

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0339 of 7 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Halfen anchor channel HTA

Anchor channels

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Werke

30 pages including 3 annexes which form an integral part of this assessment

EAD 330008-03-0601, Edition 05/2021

ETA-09/0339 issued on 28 June 2018

European Technical Assessment ETA-09/0339

Page 2 of 30 | 7 December 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-09/0339

Page 3 of 30 | 7 December 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Halfen anchor channel HTA is a system consisting of a C-shaped channel profile of steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. HALFEN channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
 Resistance to steel failure of anchors, connection and channel lips 	See Annex C1
- Resistance to steel failure of channel bolt	See Annex C2
 Resistance to steel failure by exceeding the bending strength of the channel 	See Annex A6 and C1
- Maximum installation torque	See Annex B4
 Resistance to pull-out failure of the anchor and to concrete cone failure 	See Annex B3 and C3
 Minimum edge distance, spacing and member thickness 	See Annex A6 and B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	See Annex C3
 Resistance to blow-out failure – bearing area of anchor head 	See Annex A5

European Technical Assessment ETA-09/0339

Page 4 of 30 | 7 December 2021

English translation prepared by DIBt

Characteristic resistance under shear load (static and quasi-static loading)	
- Resistance to steel failure of channel bolt	See Annex C5
Resistance to steel failure of channel lips, connection and anchor (shear load perpendicular to longitudinal axis of channel)	See Annex C4
Resistance to steel failure of channel lips, anchor and connection (shear load in direction of longitudinal axis of channel)	No performance assessed
- Resistance to concrete failure	See Annex C4
Characteristic resistance under combined tension and shear load (static and quasi-static load)	See Annex C6
Characteristic resistances under cyclic fatigue tension load	See Annex C9 to C11
Displacements (static and quasi-static load)	See Annex C3 and C4
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C7 and C8		

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

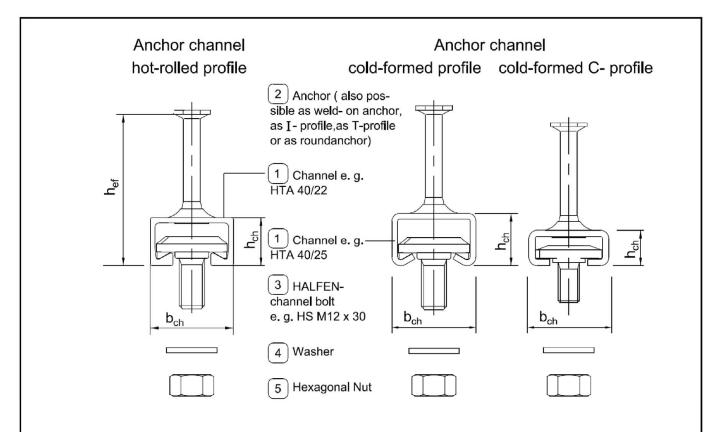
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Dipl.-Ing. Beatrix Wittstock

Head of Section

beglaubigt:


Müller

Z110507.21

Marking of the HALFEN anchor channel e.g.: HTA-CE 40/22 A4

a) Stamped on back of channel b) Printed on channel web

H or HALFEN Identifying mark of producer TA Type of anchor channel

40/22 Size A4 Material

Close to the anchor a nail hole is positioned.

Material of channel:

Steel

No marking for 1.0038/1.0044 SV 1.0242+Z/1.0529+Z

Stainless steel

A2 1.4301/1.4307/1.4567/1.4541

A4 1.4401/1.4404/1.4571 L4, DX 1.4062/1.4162/1.4362

F4, FA 1.4462

HCR 1.4529/1.4547

Marking oft the HALFEN channel bolts e.g.: HALFEN A4-70

H or HALFEN Identifying mark of the producer

A4 Material

70 Strength grade

Material of channel bolts::

Steel

No marking Stainless steel

A2 1.4301/1.4307/1.4567/1.4541 A4 1.4401/1.4404/1.4571/1.4578

L4 1.4362 F4, FA 1.4462 HCR 1.4529/1.4547

Strength grade of the channel bolts:

