

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0134 of 2 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Bonded fastener for use in concrete

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

CELO Befestigungssysteme GmbH, Plant2 Germany

28 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-10/0134 issued on 15 December 2016

European Technical Assessment ETA-10/0134 English translation prepared by DIBt

Page 2 of 28 | 2 June 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 28 | 2 June 2021

European Technical Assessment ETA-10/0134 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete" is a bonded anchor consisting of a cartridge with injection mortar ResiFIX VYSF or ResiFIX VYSF Cool and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1 to C 3, C 5, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C 4, C 6, C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 28 | 2 June 2021

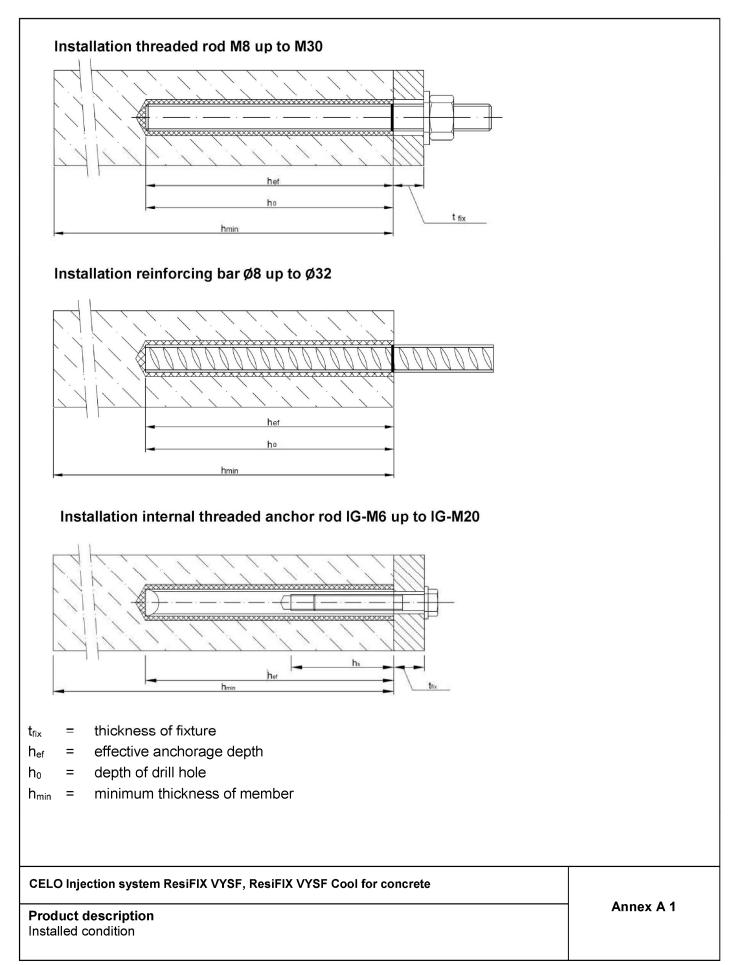
European Technical Assessment ETA-10/0134

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

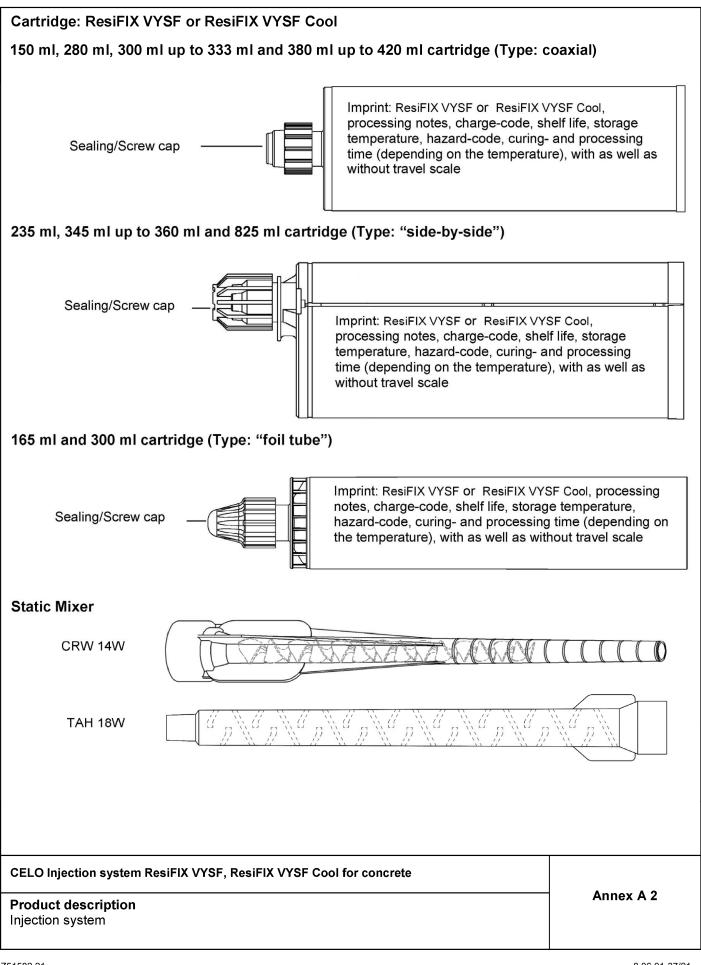
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

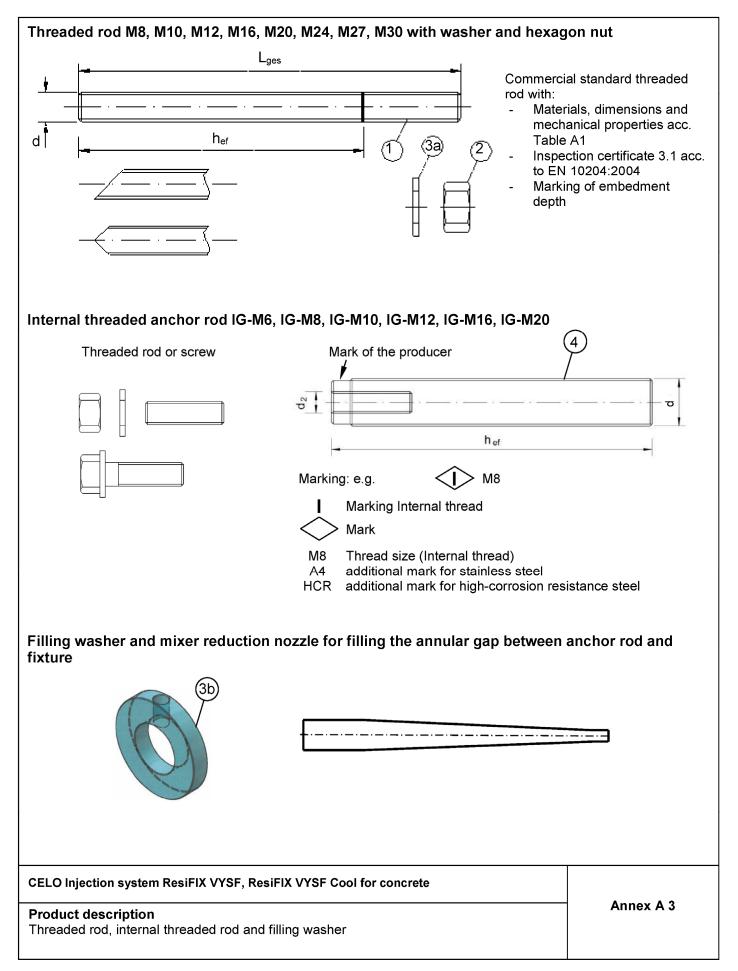
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 2 June 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider


