloch

Anker- /	Gewindestange			M10	M12	M16	M20	M24	M27	M30
Charakte	Charakteristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch									
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)									
Tempe- ratur-	I: 50 °C / 80 °C	_	[N/mm²]	4,5	5,5	5,5	5,5	4,5	4,0	4,0
bereich	II: 72 °C / 120 °C	τ _{Rk,C1}	[14/11111-] 	4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch) 1)									
Tempe-	I: 50 °C / 80 °C	τ _{Rk,C1}	[N/mm ²]	_2)	5,0	5,0	4,5	4,0	3,5	3,5
ratur- bereich	II: 72 °C / 120 °C			_2)	4,0	4,0	4,0	3,5	3,0	3,0
Montage	Montagebeiwert									
Trockene	er oder nasser Beton		r 1				1,0			
Wasserg	efülltes Bohrloch	γinst	[-]	_2)			1,:	2 ¹⁾		

¹⁾ Nur für Koaxialkartuschen: 380 ml, 400 ml, 410 ml

Universalverbundtechnik UVT Top

Leistungen
Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C1) für
Ankerstangen UVT Top A, Standard-Gewindestangen

²⁾ Keine Leistung bewertet

Tabelle C14.1: Charakteristische Werte für die Tragfähigkeit von Ankerstangen UVT Top A und Standard-Gewindestangen für die seismische Leistungskategorie C2 im hammergebohrten Bohrloch

Anker- / Gewindestange		M12	M16	M20							
Charakteristische Verbundtrag	gfähigkeit, ko	mbiniertes Versagen d	urch Herausziehen u	nd Betonausbruch							
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)											
Tempe- I: 50 °C / 80 °C	τ _{Bk C2} [N/mm	1,5	1,3	2,1							
bereich II: 72 °C / 120 °C	τ _{Rk,C2} [IN/mm	1,3	1,2	1,9							
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch ³⁾)											
Tempe- I: 50 °C / 80 °C	τ _{Bk C2} [N/mm	1,3	1,1	1,8							
bereich II: 72 °C / 120 °C	τ _{Rk,C2} [IN/mm	1,1	1,0	1,6							
Montagebeiwert											
Trockener oder nasser Beton	[1		1,0								
Wassergefülltes Bohrloch	γinst [-]	_4)	- ⁴⁾ 1,2								
Verschiebungen unter Zuglas	1)										
δ _{N,C2} (DLS)-Faktor	[mm/(N/mm ²	0,20	0,13	0,21							
δN,C2 (ULS)-Faktor		0,38	0,18	0,24							
Verschiebungen unter Querlas	st ²⁾										
δv,c2 (DLS)-Faktor	[mm/kN]	0,18	0,10	0,07							
δ V,C2 (ULS)-Faktor	[IIIII/KIN]	0,25	0,14	0,11							

1) Berechnung der effektiven Verschiebung:

$$\begin{split} &\delta_{\text{N,C2 (DLS)}} = \delta_{\text{N,C2 (DLS)-Faktor}} \cdot \tau_{\text{Ed}} \\ &\delta_{\text{N,C2(ULS)}} = \delta_{\text{N,C2 (ULS)-Faktor}} \cdot \tau_{\text{Ed}} \\ &(\tau_{\text{Ed}}\text{: Bemessungswert der} \\ &\text{einwirkenden Zugspannung)} \end{split}$$

³⁾ Nur für Koaxialkartuschen: 380 ml, 400 ml, 410 ml

²⁾ Berechnung der effektiven Verschiebung:

$$\begin{split} &\delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Faktor}} \cdot V_{\text{Ed}} \\ &\delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Faktor}} \cdot V_{\text{Ed}} \\ &(V_{\text{Ed}}\text{: Bemessungswert der} \\ &\text{einwirkenden Querkraft)} \end{split}$$

Universalverbundtechnik UVT Top	
Leistungen Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C2) für Ankerstangen UVT Top A und Standard-Gewindestangen	Anhang C 14

⁴⁾ Keine Leistung bewertet