<u>Steel</u>

4.6, 8.8 Strength grade 4.6, 8.8

Stainless steel

50, 70 Strength grade 50, 70

HALFEN Anchor Channels HTA

Product description Marking and materials Annex A2

			Intended use	1	Т
		1	2	3	4
		Dry internal conditions	Internal conditions with usual humidity	Medium corrosion exposure	High corrosion exposure
Item no.	Specification	used in structures subject to	Anchor channels may also be used in structures subject to internal conditions with usual humidity.	Anchor channels may also be used in structures subject to external atmospheric exposure (incl. industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.	Anchor channels may also be used in structures subject to exposure inparticular aggressive conditions.
			For examples see use condition	ons in Annex B1	l
			Materials		
		Steel	Steel	Stainless Steel	Stainless Steel
1	Channel profile	hot-dip galv. ≥ 55 μm acc. to (N) 1.0242+Z (U), 1.0529+Z (U) hot-dip coated ≥ 15 μm	1.0038 (A), 1.0044 (A), 1.0976 (D) hot-dip galv. \geq 55 μ m acc. to (N) Stainless Steel ⁵⁾ 1.4301 (G), 1.4307 (G), 1.4567 (G), 1.4541 (G), 1.0213 (B), 1.1122 (E)	1.4062 (F), 1.4162 (F)	1.4462 ²⁾ (G), 1.4529 (G 1.4547 (G)
		Steel	Steel	Stainless Steel	Stainless Steel
2	Anchor	1.1132 (E), 1.5525 (I), 1.5535 (I), 1.5523 (H)	1.0038 (A), 1.0214 (B), 1.0401 (C), 1.1132 (E), 1.5525 (I), 1.5535 (I), 1.5523 (H)	1.4571 (G), 1.4362 (G), 1.4578 (G)	1.4462 ²⁾ (G), 1.4529 (G 1.4547 (G)
		hot-dip galv. ≥ 55 μm acc. to (N)	hot-dip galv. ≥ 55 µm acc. to (N) Stainless Steel 51 1.4301 (G), 1.4307 (G), 1.4567 (G), 1.4541 (G)	Steel 1.0038 (A) ⁴⁾	-
		Steel	Steel	Stainless Steel	Stainless Steel
3	HALFEN channel bolts	strength grade 4.6 / 8.8 (J) electroplated ≥ 5 μm acc. to (O)	strength grade 4.6 / 8.8 (J) hot-dip galv. ≥ 50 µm acc. to (P) 1) Stainless Steel 51 strength grade 50,70 (K) 1.4301 (G), 1.4307 (G), 1.4567 (G), 1.4541 (G)	strength grade 50,70 (K) 1.4401 (G), 1.4404 (G), 1.4571 (G), 1.4362 (G), 1.4578 (G)	strength grade 50,70 (I 1.4462 ²⁾ (G), 1.4529 (G 1.4547 (G)
	Washer 3)	Steel	Steel	Stainless Steel	Stainless Steel
	(R) and (S)		EN 10025:2005	steel grade A4, A5 (K)	1.4462 ²⁾ (G), 1.4529 (G
4	production class A,	electroplated ≥ 5 μm acc. to (O)	hot-dip galv. $\geq 50 \mu m$ acc. to (P) ¹⁾ Stainless Steel ⁵⁾		1.4547 (G)
	200 HV		steel grade A2, A3 (K)		
		Steel	Steel	Stainless Steel	Stainless Steel
(5)	Hexagonal nuts (T)	electroplated ≥ 5 μm acc. to (O)	strength grade 5/8 (L) hot-dip galv. ≥ 50 µm acc. to (P) 1) Stainless steel 5) strength grade 70, 80 (M)	strength grade 70, 80 (M) steel grade A4, A5 (M)	strength grade 70, 80 (1.4462 ²⁾ (G), 1.4529 (G 1.4547 (G)
Α-	EN 10025-2	<u> </u>	steel grade A2, A3 (M) I - EN 10263-4:2017	<u>I</u>	R - EN ISO 7089:2000
B - C -	EN 10263-2: EN 10277-2:	2017 F - EN 10088-2:2014	J - EN ISO 898-1:2013 K - EN ISO 3506-1:2009	N - EN ISO 1461:2009 O - EN ISO 4042:1999 P - EN ISO 10684:2004	S - EN ISO 7093-1:20 T - EN ISO 4032:201: U - EN 10346:2015
1.4	1462 not app	— ·	⁴⁾ only for weld-on anchors with su ⁵⁾ stainless steel anchors only in contained bolts, washers and nuts		
ΗA	LFEN An	chor Channels HTA			
ro	duct desci	ription			Annex A3

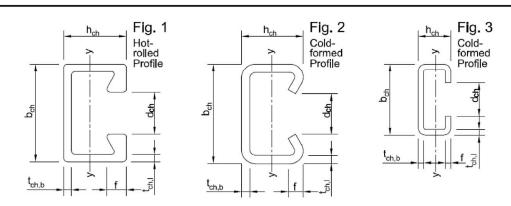


Table A2: Profile dimensions (steel and stainless steel)

	ë			ial					
Anchor- channel	Figure	b _{ch}	h _{ch}	t _{ch,b}	t _{ch,l}	d_ch	f	Material	ly
Chamie	Œ			[m	m]			Ĕ	[mm ⁴]
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25		4060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8547
40/25	2	40,00	25,00	2,75	2,75	18,00	5,60		20570
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39		41827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90		72079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90	_	293579
40/22 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00	Steel	20029
50/30 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85		52896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50		93262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349721
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25		4060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8547
40/25	2	39,50	25,00	2,50	2,50	18,00	5,40		19097
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39		41827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90	le le	72079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90	ste	293579
40/22 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00	Stainless steel	20029
50/30 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85		52896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50		93262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349721

HALFEN Anchor Channels HTA

Product description Profile dimensions

Annex A4

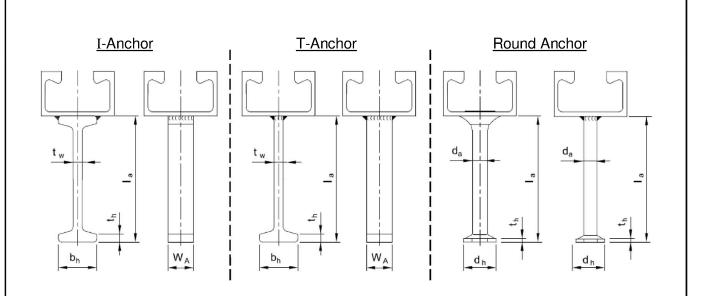


Table A3: Dimensions of anchors (I-Anchor, T-Anchor or Round Anchor)

Amahau		I-Anchor und T-Anchor						Rou	ınd An	chor	
Anchor channel	min l _a	t _w	b _h	t _h	WA	A _h	min l _a	da	d _h	t _h	A _h
cnannei			[mm]			[mm²]		[m	m]		[mm ²]
28/15	62	5	18	3,3	10 - 20	130	32	6	12	1,3	85
38/17	62	5	18	3,3	10 - 20	130	60,4	8	16	1,9	151
40/25	62	5	18	3,3	12 - 24	156	60,9	8	16	1,9	151
40/22	62	5	18	3,3	12 - 24	156	60,9	8	16	1,9	151
40/22P	128	6	17	5	18 - 30	198	70,2	10	20	2,2	236
49/30	69	5	18	3,5	18 - 30	234	69,2	10	20	2,2	236
50/30	69	5	18	3,5	18 - 30	234	69,2	10	20	2,2	236
50/30P	128	6	17	5	25 - 35	275	78,7	12	25	2,7	378
54/33	128	6	17	5	30 - 40	330	126	12	25	2,7	378
52/34	128	6	17	5	30 - 40	330	125,5	12	25	2,7	378
55/42 ¹⁾	140	7,1	20	6	35 - 45	452	136,2	14	28	3,2	462
72/49	140	7,1	20	6	40 - 50	516			_ 2)		
72/48	140	7,1	20	6	40 - 50	516			- ²⁾		

¹⁾ HTA 55/42 in stainless steel only with weld-on anchors.