Electronic copy of the ETA by DIBt: ETA-10/0134

Page 7 of European Technical Assessment ETA-10/0134 of 2 June 2021

Page 8 of European Technical Assessment ETA-10/0134 of 2 June 2021

teel, zinc plated (Steel acc. to EN ISO 683-4:2018 or EN 10263:2001)zinc plated hot-dip galvanised sherardized $\geq 5 \ \mu m$ $\geq 40 \ \mu m$ acc. to EN ISO 4042:2018 or acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or $\geq 45 \ \mu m$ 1Threaded rod $\geq 45 \ \mu m$ acc. to EN ISO 17668:2016Characteristic tensile strength yield strengthCharacteristic tyjeld strength1Threaded rod $\geq 45 \ \mu m$ Property classCharacteristic tensile strength yield strengthCharacteristic tyjeld strength1Threaded rod $\approx c. to$ EN ISO 898-1:2013 $= 4.6 \ f_{uk} = 400 \ N/mm^2$ $f_{yk} = 240 \ N/mm^2$ $A \ 4.8 \ f_{uk} = 400 \ N/mm^2$ 2Hexagon nut $= c. to$ EN ISO 898-2:2012 $= c. to$ EN ISO 898-2:2012 $= 4.6 \ f_{uk} = 500 \ N/mm^2$ $f_{yk} = 300 \ N/mm^2$ $A \ 5.6 \ f_{uk} = 500 \ N/mm^2$ $f_{yk} = 400 \ N/mm^2$ $A \ 5.8 \ f_{uk} = 800 \ N/mm^2$ $A \ 5.8 \ f_{uk} = 640 \ N/mm^2$ $A \ 5.8 \ f_{uk} = 800 \ N/mm^2$ $A \ 5.8 \ f_{uk} = 800 \ N/mm^2$ $A \ 5.8 \ f_{uk} = 640 \ N/mm^2$ $A \ 5.8 \ f_{ot} \ 5.8 \ 5.6 \ or 5.8 \ 5.8 \ 5.6 \ 5.8 \ 5.8 \ 5.8 \ 5.6 \ 5.8 \ 5.$	$A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$	
zinc plated hot-dip galvanised sherardized≥ 5 µm ≥ 40 µm ≥ 45 µmacc. to EN ISO 4042:2018 or acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or acc. to EN ISO 17668:20161Threaded rodProperty classCharacteristic tensile strengthCharacteristic yield strengthE fit yield strength1Threaded rodProperty classCharacteristic tensile strengthCharacteristic yield strengthE fit fyk = 320 N/mm²2Hexagon nutacc. to EN ISO 898-1:20134.6 	fracture $A_5 > 8\%$	
- hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or - sherardized ≥ 45 µm acc. to EN ISO 17668:2016 1 Threaded rod Property class Characteristic tensile strength yield strength yield strength fracture 1 Threaded rod Property class Characteristic tensile strength yield strength yield strength fracture 2 Hexagon nut acc. to EN ISO 898-1:2013 4.6 fuk = 400 N/mm² fyk = 300 N/mm² A5 > 8% 2 Hexagon nut acc. to EN ISO 898-2:2012 4 for threaded rod class 4.6 or 4.8 5 3a Washer Steel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized		
1Property classCharacteristic tensile strengthCharacteristic yield strengthE1Threaded rod $a_{acc. to}$ EN ISO 898-1:2013 4.6 EN ISO 898-1:2013 $f_{uk} = 400 \text{ N/mm}^2$ 5.6 $f_{uk} = 400 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ 	fracture $A_5 > 8\%$	
1Threaded rodProperty classtensile strengthyield strengthfi1Threaded rodacc. to EN ISO 898-1:2013	fracture $A_5 > 8\%$	
1Threaded rod 4.6 $f_{uk} = 400 \text{ N/mm}^2$ $f_{yk} = 240 \text{ N/mm}^2$ A 1Threaded rod $acc. to$ EN ISO 898-1:2013 5.6 $f_{uk} = 400 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ A 2Hexagon nut $acc. to$ EN ISO 898-2:2012 5.8 $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ A 2Hexagon nut $acc. to$ EN ISO 898-2:2012 4 for threaded rod class 4.6 or 4.8 A 3aWasherSteel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN3bFilling washerSteel, zinc plated, hot-dip galvanised or sherardized CharacteristicCharacteristic	$A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$	
1Threaded rodacc. to EN ISO 898-1:2013 4.8 $f_{uk} = 400 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ A 5.6 $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ A 5.8 $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ A 8.8 $f_{uk} = 800 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ A 4 for threaded rod class 4.6 or 4.8 A 5 for threaded rod class 5.6 or 5.8 A $3a$ WasherSteel, zinc plated, hot-dip galvanised or sherardized $3b$ Filling washerSteel, zinc plated, hot-dip galvanised or sherardized $3b$ Filling washerSteel, zinc plated, hot-dip galvanised or sherardized 4 CharacteristicCharacteristic	$A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 \ge 8\%$	
1Inicided rodacc. to EN ISO 898-1:2013 5.6 $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ A 2Hexagon nutacc. to EN ISO 898-2:2012 5.8 $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ A 3aWasheracc. to EN ISO 898-2:2012 4 for threaded rod class 4.6 or 4.8 5 3aWasherSteel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN3bFilling washerSteel, zinc plated, hot-dip galvanised or sherardized CharacteristicCharacteristic	$A_5 > 8\%$ $A_5 > 8\%$ $A_5 \ge 8\%$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A ₅ > 8% A ₅ ≥ 8%	
acc. to for threaded rod class 4.6 or 4.8 2 Hexagon nut acc. to BN ISO 898-2:2012 for threaded rod class 5.6 or 5.8 B for threaded rod class 8.8 3a Washer Steel, zinc plated, hot-dip galvanised or sherardized 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized B Filling washer Steel, zinc plated, hot-dip galvanised or sherardized Characteristic Characteristic Characteristic	A ₅ ≥8%	
2 Hexagon nut acc. to EN ISO 898-2:2012 4 for threaded rod class 4.6 or 4.8 3a Washer 5 for threaded rod class 5.6 or 5.8 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized Characteristic		
2 Hexagon nut acc. to EN ISO 898-2:2012 5 for threaded rod class 5.6 or 5.8 3a Washer Steel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized B For threaded rod class 5.6 or 5.8 B Characteristic	J ISO 7094:20	
2 Hexagon nut EN ISO 898-2:2012 5 for threaded rod class 5.6 or 5.8 3a Washer Steel, zinc plated, hot-dip galvanised or sherardized 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized Characteristic Characteristic Characteristic	1 ISO 7094:20	
8 for threaded rod class 8.8 3a Washer Steel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized Property class	I ISO 7094:20	
3a Washer (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN 3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized Property class	I ISO 7094:20	
3b Filling washer Steel, zinc plated, hot-dip galvanised or sherardized Broperty class Characteristic Characteristic	1 ISO 7094:20	
Broperty class Characteristic Characteristic E		
Property class	Elongation of	
4 Internal interaced $5 \circ f = 500 \text{ N/mm}^2 f = 400 \text{ N/mm}^2 \text{ A}$		
	•	
	7.5 070	
	Elongation at	
tensile strength yield strength fi	fracture	
	A ₅ ≥8%	
1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	A ₅ ≥ 8%	
$\frac{1}{80} \frac{f_{ijk}}{f_{ijk}} = 800 \text{ N/mm}^2 \frac{f_{ijk}}{f_{ijk}} = 600 \text{ N/mm}^2 A$	A ₅ ≥ 8%	
$80 f_{uk} = 800 \text{ N/mm}^2 f_{yk} = 600 \text{ N/mm}^2 A$ $50 \text{for threaded rod class } 50$	A ₅ ≥ 8%	
$\frac{80}{100} = \frac{f_{uk} = 800 \text{ N/mm}^2}{1000 \text{ km}^2} = \frac{100 \text{ N/mm}^2}{1000 \text{ km}^2} = \frac{100 \text{ N/mm}^2}{1000 \text{ km}^2} = \frac{100 \text{ km}^2}{1000 \text{ km}^2} = 1$	A ₅ ≥8%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A ₅ ≥8%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0088-1:2014	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0088-1:2014 0088-1:2014	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0088-1:2014 0088-1:2014	
	0088-1:2014 0088-1:2014 N ISO 7094:20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0088-1:2014 0088-1:2014 N ISO 7094:20 Elongation at	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0088-1:2014 0088-1:2014 N ISO 7094:20 Elongation at fracture	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0088-1:2014 0088-1:2014 N ISO 7094:20 Elongation at fracture A ₅ > 8%	

Reir	nforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16	6, Ø 20, Ø 25, Ø 28, Ø 32	
	h _{ef}		
	Minimum value of related rip area f _{R,min} ac	$r_{\rm cording to EN 1992-1-1:2004+4C:2010}$	
	• Rib height of the bar shall be in the range	0,05d ≤ h ≤ 0,07d	
	(d: Nominal diameter of the bar; h: Rip hei	gnt of the bar)	
Tabl	e A2: Materials		
Part	Designation	Material	
	orcing bars		
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA
CELO	D Injection system ResiFIX VYSF, ResiFIX VYSI	F Cool for concrete	
	l uct description rials reinforcing bar		Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Anchor size			M8	M	10	M1	2	M16	M20	M24	4	M27	M30
Outer diameter of anchor	d _{nom} [mm	n] =	8	1	0	12	2	16	20	24		27	30
Nominal drill hole diameter	d ₀ [mm	n] =	10	1	2	14	1	18	24	28		32	35
	h _{ef,min} [mm	n] =	60	6	0	70)	80	90	96		108	120
Effective embedment depth	h _{ef,max} [mm		160	2	00	24	0	320	400	480	5	540	600
Diameter of clearance hole in the fixture	d _f [mm	า] ≤	9	1	2	14	1	18	22	26		30	33
Diameter of steel brush	d _b [mm] ≥	12	1	4	16	6	20	26	30		34	37
Maximum torque moment	max T _{inst} [Nn	max T _{inst} [Nm] ≤		2	20	40)	80	120	160)	180	200
Minimum thickness of member	er h _{min} (m	h _{min} [mm] h		30 mr	n ≥ 10	0 m	nm	· · ·	h	_{ef} + 2	2d ₀		
Minimum spacing	s _{min} [m	וm]	40	5	0	60)	80	100	120)	135	150
Minimum edge distance	c _{min} [m	וm]	40	5	0	60)	80	100	120)	135	150
Rebar size	parameters for	ø	8 Ø	5 10	Ø 12		Ø 14	Ø 16	Ø 20	Ø		Ø 28	
Outer diameter of anchor	d _{nom} [mm] =			10	12		14	16	20	2		28	32
Nominal drill hole diameter	d ₀ [mm] =			14	16		18	20	24	-	2	35	40
Effective embedment depth	h _{ef,min} [mm] =			60	70		75	80	90	10		112	128
-	h _{ef,max} [mm] =			200	240		280	320	400	50		580	640
Diameter of steel brush	d _b [mm] ≥			16	18		20	22	26	3	4	37	41,5
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 r ≥ 100 m			-			h _{ef} + 2d	0			
Minimum spacing	s _{min} [mm]	4	0	50	60		70	80	100	12	25	140	160
Minimum edge distance	c _{min} [mm]	4	0	50	60		70	80	100	12	25	140	160
Table B3: Installation Size internal threaded anchor	parameters for	inte		nread G-M6		cho i-Mi		G-M10	IG-M1	2	IG-N	116	IG-M20
Internal diameter of anchor		[mm		6		8		10	12	-	10-1		20
Outer diameter of anchor ¹⁾	d _{nom}			10		12		16	20		24		30
Nominal drill hole diameter		<u>.</u> [mm		12	_	14		18	22		2		35
	h _{ef,min}			60		70		80	90		9		120
Effective embedment depth	h _{ef,max}	[mm	n] =	200	_	240		320	400		48		600
Diameter of clearance hole in the fixture	d _f	[mm	ı] =	7		9		12	14		18	8	22
Maximum torque moment	max T _{inst}	[Nm]≤	10		10		20	40		6	0	100
Thread engagement length min/max	I _{IG}	[mm	n] =;	8/20		/20		10/25	12/30)	16/	32	20/40
Minimum thickness of member	er h _{mi}	_{in} [n	nm]	•.	⊦ 30 m 00 mn				h	_{ef} + 2	2d ₀		

60

60

50

50

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

s_{min} [mm]

c_{min} [mm]