HALFEN Anchor Channels HTA Product description Dimensions of anchors Annex A5

²⁾ Product not available.

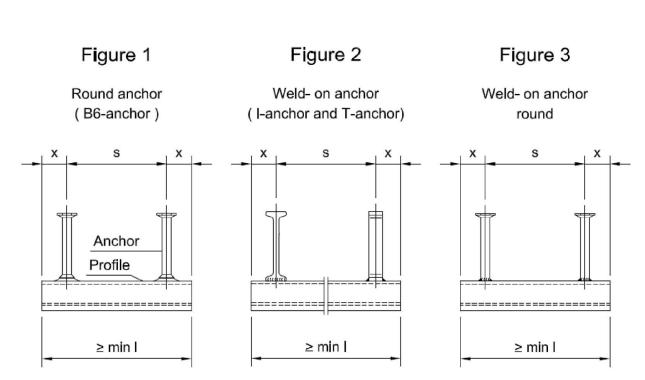


Table A4: Anchor positioning

	Anchor s	pacing s	End spa	cing x 1)	Min. Channe	el length I _{min}	
Anchor			Round	Welded	Round	Welded	
channel	Smin	Smax	anchor	anchor	anchor	anchor	
			Fig. 1	Fig. 2 and 3	Fig. 1	Fig. 2 and 3	
			[mm]			
28/15	50	200	25	25	100	100	
38/17	30	200	23	25	100	100	
40/25		50) 250 25 ²⁾					
40/22			25 ²⁾	25 ²⁾	100	150	
40/22P	100 (50)						
49/30	100 (30)						
50/30							
50/30P							
52/34	100 (80)	250	35	25 ²⁾	150	150	
54/33	100 (00)	250	00	25	150	130	
55/42	100 (80)	300	35	25 (35)	150	150	
72/48	100 (80)	400	_ 3)	25 (35)	_ 3)	150	
72/49	100 (00)	400	_ ′	20 (00)		150	

() valid for round anchor acc. Fig. 1.

³⁾ Product not available.

HALFEN Anchor Channels HTA	
Product description Anchor positioning, channel length	Annex A6

¹⁾ For channels with I = 6070 mm the end spacing x is always 35 mm.

²⁾ End spacing may be increased up to 35 mm.

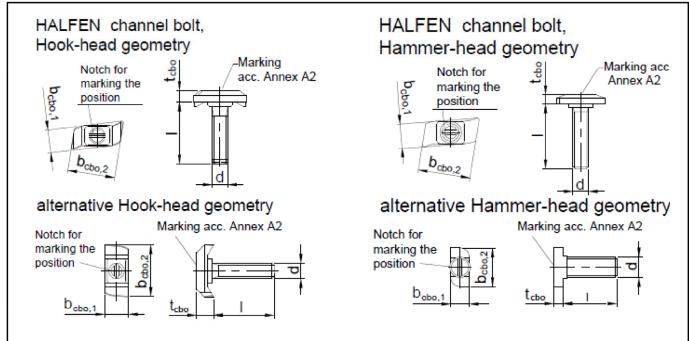


Table A5: Dimensions of HALFEN channel bolts

D D		Thread	Channel bolts - wing shape		Channel b	Anchor			
Head	HS	d	Width	Length	Thickness	Width	Length	Thickness	channel
			b _{cbo,1} [mm]	b _{cbo,2} [mm]	t _{cbo} [mm]	b _{cbo,1} [mm]	b _{cbo,2} [mm]	t _{cbo} [mm]	
		M10	15	30.8	7.2	_ 1)	- ¹⁾	- ¹⁾	40/22
	40/22	M12	15	30.8	7.2	- ¹⁾	- ¹⁾	- ¹⁾	40/22P
		M16	17.4	30.8	8.2 (9.8)	_ 1)	_ 1)	- ¹⁾	40/25
		M10	16.3	40.2	10	15	41.5	10	49/30 50/30
gg		M12	16.3	40.2	10	15	41.5	10	50/30P
k-he	50/30	M16	19.4	40.2	11	20	41.5	11	52/34
Hook-head		M20	21	39.5	12.5	21	41.5	12	54/33 55/42
_		M24	_ 1)	_ 1)	- ¹⁾	24.5	41	18	55/42
		M20	_ 1)	_ 1)	- ¹⁾	23	58	14	
1	72/48	M24	_ 1)	_ 1)	- ¹⁾	25	58	16	72/48
	/ 2/40	M27	_ 1)	_ 1)	- ¹⁾	28	58	18	72/49
		M30	_ 1)	_ 1)	- ¹⁾	31	58	20	
		M6	10.6	21.1	4	10.1	22.7 (22.2)	4	
ad	28/15	M8	10.6	21.1 (20.7)	4.5	10.1	22.7 (22.2)	4	28/15
-he	20/13	M10	10.9	20.2	5	10.1	22.7 (22.2)	5 (4)	20/13
ner		M12	10.8	20.1	6.5	10.1	22.7 (22.2)	5.5	
Hammer-head		M10	13.6-14.1	29	6	13 (12)	30.5	6	
뿔	38/17	M12	13.6-14.1	29	6	13 (12)	30.5	7 (6)	38/17
		M16	16	29	8.5	16	30.5	7	

() Value applies for strength grade 8.8 ¹⁾ Product not available

HALFEN Anchor Channels HTA

Product description HALFEN channel bolts, dimensions

Annex A7

Table A6: Strength grade

	Ste	el ¹⁾	Stainless steel 1)		
Strength grade	4.6	8.8	50	70	
f _{uk} [N/mm²]	400	800	500	700	
f _{yk} [N/mm²]	240	640	210	450	
Finish	electroplated, hot-dip galv.			-	