Intended Use Installation parameters

Minimum spacing

Minimum edge distance

Annex B 2

120

120

100

100

80

80

150

150

	11111111111111111				*****							
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d _♭ Brush - Ø		d _{b,min} min. Brush - Ø	Piston plug	Installation direction and use of piston plug				
[mm]	[mm]	n] [mm]	[mm]		[mm]	[mm]			\Rightarrow			
M8			10	RBS10	12	10,5		Ť				
M10	8	IG-M6	12	RBS12		12,5						
M12	10	IG-M8	14	RBS14	16	14,5		No piston p	d			
	12		16	RBS16		16,5						
M16	14	IG-M10	18	RBS18	20	18,5	VS18					
	16		20	RBS20	22	20,5	VS20	-	h _{ef} >			
M20	20	IG-M12	24	RBS24	26	24,5	VS24] 				
M24		IG-M16	28	RBS28	30	28,5	VS28	h _{ef} >		all		
M27	25		32	RBS32	34	32,5	VS32	250 mm 250 mm	250 mm			
M30	28			28 IG-M20	35	RBS35	37	35,5	VS35			
	32		40	RBS40	41,5	40,5	VS40					
	meter (d₀): lepth (h₀):					- Rec. com bit diameter (v			(min 6 ba	r)		
						≅∞ <i>∞</i> ∯				3 ↓		

Piston plug for overhead or horizontal installation VS Drill bit diameter (d₀): 18 mm to 40 mm

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Intended Use Cleaning and setting tools Annex B 3

Installation instruct	ions	
Drilling of the bore	hole	
	1. Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammor compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mortal sectors.	ner (HD), hollow (HDB) y in combination with a
	Attention! Standing water in the bore hole must be removed before	ore cleaning.
MAC: Cleaning for b	bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (und	cracked concrete only!
4x	 2a. Starting from the bottom or back of the bore hole, blow the hole cl (Annex B 3) a minimum of four times. 	ean by a hand pump ¹⁾
<u>**********</u> **	 2b. Check brush diameter (Table B4). Brush the hole with an appropr > d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush ext 	
	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a	a minimum of four times.
4x	¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm up to 10d _{nom} also in cracked concrete with hand-pump.	and an embedment depth
CAC: Cleaning for a	II bore hole diameter in uncracked and cracked concrete	
4x)	2a. Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) (Annex B 3) a minimum of four times stream is free of noticeable dust. If the bore hole ground is not real extension must be used.	until return air
<u>********</u> ***	 2b. Check brush diameter (Table B4). Brush the hole with an appropr > d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush external 	
4x	2c. Finally blow the hole clean again with compressed air (min. 6 bar) minimum of four times until return air stream is free of noticeable ground is not reached an extension must be used.	
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,
CELO Injection syste	m ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Use	ns	Annex B 4

Installation instruc	tions (continuation)	
	3. Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	-
i+ her →i	Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour. For foil tube cartridges it must be discarded strokes.	il the mortar shows a
	6. Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static r hole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe the given in Annex B 6.	nixing nozzle as the nchor hole is not
	 Piston plugs and mixer nozzle extensions shall be used according to following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 50mm
	8. Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de	pth is reached.
	The anchor shall be free of dirt, grease, oil or other foreign material	
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fixed applied application the anchor rod shall be fixed applied application the anchor rod shall be fixed applied applie	ned, the application has
+20°C	10. Allow the adhesive to cure to the specified time prior to applying ar not move or load the anchor until it is fully cured (attend Annex B 6	
Tinst.	11. After full curing, the add-on part can be installed with up to the max (Table B1 or B3) by using a calibrated torque wrench. It can be opt gap between anchor and fixture with mortar. Therefor substitute the washer and connect the mixer reduction nozzle to the tip of the mix filled with mortar, when mortar oozes out of the washer.	ional filled the annular e washer by the filling
CELO Injection syste	em ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Lieo		Annex B 5

Intended Use Installation instructions (continuation)

	ResiFIX VYSFConcrete temperature10 °Cto $-6^{\circ}C$ $-5 °C$ to $-1^{\circ}C$ 0 °Cto $+4^{\circ}C$ $+5 °C$ to $+9^{\circ}C$ 10 °Cto $+19^{\circ}C$ 20 °Cto $+29^{\circ}C$ 30 °Cto $+34^{\circ}C$ 35 °Cto $+39^{\circ}C$ $+40 °C$ CCartridge temperaturewet concrete the curing timeartridge temperaturemust beble B6:Maximum wo ResiFIX VYSIConcrete temperature20 °Cto15 °Cto10 °Cto-5 °Cto-10 °Cto+ 10 °CCartridge temperature	erature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾		
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾		
-5 °C	to	-1°C	90 min	14 h		
0 °C	to	+4°C	45 min	7 h		
+5 °C	to	+9°C	25 min	2 h		
+ 10 °C	to	+19°C	15 min	80 min		
+ 20 °C	to	+29°C	6 min	45 min		
+ 30 °C	to	+34°C	4 min	25 min		
+ 35 °C	to	+39°C	2 min	20 min		
+	+ 40 °C		1,5 min	15 min		
	-10 °C to -6°C 90 min ²) 24 h ²) -5 °C to -1°C 90 min 14 h 0 °C to +4°C 45 min 7 h +5 °C to +9°C 25 min 2 h -10 °C to +4°C 45 min 7 h +5 °C to +9°C 25 min 2 h -10 °C to +19°C 15 min 80 min -20 °C to +29°C 6 min 45 min -30 °C to +34°C 4 min 25 min -35 °C to +39°C 2 min 20 min -40 °C 1,5 min 15 min 15 min Cartridge temperature +5°C to +40°C 10 min 45°C to +40°C n wet concrete the curing time must be doubled. Cartridge temperature must be at min. +15°C. able B6: Maximum working time and minimum curing time in dry concrete 1° -20 °C to -16°C 75 min 24 h -15 °C to -11°C					
In wet con Cartridge t	crete th empera	ne curing time r ature must be a aximum worki	nust be doubled. at min. +15°C. n g time and minimum curing time			
In wet con Cartridge t Table B6:	crete th empera Ma Re	ne curing time r ature must be a aximum workin esiFIX VYSF Co	nust be doubled. at min. +15°C. ng time and minimum curing time pol	Minimum curing time		
In wet con Cartridge t Table B6:	crete th empera Ma Re	e curing time r ature must be a aximum workin esiFIX VYSF C	nust be doubled. at min. +15°C. ng time and minimum curing time bol Gelling- / working time	Minimum curing time in dry concrete ¹⁾		
In wet con Cartridge t Table B6: Concrete	crete the emperative Re e temporto	e curing time r ature must be a aximum workin esiFIX VYSF C erature -16°C	nust be doubled. at min. +15°C. ng time and minimum curing time bol Gelling- / working time 75 min	Minimum curing time in dry concrete ¹⁾ 24 h		
In wet con Cartridge t Table B6: Concrete -20 °C	crete the emperative Re to to	e curing time r ature must be a aximum workin siFIX VYSF C erature -16°C -11°C	nust be doubled. It min. +15°C. Ing time and minimum curing time bol Gelling- / working time 75 min 55 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h		
In wet con Cartridge t Table B6: Concrete -20 °C -15 °C -10 °C	e temperatorial to	e curing time r ature must be a aximum workin siFIX VYSF C erature -16°C -11°C -6°C	nust be doubled. at min. +15°C. ng time and minimum curing time bol Gelling- / working time 75 min 55 min 35 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h 10 h		
In wet con Cartridge t Table B6: Concrete -20 °C -15 °C -10 °C -5 °C	e temperatorial to	e curing time r ature must be a aximum workin esiFIX VYSF C -16°C -11°C -6°C -1°C	nust be doubled. at min. +15°C. ng time and minimum curing time ool Gelling- / working time 75 min 55 min 35 min 20 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h 10 h 5 h		
In wet con Cartridge t Table B6: -20 °C -15 °C -10 °C -5 °C 0 °C	e tempor to to to to to	e curing time r ature must be a aximum workin siFIX VYSF C erature -16°C -11°C -6°C -1°C +4°C	nust be doubled. at min. +15°C. ng time and minimum curing time bol Gelling- / working time 75 min 55 min 35 min 20 min 10 min	Minimum curing time in dry concrete ¹⁾ 24 h 16 h 10 h 5 h 2,5 h		
+ 10 °C to +19°C 15 min 80 min + 20 °C to +29°C 6 min 45 min + 30 °C to +34°C 4 min 25 min + 30 °C to +34°C 4 min 25 min + 35 °C to +39°C 2 min 20 min + 40 °C 1,5 min 15 min 15 min Cartridge temperature +5°C to +40°C 15 min 15 min In wet concrete the curing time must be doubled. Cartridge temperature must be at min. +15°C. Table B6: Maximum working time and minimum curing time ResiFIX VYSF Cool Concrete temperature Gelling- / working time Minimum curing time in dry concrete ') -20 °C to -16°C 75 min 24 h -15 °C to -11°C 55 min 16 h -10 °C to -6°C 35 min 10 h -5 °C to -1°C 20 min 5 h 0 °C to +4°C 10 min 2,5 h +5 °C to +9°C 6 min 80 Min						