¹⁾ Materials according Annex A2 and Annex A3, Tab. A1

HALFEN Anchor Channels HTA

Product description
HALFEN channel bolts, strength grade

Annex A8

Electronic copy of the ETA by DIBt: ETA-09/0339

Specifications for intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel.
- Fatigue cyclic tension loads.
- Fire exposure for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity)
 (anchor channels and channel bolts according to Annex A3, Table A1, column 1 4)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A3, Table A1, column 2 4)
- Structures subject to external atmospheric exposure (incl. industrial and marine environment) or exposure to permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc.) exist.
 (anchor channels and channel bolts according to Annex A3, Table A1, column 3 - 4)
- Structures subject to exposure in particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used))
 (anchor channels and channel bolts according to Annex A3, Table A1, column 4)

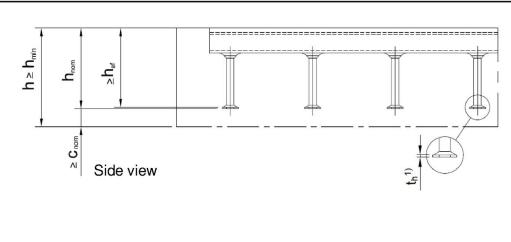
Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", October 2018.
- The characteristic resistances are calculated with the minimum effective embedment depth.

HALFEN Anchor Channels HTA	
Intended use Specifications	Annex B1

English translation prepared by DIBt

Installation:


- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table A5 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instruction given in Annexes B6 and B7.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the anchor channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor channels are protected from penetration of concrete into the internal space of the channel profiles.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the channel bolt (groove mark according to Annex B7) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

HALFEN Anchor Channels HTA	
Intended use Specifications	Annex B2

7110507 21 8 06 01-325/21

Electronic copy of the ETA by DIBt: ETA-09/0339

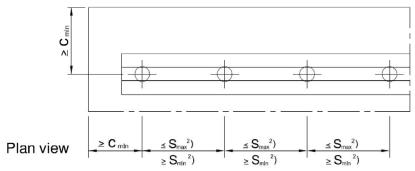


Table B1-1: Minimum effective anchorage depth, edge distance and member thickness

Anchor channel			28/15	38/17	40/25	49/30	54/33	72/49
Min. effective anchorage depth – round anchor		h _{ef,min}	45	76	79	94	155	_ 4)
Min. effective anchorage	_		7.4	70	0.4	00	450	400
depth – I- & T-anchor	nm]	h _{ef,min}	74	76	84	96	156	183
Min. edge distance		Cmin	40	50	50	75	100	150
Min. member thickness		h .		а	ıctual h _{ef} ⊣	- th + Cnom	3)	
Willi. Member Ulickness		h _{min}	55	90	90	105	170	195

Table B1-2: Minimum effective anchorage depth, edge distance and member thickness

Anchor channel			40/22	40/22P	50/30	50/30P	52/34	55/42	72/48
Min. effective anchorage depth – round anchor		h _{ef,min}	79	91	94	106	155	175	_ 4)
Min. effective anchorage depth – I- & T-anchor	nm]	h _{ef,min}	82	146	95	153	156	176	182
Min. edge distance		Cmin	50	50	75	75	100	100	150
Min. member thickness		1_			actua	l h _{ef} + t _h +	Cnom ³⁾		
Willi. Member mickness		h _{min}	90	105	105	120	170	190	195

 $^{^{1)}}$ t_h = Anchor head thickness

HALFEN Anchor Channels HTA

Intended use Installation parameters of anchor channels

Annex B3

 $^{^{3)}}$ c_{nom} acc. EN 1992-1-1:2004 + AC:2010

²⁾ s_{min}, s_{max} acc. Annex A6, Table A4

⁴⁾ Product not available

Table B2: Minimum spacing and installation torque of HALFEN channel bolts

				Instal	lation torque	T _{inst} 4)	
		Min.	General 2)			el contact 3)	
	HALFEN	spacing	T _{inst,g}		Tin	st,s	
Anabas	Channel	S _{min,cbo}	Steel				
Anchor channel	bolts Ø	of the channel bolts	4.6; 8.8 Stainless steel 50; 70 1)	Steel 4.6	Stainless steel 50 1)	Steel 8.8	Stainless Steel 70 ¹⁾
	[mm]	[mm]			[Nm]		
	6	30	3	3	3	_ 5)	_ 5)
28/15	8	40	8	8	8	20	15
20/13	10	50	13	15	15	40	30
	12	60	15	25	25	70	50
	10	50	15	15	15	40	30
38/17	12	60	25	25	25	70	50
	16	80	40	65	60	180	130
40/25	10	50	15	15	15	40	30
40/22	12	60	25	25	25	70	50
40/22P	16	80	45	65	60	180	130
49/30	10	50	15	15	15	40	30
50/30	12	60	25	25	25	70	50
50/30P	16	80	60	65	60	180	130
30/30F	20	100	75	130	120	360	250
	10	50	15	15	15	40	30
52/34	12	60	25	25	25	70	50
54/33	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	10	50	15	15	15	40	30
	12	60	25	25	25	70	50
55/42	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	24	120	200	230	200	620	440
	20	100	120	130	120	360	250
72/48	24	120	200	230	200	620	440
72/49	27	135	300	340	300	900	650
	30	150	380	460	400	1200	850

¹⁾ Materials according to Annex A2 and Annex A3, Tab. A1

HALFEN Anchor Channels HTA	
Intended use Installation parameters	Annex B4

²⁾ Acc. to Annex B5, Fig.1

³⁾ Acc. to Annex B5, Fig. 2

⁴⁾ T_{inst} must not be exceeded

⁵⁾ Product not available

General

The fixture is in contact with the channel profile and the concrete surface.

The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Steel to steel contact

The fixture is fastened to the anchor channel by suitable steel parts (e.g. washer). The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Fig. 1

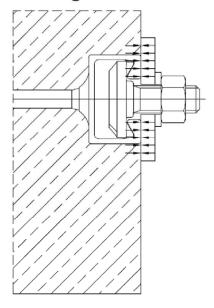
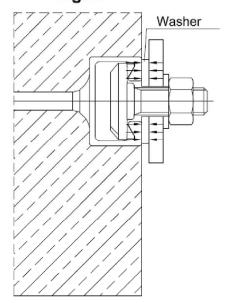
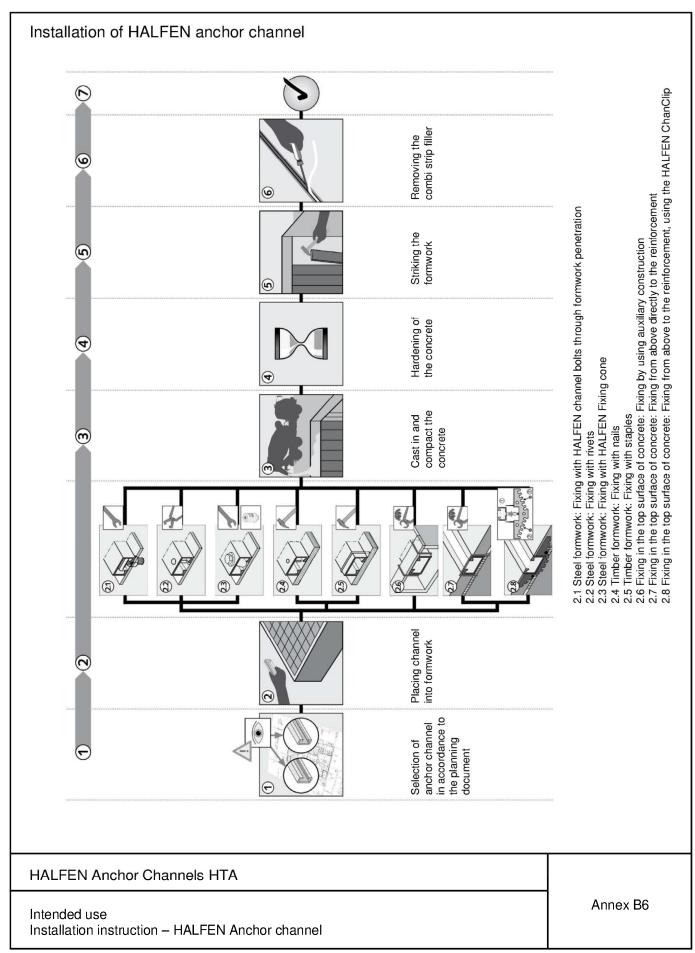
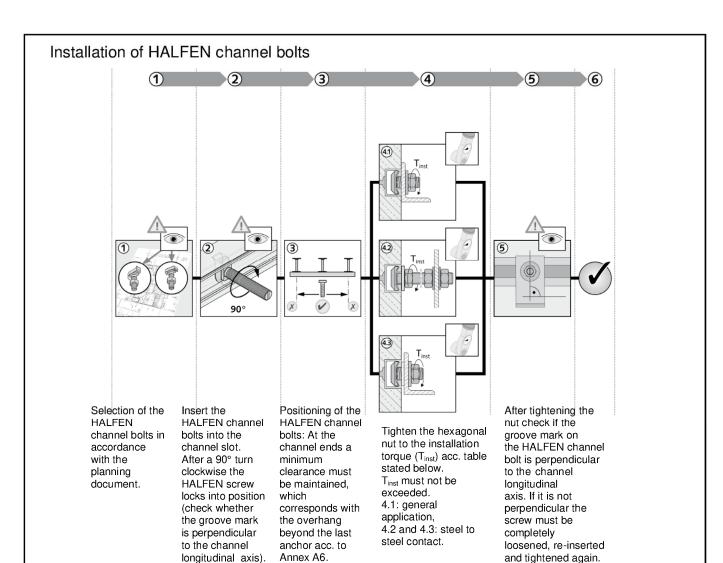



Fig. 2


HALFEN Anchor Channels HTA

Intended use Position of the fixture


Annex B5

Electronic copy of the ETA by DIBt: ETA-09/0339

		•
Table B3:	Installation	torque

Pos. of fixture acc.	Materia streng		Anchor channel						T _{inst} [N	m] ¹⁾		
Annex B5	grade	;		M6	M8	M10	M12	M16	M20	M24	M27	M30
			28/15	3	8	13	15	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
			38/17	_ 2)	_ 2)	15	25	40	_ 2)	_ 2)	_ 2)	_ 2)
	Steel 4.6	/ 8.8	40/22, 40/22P, 40/25	_ 2)	_ 2)	15	25	45	_ 2)	_ 2)	_ 2)	_ 2)
General	ral and Stainless steel 50 / 70	ctool	49/30, 50/30, 50/30P	_ 2)	_ 2)	15	25	60	75	_ 2)	_ 2)	_ 2)
		54/33, 53/34	_ 2)	_ 2)	15	25	60	120	_ 2)	_ 2)	_ 2)	
			55/42	_ 2)	_ 2)	15	25	60	120	200	_ 2)	_ 2)
			72/49, 72/48	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	120	200	300	380
	Otesal	4.6		3	8	15	25	65	130	230	340	460
Steel to	Steel to Steel 8	8.8	All marefles	_ 2)	20	40	70	180	360	620	900	1200
steel contact	Stainl.	50	All profiles	3	8	15	25	60	120	200	300	400
	Steel	70	-	_ 2)	15	30	50	130	250	440	650	850

¹⁾ T_{inst} must not be exceeded

HALFEN Anchor Channels HTA

Intended use Installation instruction – HALFEN channel bolts

Annex B7

²⁾ Product not available

Table C1: Characteristic Resistances under tension load – steel failure anchor channel

Anchor cha	nnel		28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure, anchor											
Characteristic resistance	N _{Rk,s,a}	[kN]	9	18	20	31	31	54	56	80	102
Partial factor	ү Мs	ɣ Ms ¹⁾					1,8				
Steel failure, connect	ion char	nel/and	chor								
Characteristic resistance	N _{Rk,s,c}	[kN]	9	18	20	29	31	39	55	80	100
Partial factor	γ Ms,α	a 1)		1,8							
Steel failure, local fle			nnel lips	s							
Spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	56	76	80 79	79	100 98	98	107 105	109	144
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9	18	20 38	38	31 43	43	55 72	110	100 120
Partial factor	γMs	l ¹⁾		•			1,8				