Intended Use Curing time Annex B 6

Т	able C1: Characteristic values for s rods	teel ten	sion re	esistanc	e and s	teel sh	ear res	sistanc	e of th	readec	I
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
С	haracteristic tension resistance, Steel failure	e ¹⁾									
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
С	haracteristic tension resistance, Partial facto	or ²⁾									
St	eel, Property class 4.6 and 5.6	γMs,N	[-]	2,0							
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]	1,5							
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]	2,86							
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]	1,87							
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6							
С	haracteristic shear resistance, Steel failure	1)									
۽	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm.	Steel, Property class 5.6 and 5.8	V ⁰ Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
evel	Steel, Property class 8.8	V ⁰ Rk.s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
ut le	Stainless steel A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk.s	[kN]	13	20	30	55	86	124	_3)	_3)
5	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Vit	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
С	haracteristic shear resistance, Partial factor	2)									
St	eel, Property class 4.6 and 5.6	γMs,V	[-]				1,6	57			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,} ∨	[-]				1,2	25			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,∨}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,∨}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	Y _{Ms,∨}	[-]				1,3	3			
1)	Values are only valid for the given stress area (valid for						

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

³⁾ Anchor type not part of the ETA

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Table C2: C	haracteristic values	for Concrete c	one failure	and Splitting with all kind of action
Anchor size				All Anchor types and sizes
Concrete cone fa	nilure			
Non-cracked cond	crete	k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action

Annex C 2

	or size threaded ro	od			M8	M10	M12	M16	M20	M24	M27	M30
Steel f								,				
Charac	cteristic tension res	istance	N _{Rk,s}	[kN]					ee Tab			
Partial			γMs,N	[-]				see Ta	able C1			
	ined pull-out and		lead as a sector	000/05								
Chara	cteristic bond resist	ance in non-crac	ked concrete	<u>C20/25</u>							[1
g	l: 40°C/24°C	Dry, wet			10	12	12	12	12	11	10	9
e ranç	II: 80°C/50°C	concrete			7,5	9	9	9	9	8,5	7,5	6,5
rature	III: 120°C/72°C I: 40°C/24°C		^τ Rk,ucr	[N/mm²]	5,5 7,5	6,5 8,5	6,5 8,5	6,5 8,5	6,5	6,5	5,5	5,0
Temperature range	II: 80°C/50°C	flooded bore			5,5	6,5	6,5	6,5	No Performance Assessed			ce
Ţ	III: 120°C/72°C	hole			4,0	5,0	5,0	5,0				
Chara	cteristic bond resist	ance in cracked	concrete C20/25		.,-		-,-			I	1	
0	l: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
ange	II: 80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
ture I	ull: 120°C/72°C	^τ Rk,cr	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
→ II: 80°C/50°C hole III: 120°C/72°C	l: 40°C/24°C	flooded here	*Rk,cr		4,0	4,0	5,5	5,5	No Performance Assessed			
	II: 80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0				
				2,0	2,5	3,0	3,0					
Reduk	tion factor ψ^0 sus ir	n cracked and nor	n-cracked cor	ncrete C20/25								
ature e	l: 40°C/24°C	Dry, wet			0,73							
Temperature range	ll: 80°C/50°C	concrete and flooded bore	Ψ^0 sus	[-]	0,65							
Ter	III: 120°C/72°C	hole			0,57							
			C25/30					,	02			
Increa	sing factors for con	crete	C30/37 C35/45					,	04 07			
Ψο			C40/50						07			
ΨC			C45/55					,	09			
			C50/60						10			
	r <mark>ete cone failure</mark> ant parameter							see Ta	able C2			
Splitti	-							000 10	1010 02			
Releva	ant parameter							see Ta	able C2			
	lation factor					1						
for dry	and wet concrete				1,0				1,2			
for floc	oded bore hole		^Ŷ inst	[-]		1	4			lo Perf Asse	ormano essed	ce
CELO) Injection system F	ResiFIX VYSF, Re	siFIX VYSF (Cool for conci	ete							
	rmances acteristic values of te								-	Anne	ex C 3	

Page 19 of European Technical Assessment ETA-10/0134 of 2 June 2021

English translation prepared by DIBt

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm							1		1	
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γMs,∨	[-]				see	Table C	1		
Ductility factor	k 7	[-]					1,0			
Steel failure with lever arm	1	II								
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} ∙ f _{uk}	(or see	Table C	;1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see	Table C	1		
Concrete pry-out failure	•									
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure	•									
Effective length of fastener	۱ _f	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