¹⁾ In absence of other national regulations

Table C2: Characteristic flexural resistance of channel

Anchor	chan	nel	28/15	38/17	40/25	40/22	40/22P	49/30	50/30	50/30P	54/33	52/34	55/42	72/49	72/48
Char. flexure resistance of channel	MRk,s,flex	[Nm]	317	280	1071	1389	1389	1673	2803	2803	2984	3373	6447	8617	8593
Partial factor	ү Мs	s,flex ¹⁾							1,15						

¹⁾ In absence of other national regulations

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under tension load – steel failure anchor channel	Annex C1

"
olts
8
=
<u>e</u>
Ξ
ซี
Ë
$\frac{\circ}{}$
Z
H
LFE
$\stackrel{M}{\vdash}$
₹
Ć
7
∄
᠊ᡯ
steel fa
ø
Ę
_
ı
oad
ဗိ
_
n
S.
Ë
te
_
g
\succeq
\supset
လွ
nces
\subseteq
sta
S
Ξ
<u>.</u> 2
sti
Ξ
ξe
ac
<u>;;</u>
2
Ō
8
\sim
$\stackrel{\sim}{=}$
Tabl
\vdash

HALFEN Channel bolts ∅	bolts Ø			M6	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
		'	4.6	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
Characteristic	-	5	8.8	16,1	29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,8
resistance	NRK,s	Z Z	50 1)	10,1	18,3	29,0	42,2	78,5	122,5	176,5	229,5	280,5
			70 1)	14,1	25,6	40,6	59,0	109,9	171,5	247,1	321,3	392,7
		'	4.6					2,00				
- - :	6	•	8.8					1,50				
Partial factor	√S SWS €		50 1)					2,86				
			70 1)					1,87				

¹⁾ Materials according Annex A2 and A3 ²⁾ In absence of other national regulations

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under tension load – steel failure channel bolts

Annex C2

Table C4: Characteristic resistances under tension load - concrete failure

Ancho	r channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Pull-out failure												
Characteristic resistance in	Round anchors	$N_{Rk,p}$	[KN]	7,6	13,6	13,6	21,2	21,2	34,0	34,0	41,6	_ 2)
cracked concrete C12/15	I-anchors	i ii ii,p	¥]	11,7	11,7	14,0	17,8	21,0	24,7	29,7	40,6	46,4
Characteristic resistance in	Round anchors	$N_{Rk,p}$	[kN]	10,6	19,0	19,0	29,7	29,7	47,6	47,6	58,2	_ 2)
uncracked concrete C12/15	I-anchors	I N RK,p	ㅗ	16,4	16,4	19,6	24,9	29,4	34,6	41,6	56,8	65,0
	C20/25							1,67				
	C25/30							2,08				
	C30/37							2,50				
Increasing factor for NRk,p =	C35/45							2,92				
	C40/50	Ψ_{c}						3,33				
N _{Rk,p,(C12/15)} · Ψ _c	C45/55							3,75				
1 11m,p,(012/10)	C50/60			4,17								
	C55/67							4,58				
	≥C60/75							5,00				
Partial factor		ү мр= ү и	1c 1)					1,5				
Concrete cone fa	ilure			Г	1	1		Г	1	1	1	
Product factor k ₁		k _{cr,N}		7,2	7,8	7,9	8,0	8,1	8,2	8,7	8,9	8,9
		k _{ucr,t}		10,3	11,2	11,2	11,5	11,5	11,7	12,4	12,6	12,7
Charact.edge spa	cing	Ccr,N	[mm]	111	171	176	195	199	216	260	269	270
Charact.spacing		Scr,N	u]					2,0 Ccr,N	I			
Partial factor		y Mc)					1,5				
Splitting failure				Г	1	1	<u> </u>		1	1		
Charact.edge spa	cing	Ccr,sp	[mm]	135	228	237	273	282	318	465	525	537
Charact.spacing		Scr,sp	m]					2,0 Ccr,s	o			
Partial factor		ү Мsр	1)					1,5				

¹⁾ In absence of other national regulations

Table C5: Displacements under tension load

Anchor channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Tension load	NEk	[kN]	3,6	7,1	7,9	11,5	12,3	15,5	21,8	31,7	39,7
Short-term displacement	δ _{N0}	[mm]	0,3	0,3	0,4	0,4	0,4	0,5	0,5	0,5	0,5
Long-term displacement	δ _{N∞}	[mm]	0,6	0,6	0,8	0,8	0,8	1,0	1,0	1,0	1,0

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under tension load – concrete failure and displacements

Annex C3

²⁾ No performance assessed

					40/25		49/30		54/33		72/49
Anchor channel			28/15	38/17	40/22	40/22P	50/30	50/30P	52/34	55/42	72/48
Steel failure, anchor			•								
Characteristic resistance	$V_{Rk,s,a,y}$	[kN]	9	18	20 35	35	31 52	59	55 78	110	100 146
Partial factor	γMs	1)			- 00		1,8		70		140
Steel failure, connection			chor								
Characteristic resistance	$V_{Rk,s,c,y}$	[kN]	9	18	20 35	35	31 52	59	55 78	110	100 146
Partial factor	Y Ms,	ca 1)					1,8				
Steel failure, local flexu	ıre of cl	nannel	lips								
Spacing of channel bolts for V _{Rk,s,l}	Sı,v	[mm]	56	76	80 79	79	100 98	98	107 105	109	144
Characteristic resistance V ⁰ Rk,s,l,y [kl		[kN]	9	18	20 35	35	31 52	59	55 78	110	100 146
Partial factor	∦ Ms	,l ¹⁾	1,8								
Pry-out failure	<u> </u>		•				•				
Product factor		k ₈ ²⁾	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Partial factor	,	∦ Mc ¹⁾					1,5				
Concrete edge failure											
Product- concrete		$\mathbf{k}_{\text{cr,V}}$	4,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
factor k ₁₂ uncracked concrete		k _{ucr,V}	6,3	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
001101											