Annex C 4

Electronic copy of the ETA by DIBt: ETA-10/0134

Anchor size internal threaded	l anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure ¹⁾		N		40	47	00	40	70	100
Characteristic tension resistanc	· · · · · · · · · · · · · · · · · · ·	N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor, strength class 5.8		γMs,N	[-]			. 1	,5		
Characteristic tension resistanc Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124
Partial factor		γMs,N	[-]			1,87			2,86
Combined pull-out and concr									
Characteristic bond resistance	in non-cracked	concret	e C20/25						
ω <u>I: 40°C/24°C</u>	Dry, wet			12	12	12	12	11	9
	concrete			9	9	9	9	8,5	6,5
Built: 120°C/72°C		TPKUC	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0
	flooded bore			8,5	8,5	8,5			
<u>ه اا: 80°C/50°C</u>	hole			6,5	6,5	6,5	No Perfe	ormance A	ssessec
III: 120°C/72°C				5,0	5,0	5,0			
Characteristic bond resistance i	in cracked con	crete C2	20/25	5.0			E E	E E	0.5
<u>e</u> <u>I: 40°C/24°C</u> <u>II: 80°C/50°C</u>	Dry, wet			5,0	5,5	5,5	5,5	5,5	6,5
e no construction of the c	concrete			3,5	4,0	4,0	4,0	4,0	4,5
Big III: 120°C/72°C III: 40°C/24°C		^τ Rk,cr	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
قرق <u>ة</u> <u>ا: 40°C/24°C</u>	flooded bore	,		4,0	5,5	5,5			
ال: 80°C/50°C الا: 120°C/72°C	hole			<u>3,0</u> 2,5	4,0 3,0	4,0 3,0		ormance A	ssessed
Reduktion factor ψ^0_{sus} in crack	ed and non-cr	acked c	oncrete C		0,0	0,0			
	Dry, wet					0,	73		
L: 40°C/24°C angle diagonal d	concrete and flooded bore	ψ ⁰ sus	[-]				65		
≝ <u>III: 120°C/72°C</u>	hole					0,	57		
<u>.</u>		C2	5/30			1.	02		
			0/37				04		
Increasing factors for concrete		C3	5/45			1,	07		
Ψc		C4	0/50			1,	08		
			5/55			1,	09		
		C5	0/60			1,	10		
Concrete cone failure						_			
Relevant parameter						see la	able C2		
Splitting failure Relevant parameter							able C2		
Installation factor						300 10			
for dry and wet concrete						1	.2		
for flooded bore hole		γinst	[-]		1,4		,	ormance A	ssessec
 ¹⁾ Fastenings (incl. nut and wash The characteristic tension resist ²⁾ For IG-M20 strength class 50 i 	stance for steel								d rod.

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Performances

Characteristic values of tension loads under static and quasi-static action

Annex C 5

Anchor size for internal thread	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹⁾)								
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	and 8.8	γMs,V	[-]		1	1	1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Partial factor		γMs,V	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	and 8.8	γMs,V	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γMs,∨	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure		-							
Effective length of fastener		۱ _f	[mm]		min	(h _{ef} ; 12 ∙ d	I _{nom})		min (h _{ef} ; 300mm
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]				1,0		
 ¹⁾ Fastenings (incl. nut and washer The characteristic tension resista ²⁾ For IG-M20 strength class 50 is 	ance for s								

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

Annex C 6

Table C7: Characterist	tic values	s of tensior	loads ur	nder s	tatic a	nd qua	asi-sta	tic act	ion			
Anchor size reinforcing bar	·			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					•	•						
Characteristic tension resistar	nce	N _{Rk,s}	[kN]					A _s ∙ f _{uk}	1)			
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,4 ²⁾				
Combined pull-out and con	crete failu							- , -				
Characteristic bond resistance			rete C20/2	.5								
1: 40°C/24°C				10	12	12	12	12	12	11	10	8,5
11: 80°C/50°C	y, wet ncrete			7,5	9	9	9	9	9	8,0	7,0	6,0
III: 120°C/72°C co III: 40°C/24°C fill		^τ Rk,ucr	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
	oded	T(K,GOI		7,5	8,5	8,5	8,5	8,5	- N	lo Perfe	ormano	e
E <u>II: 80°C/50°C</u> bo	re hole			5,5 4,0	6,5 5,0	6,5 5,0	6,5 5,0	6,5 5,0	-	Asse	essed	
Characteristic bond resistance	e in cracke	ed concrete	C20/25	- ,0	0,0	0,0	0,0	0,0	1			
1. 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
	y, wet ncrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
<u>ဗီစီ III: 120°C/72°C </u>		⁷ Rk,cr	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
	oded	*RK,Cr		4,0	4,0	5,5	5,5	5,5		lo Perfe	ormano	e
= <u>II: 80°C/50°C</u> bo	re hole			2,5 2,0	3,0 2,5	4,0 3,0	4,0 3,0	4,0 3,0	-		essed	
						3,0	3,0	3,0				
Reduktion factor ψ^0_{sus} in cra	icked and	non-cracked	l concrete	C20/2	5							
	y, wet ncrete							0,73				
စြင်္ခြူ II: 80°C/50°C an		Ψ^0 sus	[-]					0,65				
HII: 120°C/72°C bo	odeu re hole							0,57				
		C25/						1,02				
Increasing factors for concret	•	C30/						1,04				
Increasing factors for concrete	e	C35/ C40/						1,07				
Ψ_{c}		C40/ C45/						1,08 1,09				
		C40/						1,10				
Concrete cone failure								1,10				
Relevant parameter							se	e Table	C2			
Splitting												
Relevant parameter							se	e Table	C2			
Installation factor			I									
for dry and wet concrete				1,2				1	,2			
for flooded bore hole		γinst	[-]			1,4				lo Perfo Asse	ormano essed	e
¹⁾ f _{uk} shall be taken from the sp ²⁾ in absence of national regula		s of reinforci	ng bars									
CELO Injection system Resi Performances Characteristic values of tensio										Anne	ex C 7	

Page 23 of European Technical Assessment ETA-10/0134 of 2 June 2021

English translation prepared by DIBt

Table C8: Characteristic value	es of shear	r loads u	nder s	static a	nd qua	asi-sta	tic act	ion			
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0•A _s	f _{uk} 1)			
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,∨	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	• W _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,} ∨	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ_{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	۱ _f	[mm]		mi	n(h _{ef} ; 1	2 • d _{noi}	_m)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				

 $^{1)}\,f_{uk}$ shall be taken from the specifications of reinforcing bars

²⁾ in absence of national regulation

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

Annex C 8

Table C9: Dis	placement	s under tension loa	d ¹⁾ (thread	led rod)					
Anchor size thread	led rod		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concre	ete C20/25 u	nder static and quas	i-static ac	tion						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
l: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete C	20/25 under	static and quasi-sta	tic action							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0)70		
l: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05			0,1	05		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \quad \cdot \ \tau; \qquad \quad \tau: \text{ action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size thre	aded rod		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked con	crete C20/25 u	Inder static and qu	asi-static ac	tion						
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δv∞-factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete	C20/25 unde	r static and quasi-	static action							
All temperature	δ _{∨0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10
$\delta_{V\infty} = \delta_{V\infty}$ -facto		VYSF, ResiFIX VYS	E Cool for co	ncroto						
				ncrete				۸	inex C S	

Displacements (threaded rods)

threaded anc	hor rod						
		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
e C20/25 under	r static and qua	si-static ac	tion				
N0-factor	[mm/(N/mm ²)]	0,023	0,026	0,031	0,036	0,041	0,049
_№ -factor	[mm/(N/mm ²)]	0,033	0,037	0,045	0,052	0,060	0,071
N0-factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
_{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
N0-factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
_{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
/25 under stat	tic and quasi-st	atic action					
N0-factor	[mm/(N/mm ²)]	0,090			0,070		
_{N∞} -factor	[mm/(N/mm ²)]	0,105			0,105		
N0-factor	[mm/(N/mm ²)]	0,219			0,170		
_{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245		
N0-factor	[mm/(N/mm ²)]	0,219			0,170		
_{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245		
	0-factor ∞-factor 0-factor ∞-factor 0-factor 25 under stat 0-factor ∞-factor 0-factor ∞-factor 0-factor 0-factor 0-factor	10-factor [mm/(N/mm²)] ∞-factor [mm/(N/mm²)] 10-factor [mm/(N/mm²)]	$_{0}$ -factor [mm/(N/mm ²)] 0,023 $_{\infty}$ -factor [mm/(N/mm ²)] 0,033 $_{0}$ -factor [mm/(N/mm ²)] 0,056 $_{\infty}$ -factor [mm/(N/mm ²)] 0,081 $_{0}$ -factor [mm/(N/mm ²)] 0,056 $_{\infty}$ -factor [mm/(N/mm ²)] 0,081 $_{0}$ -factor [mm/(N/mm ²)] 0,081 $_{\infty}$ -factor [mm/(N/mm ²)] 0,081 $_{\infty}$ -factor [mm/(N/mm ²)] 0,090 $_{\infty}$ -factor [mm/(N/mm ²)] 0,105 $_{0}$ -factor [mm/(N/mm ²)] 0,219 $_{\infty}$ -factor [mm/(N/mm ²)] 0,2255 $_{0}$ -factor [mm/(N/mm ²)] 0,219	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Inte	ernal threaded a	nchor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Non-cracked and	I cracked concre	te C20/25 unde	r static and	quasi-stati	c action			
All temperature	δ _{∨0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Annex C 10

Performances Displacements (Internal threaded anchor rod)

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked conc	rete C20/25	5 under static ar	nd quasi	-static a	ction	1	1	I			1
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,07
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,120
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Cracked concrete	C20/25 und	ler static and qu	uasi-stat	ic actior	1						
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,0	090				0,070			
range l: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	105				0,105			
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: Di	· τ; · · τ;	nent τ: action bond nt under shear									
$\begin{array}{ll} \delta_{N0}=\delta_{N0}\text{-factor}\\ \delta_{N\infty}=\delta_{N\infty}\text{-factor}\\ \end{array}$	τ; τ; isplaceme	τ: action bond nt under shear			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
δ _{N0} = δ _{N0} -factor δ _{N∞} = δ _{N∞} -factor Table C14: Di Anchor size reinfo	τ; τ; isplaceme orcing bar	τ: action bond nt under shear	load ¹⁾ (I Ø 8	rebar) Ø 10		Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
δ _{N0} = δ _{N0} -factor δ _{N∞} = δ _{N∞} -factor Table C14: Di Anchor size reinfo Non-cracked conc	τ; τ; isplaceme orcing bar	τ: action bond nt under shear 5 under static ar	load ¹⁾ (I Ø 8	rebar) Ø 10		Ø 14 0,04	Ø 16 0,04	Ø 20 0,04	Ø 25 0,03	Ø 28	
$\begin{array}{lll} \delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \end{array}$	τ; τ; orcing bar rete C20/28	τ: action bond nt under shear 5 under static ar	load ¹⁾ (i Ø 8 nd quasi	rebar) Ø 10 -static a	ction						0,03
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: Di Anchor size reinfor Non-cracked concernation All temperature ranges	τ; τ; isplaceme orcing bar rete C20/28 δv₀-factor δv∞- factor	τ: action bond nt under shear under static ar [mm/kN] [mm/kN]	load ¹⁾ (r Ø 8 nd quasi 0,06 0,09	rebar) Ø 10 -static a 0,05 0,08	ction 0,05 0,08	0,04	0,04	0,04	0,03	0,03	0,03
$\delta_{N0} = \delta_{N0} - \text{factor}$ $\delta_{N\infty} = \delta_{N\infty} - \text{factor}$ Table C14: Di Anchor size reinfo Non-cracked conce All temperature ranges Cracked concrete	τ; τ; isplaceme orcing bar rete C20/28 δv₀-factor δv∞- factor	r: action bond nt under shear under static ar [mm/kN] [mm/kN] ler static and qu	load ¹⁾ (r Ø 8 nd quasi 0,06 0,09	rebar) Ø 10 -static a 0,05 0,08	ction 0,05 0,08	0,04	0,04	0,04	0,03	0,03	Ø 32 0,03 0,04
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: Di Anchor size reinfo Non-cracked conc All temperature ranges Cracked concrete All temperature	τ; τ; isplaceme prcing bar rete C20/28 $δv_0$ -factor $δv_{\infty}$ - factor C20/25 unc δv_{∞} - factor $δv_{\infty}$ - factor he displaceme	r: action bond nt under shear o under static ar [mm/kN] [mm/kN] ler static and qu [mm/kN] [mm/kN]	load ¹⁾ (r Ø 8 nd quasi 0,06 0,09 uasi-stat 0,12 0,18	rebar) Ø 10 -static a 0,05 0,08 ic action	ction 0,05 0,08	0,04 0,06	0,04	0,04	0,03	0,03	0,03
$δ_{N0} = δ_{N0}$ -factor $δ_{N\infty} = \delta_{N\infty}$ -factor Table C14: Di Anchor size reinfo Non-cracked conce All temperature ranges Cracked concrete of All temperature ranges ¹⁾ Calculation of th	τ; τ; isplaceme prcing bar rete C20/28 δvo-factor δv∞- factor C20/25 unc $\deltav∞$ - factor δv∞- factor bv∞- factor	r: action bond nt under shear under static ar [mm/kN] [mm/kN] ler static and qu [mm/kN] [mm/kN]	load ¹⁾ (r Ø 8 nd quasi 0,06 0,09 uasi-stat 0,12 0,18	rebar) Ø 10 -static a 0,05 0,08 ic action 0,12	ction 0,05 0,08 0,11	0,04 0,06 0,11	0,04 0,06 0,10	0,04 0,05 0,09	0,03 0,05 0,08	0,03 0,04 0,07	0,03