¹⁾ In absence of other national regulations

Table C7: Displacements under shear load

Anchor channel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Shear load	V _{Ek}	[kN]	3,6	7,1	7,9	13,9	12,3	23,4	21,8	43,7	39,7
		. ,	- , -	,	13,9	- , -	20,6	-,	31,0	- ,	57,9
Short-term displacements	δνο	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	1,2	1,2	1,2
Long-term displacements	δ∨∞	[mm]	0,9	0,9	0,9	0,9	0,9	0,9	1,8	1,8	1,8

HALFEN Anchor Channels HTA

Performances

Character. resistances under shear load - steel failure anchor channel, concrete failure, displacements

Annex C4

²⁾ Without supplementary reinforcement. In case of supplementary reinforcement the factor k₈ should be multiplied with 0,75.

HALFEN Channel bolts Ø	l bolts &	2		M6	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
			4.6	4,8	8,8	13,9	20,5	37,7	58,8	84,7	110,2	134,6
Characteristic	;	5	8.8	8,0	14,6	23,5	33,7	62,8	0,86	141,2	183,6	224,4
resistance	VRK,s	Z Z	50 1)	6,0	11,0	17,4	25,3	47,1	73,5	105,9	137,7	168,3
			70 1)	8,4	15,4	24,4	35,4	6'29	102,9	148,3	192,8	235,6
			4.6	6,3	15,0	29,9	52,4	133,2	259,6	449,0	665,8	9,668
Characteristic			8.8	12,2	30,0	59,8	104,83)	266,44	519,35)	898,0	1331,5	1799,2
flexure resistance	M^0 Rk,s	[N]	50 1)	9,7	18,7	37,4	65,5	166,5	324,5	561,3	832,2	1124,5
			70 1)	10,7	26,5	52,3	91,7 3)	233,14)	454,4	785,8	1165,1	1574,3
			4.6					1,67				
:		ć	8.8					1,25				
Partial factor	% M8 (2)	- ()	50 1)					2,38				
			70 1)					156				

Materials according Annex A2 and A3 D In absence of other national regulations

 $^{3)}$ For HTA 28/15 M^{0} Rk,s is limited to 84 Nm.

 $^4)$ For HTA 38/17 $M^0_{\rm Rk,s}$ is limited to 231 Nm. $^5)$ For HTA 49/30 $M^0_{\rm Rk,s}$ is limited to 509 Nm.

Annex C5

Performances

Characteristic resistances under shear load – steel failure channel bolts

Table C9: Characteristic resistances under combined tension and shear load

Anchor channe	I	28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure: Lo	cal failure	by flex	ure of cl	hannel l	ips and fa	ailure by	/ flexure	of chanr	nel	
Product factor	k 13		Valu	ies acco	rding to El	N 1992-	4:2018, se	ection 7.4	4.3.1	
Steel failure: Fa	ilure of an	chor an	d conne	ection b	etween ai	nchor a	nd chann	el		
Product factor	k ₁₄		Valu	ies acco	rding to El	N 1992-	4:2018, se	ection 7.	4.3.1	

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under combined tension and shear load

Annex C6

Table C10: Characteristic resistances under tension and shear load under fire exposure - steel failure

Anchor cha					28/15		40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48									
Steel failure	e: Ancho	or, Cor	nection	chan	nel / an			l .				bolts										
		M8			1,0	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)									
		M10			1,0	1,7	1,9	1,9	1,9	1,9	1,9	_ 2)	_ 2)									
		M12			1,9	1,7	1,9 2,5	2,5	2,5	2,5	2,5	_ 2)	_ 2)									
	R30	M16			_ 2)	3,2	3,6 6,0	6,0	4,0 6,0	6,0	6,0	6,3	6,3									
		M20			_ 2)	_ 2)	_ 2)	_ 2)	4,0 9,5	9,5	8,9 10,1	10,3	10,3									
		M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	14,8	14,8									
		M8			0,8	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)									
		M10			0,8	1,5	1,5	1,5	1,5	1,5	1,5	_ 2)	_ 2)									
		M12			1,3	1,5	1,5 2,5	2,5	2,5	2,5	2,5	_ 2)	_ 2)									
nces	R60	M16			_ 2)	2,4	3,6 4,5	4,5	3,5 4,5	4,5	4,5	4,8	4,8									
Characteristic resistances		M20			_ 2)	_ 2)	_ 2)	_ 2)	3,5 7,1	7,1	6,5 7,5	7,6	7,6									
tic re		M24	N _{Rk,s,fi}	[[[]]	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	11,1	11,1									
teris		M8	V _{Rk,s,fi}	[kN]	0,6	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)									
arac		M10												0,6	1,0	1,1	1,1	1,1	1,1	1,1	_ 2)	_ 2)
ő		M12			0,7	1,0	1,1 1,6	1,6	1,6	1,6	1,6	_ 2)	_ 2)									
	R90	M16			_ 2)	1,4	2,0 2,9	2,9	2,5 3,0	3,0	3,0	3,3	3,3									
		M20	M20							_ 2)	_ 2)	_ 2)	_ 2)	2,5 4,8	4,8	4,2 4,8	4,9	4,9				
		M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	7,3	7,3									
		M8			0,5	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)									
		M10			0,5	0,8	0,8	0,8	0,8	0,8	0,8	_ 2)	_ 2)									
	D. C.C.	M12			0,5	0,8	0,8 1,1	1,1	1,2	1,2	1,2	_ 2)	_ 2)									
	R120	MIG			2)	1.0	1,2	1.6	2,1	0.0	23	26	26									

M16

M20

M24

 $\gamma_{\text{Ms,fi}}^{1)}$

1,6

_ 2)

1,6

_ 2)

2,3

3,6

2,3

2,1

3,6

_ 2)

1,0

2,3

3,0

3,5

_ 2)

_ 2)

_ 2)

1,0

_ 2)

HALFEN Anchor Channels HTA

Partial factor

Performances

Characteristic resistances under tension and shear load under fire exposure

[-]

Annex C7

2,6

3,6

5,4

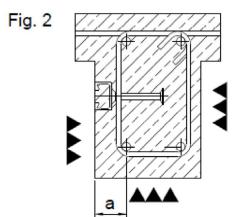
2,6

3,6

5,4

¹⁾ In absence of other national regulations

²⁾ No performance assessed


Table C11: Characteristic resistances under tension and shear load under fire exposure

- concrete cone failure and min. axis distance of reinforcement

Anchor char	nnel			28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Min. axis dis	tance of r	einforce	ment 1)									
	R30	а		35	35	35	35	35	35	50	50	50
Min. axis	R60	а	[mm]	35	35	35	35	35	35	50	50	50
distance	R90	а	[mm]	45	45	45	45	45	45	50	50	50
	R120	а		60	60	60	60	60	60	65	70	70

¹⁾ The reinforced concrete has to be designed acc. to EN 1992. The fire resistance class of the concrete member is not part of this ETA.

Fig. 1

HALFEN Anchor Channels HTA

Performances Characteristic resistances under tension and shear load under fire exposure Annex C8

Electronic copy of the ETA by DIBt: ETA-09/0339

Table C12: Combinations of anchor channels and channel bolts under fatigue tension load

-	Anchor c	hannel			Cha	nnel bolts	
Profile	Anchor	d₁ [mm]	Material	Channel bolt	Thread Ø [mm]	Grade	Material
					M12	8.8	
40/22	В6	8		HS 40/22	M16	4.6	
					IVITO	8.8	
					M12	8.8	
40/22P	B6	10		HS 40/22	M16	4.6	Ctool
			Steel hot-dip galv.		IVITO	8.8	Steel electroplated,
50/30	B6	10		HS 50/30	M16	4.6	hot-dip galv.
30/30	ВО	10		113 30/30	M20	8.8	not dip gaiv.
50/30P	B6	12		HS 50/30	M16	4.6	
30/30F	ВО	12		113 30/30	M20	8.8	
52/34	В6	12		HS 50/30	M16	8.8	
32/34	100	12		113 30/30	M20	0.0	

Design Method I acc. EOTA TR 050, October 2018

Table C13: Characteristic resistances under fatigue tension load after n load cycles without static preload ($N_{Ed} = 0$) – Steel failure

Ancharchannal		40/00	40/22D	50/30	50/24
Anchor channel		40/22	40/22P	50/30P	52/34
	Load cycles		ΔN_{R}	k,s;0;n	
	n		[k	N]	
	≤ 10 ⁴	11,7	12,8	16,5	22,2
Characteristic	≤ 10 ⁵	6,7	7,7	9,8	13,2
resistances under fatigue tension load	≤ 10 ⁶	3,8	4,7	5,8	7,9
without static preload	≤ 2·10 ⁶	3,2	4,0	4,9	6,7
·	≤ 5·10 ⁶	2,6			
	≤ 10 ⁸	1,2	3,3	4,0	5,5
	> 108	-			

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under fatigue tension load – Design method I	Annex C9

Table C14: Characteristic resistances under fatigue tension load after n load cycles without static preload ($N_{Ed} = 0$) – Concrete failure

Pull-out failure and Concrete cone failure:

Reduction factor for pull-out and concrete cone failure without static preload ($N_{Ed} = 0$)

<u> </u>		· · · · · · · · · · · · · · · · · · ·
	Load cycles	$oldsymbol{\eta}_{c,fat}$
	n	[-]
	≤ 10 ⁴	0,736
Reduction factor for	≤ 10 ⁵	0,665
	≤ 10 ⁶	0,600
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}^{1)}$	≤ 2·10 ⁶	0,582
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}^{2}$	≤ 5·10 ⁶	0,559
	≤ 6·10 ⁷	0.500
	> 6·10 ⁷	0,500

 $^{^{1)}\,}N_{\text{Rk,c}}$ static resistance according to Annex C3 and EOTA TR 047, March 2018 or EN 1992-4:2018

HALFEN Anchor Channels HTA

Performances Characteristic resistances under fatigue tension load – Design method I Annex C10

Electronic copy of the ETA by DIBt: ETA-09/0339

²⁾ N_{Rk,p} static resistance according to Annex C3

Design method II acc. EOTA TR 050, October 2018

Table C15: Characteristic limit resistances under fatigue tension load (n $\rightarrow \infty$) Steel failure

Anchor channel	40/22P	50/30	52/34
Anonor onamier	10/221	50/30P	02/01
		$\Delta N_{\text{Rk,s;0;•}}$	
Characteristic resistances under fatigue tension load		[kN]	
tonoron	3,3	4,0	5,5

Table C16: Characteristic limit resistances under fatigue tension load (n $\rightarrow \infty$) Concrete cone and pull-out failure

Anchor Channel	40/22P	50/30	52/34
		50/30P	
Characteristic resistances under fatigue tension load	η _{c,fat} [-]		
$\Delta N_{Rk,c;0;\infty} = \eta_{c,fat} \cdot N_{Rk,c}^{1)}$ $\Delta N_{Rk,p;0;\infty} = \eta_{c,fat} \cdot N_{Rk,p}^{2)}$		0,5	

¹⁾ N_{Rk,c} static resistance according Annex C3 and EOTA TR 047, March 2018 or EN 1992-4:2018

In absence of other national regulations the following partial factors $\chi_{M,fat}$ are recommended for design method I and II (Tables C12 to C15) according to EOTA TR 050, October 2018.

$$\gamma_{Ms,fat} = 1,35 \text{ (steel)}$$

 $\gamma_{Mc,fat} = \gamma_{Mp,fat} = 1,5 \text{ (concrete)}$

HALFEN Anchor Channels HTA	
Performances Characteristic resistances under fatigue tension load – Design method II	Annex C11

²⁾ N_{Rk,p} static resistance according Annex C3