Deutsches Institut für Bautechnik DIBt

	or size threaded ro	bd				M8	M10	M12	M16	M20	M24	M27	M30
<u>Steel fa</u> Charac	ailure	stance	N _{Rk,s,e}		[kN]				10.	N _{Rk.s}			
Partial		stance	γ _{Ms,N}	eq,C1	[-]				see Ta	,			
	ined pull-out and	concrete failur			[-]				300 10				
	cteristic bond resist			cracke	d concrete	C20/25			1				
θ	l: 40°C/24°C	Dry, wet				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
Temperature range	II: 80°C/50°C	_concrete				1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
rature	III: 120°C/72°C I: 40°C/24°C		^τ Rk,eq,0	C1	[N/mm²]	1,3 2,5	1,6 2,5	2,0 3,7	2,0	2,0	2,1	2,4	2,4
emper	II: 80°C/50°C	flooded bore				2,5 1,6	2,5 1,9	3,7 2,7	3,7 2,7	N	o Perfo	ormanc	e
Ţ	III: 120°C/72°C	hole				1,3	1,5	2,7	2,7		Asse	ssed	
Increa	sing factors for con	L crete ψ _c	C25/30	0 to C5	0/60		-,-	_,_					
	lation factor	· •				1				, -			
for dry	and wet concrete					1,0				1,2			
5			1.01		[-]		4	-		N	o Perfo	ormand	~
Table	(perform	eristic values o ance category		loads	under seis		ction	,4 M16	M20		Asse	essed	
Table Ancho	e C16: Characte	ance category	of shear I	loads	under seis		ction	M16	M20	M24		essed	<u>м</u> 30
Table Ancho Steel f Charao	e C16: Characto (perform or size threaded ro	ance category d er arm	of shear I	loads	under seis		ction	M16	M20 ∙ ∨ ⁰ _{Rk,}	M24	Asse	essed	
Table Ancho Steel f Charac (Seism	e C16: Characte (perform or size threaded ro failure without leve cteristic shear resis	ance category d er arm tance	of shear I v C1)		under seis		ction	M16 0,70		M24	Asse	essed	
Table Ancho Steel f Charac (Seism Partial Factor	e C16: Characto (perform or size threaded ro failure without leve cteristic shear resis nic C1) factor r for annular gap ue in brackets valid f	ance category der arm tance V _R γ _M α _g	b f shear I / C1) k,s,eq,C1 s,V ap	[kN] [-] [-]	under seis M8 N	110 N	ntion	M16 0,70 see 1 0,5	• V ⁰ _{Rk,} Fable C (1,0) ¹⁾	M24 s 1	Asse	7	M30
Table Ancho Steel f Charac (Seism Partial Factor	e C16: Characte (perform or size threaded ro failure without leve cteristic shear resis nic C1) factor r for annular gap	ance category der arm tance V _R γ _M α _g	b f shear I / C1) k,s,eq,C1 s,V ap	[kN] [-] [-]	under seis M8 N	110 N	ntion	M16 0,70 see 1 0,5	• V ⁰ _{Rk,} Fable C (1,0) ¹⁾	M24 s 1	Asse	7	M30

Anchor size reinforcing bar			Ø 8	Ø 10) Ø 1	2 Ø 1	4 Ø 1	5 Ø 2) Ø 2	5 Ø 28	Ø 3
Steel failure	1	1	1					• 1)			
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]					,0 • A _s				
Cross section area	A _s	[mm²]	50	79	113	3 154			491	616	804
Partial factor	γ _{Ms,N}	[-]					1,4 ²)			
Combined pull-out and concrete fail		<u> </u>		000/	~ ~ ~						
Characteristic bond resistance in non-c	cracked and cr	аскеа с Г	2,5	3,1	25 3,7	3,7	3,7	3,7	3,8	4,5	4,5
⊕ <u>1: 40 0/24 0</u> Dry, wet			1,6	2,2	2,7			2,7			3,1
E B H H H H H H H H H H H H H H H H H H		[N/m	1,3	1,6	2,0			2,0			2,4
$ \begin{array}{c} \begin{array}{c} 1. & 40 & 0/24 & 0 \\ \hline 1. & 80^{\circ}C/50^{\circ}C \\ \hline 11: & 80^{\circ}C/72^{\circ}C \\ \hline 11: & 40^{\circ}C/24^{\circ}C \\ \hline 11: & 40^{\circ}C/50^{\circ}C \\ \hline 11: & 80^{\circ}C/50^{\circ}C \\ \hline 11: & 80^$	^T Rk, eq,C1	m²]	2,5	2,5	3,7				No Pe	rforman	ice
$ = \frac{11: 80^{\circ}C/50^{\circ}C}{111: 120^{\circ}C/72^{\circ}C} $ bore hole			1,6	1,9 1,6	2,7			_		sessed	
Increasing factors for concrete ψ_{c}	C25/30 to C	L 250/60	1,3	1,0	2,0	2,0	<u> </u>				
Installation factor	020,00 10 0	00,00					1,0				
for dry and wet concrete			1,2					1,2			
for flooded bore hole	γinst	[-]			1,4					rforman sessed	ice
Table C18: Characteristic value (performance categ		ads un				1	Ø 16	Ø 20	Ø 25	Ø 28	Ø3
(performance categ Anchor size reinforcing bar		ads un				Ø 14			Ø 25	Ø 28	Ø 32
(performance categ Anchor size reinforcing bar Steel failure without lever arm		[kN]				Ø 14	Ø 16 5 • A _s •		Ø 25	Ø 28	Ø 32
(performance catego Anchor size reinforcing bar Steel failure without lever arm Characteristic shear resistance	ory C1)					Ø 14			Ø 25 491	Ø 28 616	Ø 32 804
(performance categorial Anchor size reinforcing bar Steel failure without lever arm Characteristic shear resistance Cross section area	V _{Rk,s,eq,C1}	[kN]	Ø 8	Ø 10	Ø 12	Ø 14 0,3	5•A _s •	f _{uk} ²⁾			
(performance catego Anchor size reinforcing bar Steel failure without lever arm Characteristic shear resistance Cross section area Partial factor Factor for annular gap	ory C1) V _{Rk,s,eq,C1} A _s γ _{Ms,V} α _{gap}	[kN] [mm 2] [-] [-]	Ø 8	Ø 10	Ø 12	Ø 14 0,3 154	5 • A _s • 201	f _{uk} ²⁾ 314			
(performance categorial Anchor size reinforcing bar Steel failure without lever arm Characteristic shear resistance Cross section area Partial factor Factor for annular gap	ory C1) $V_{Rk,s,eq,C1}$ A_s $\gamma_{Ms,V}$ α_{gap} ns of reinforcing	[kN] [mm 2] [-] [-] g bars	Ø 8 50	Ø 10 79	Ø 12 113	Ø 14 0,3 154	5 • A _s • 201 1,5 ²⁾ 0,5 (1,0	f _{uk} ²⁾ 314	491	616	80

Characteristic values of tension loads and shear loads under seismic action (performance category C1)