

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0257 of 23 November 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product SIKLA Drop-in Anchor AN / AN ES Product family Mechanical fastener for use in concrete to which the construction product belongs Manufacturer Sikla Holding GmbH Kornstraße 4 **4614 MARCHTRENK ÖSTERREICH** Sikla Herstellwerk 1 Manufacturing plant This European Technical Assessment 16 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-01-0601, Edition 05/2021 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-10/0257 issued on 2 February 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0257 English translation prepared by DIBt

Page 2 of 16 | 23 November 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 16 | 23 November 2021

Specific Part

1 Technical description of the product

The SIKLA Drop-in Anchor AN / AN ES is a fastener made of galvanized steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B2, C1 to C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3 to C4
Displacements	See Annex C5
Characteristic resistance and displacements for seismic performance category C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-10/0257

Page 4 of 16 | 23 November 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 November 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

SIKLA Drop-in Anchor AN / AN ES												
	Anchor sizes and variations											
Drop-ir	Anchor AN (without shoul	der)	Drop-in	Anchor AN / ES (with	<u>h</u> shoulder)							
AN M6x30		O	AN ES M6x30		O							
AN M8x30		0	AN ES M8x30		6							
AN M8x40			AN ES M8x40									
AN M10x40			AN ES M10x30 (zinc plated)		\bigcirc							
AN M12x50			AN ES M10x40									
AN M12x80			AN ES M12x50									
AN M16x65			AN ES M12x80									
AN M16x80			AN ES M16x65									
AN M20x80			AN ES M16x80									
Installation s	situation											
SIKI A Dror	p-in Anchor AN / AN ES											

Product description

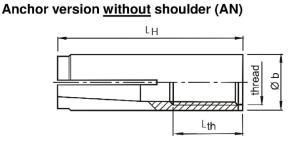
Anchor sizes and variations / Installation situation

Page 6 of European Technical Assessment ETA-10/0257 of 23 November 2021

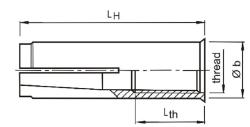
English translation prepared by DIBt

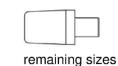
Table	e A1: Material					
Part	Designation	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel HCR		
1	Anchor sleeve	Cold formed or machining steel, galvanized, EN ISO 4042:2018	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, EN ISO 3506:2020	Stainless steel, 1.4529, 1.4565, EN 10088:2014, EN ISO 3506:2020		
2	Cone	Cold formed or machining steel	Stainless steel (e.g. 1.4401, 1.44 EN 10088:2014	04, 1.4571)		

Requirements on the fastening screw or the threaded rod and nut according to the engineering documents:


- Minimum screw-in depth L_{sdmin} see Table B1
- The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum screw-in depth) and the minimum screw-in depth L_{sdmin}.
- A₅ > 8 % Ductility
- Materials
 - Steel, zinc plated, property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
 - Stainless steel A4 or high corrosion resistant steel HCR, property class 70 or 80 according to EN ISO 3506:2020

SIKLA Drop-in Anchor AN / AN ES


Product description Materials / Requirements


Anchor sleeve

Anchor version with shoulder (AN ES)

Cone

Table A2: Dimensions and marking

M6x30 and M10x30

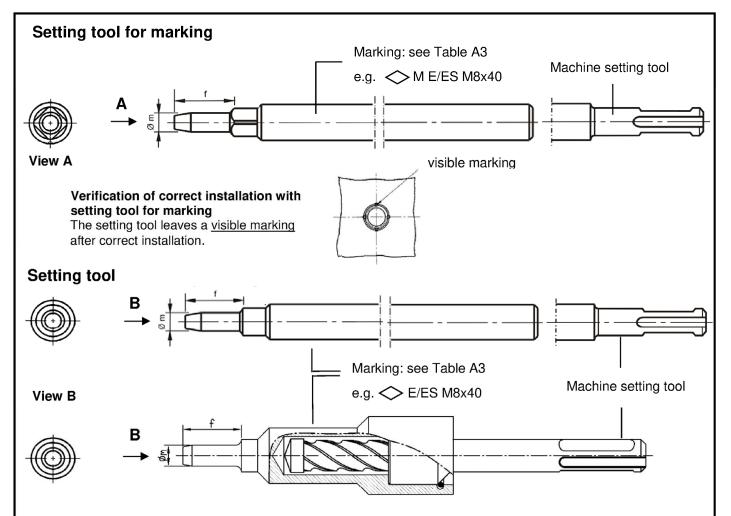
Marking: see Table A2

e.g.:	✓ E M8x40
o.g	

- identifying mark of manufacturing plant
- E anchor identity (version without shoulder)
- ES anchor identity (version with shoulder)
- M8 size of thread
- 40 anchorage depth

additional marking

- A4 stainless steel
- HCR high corrosion resistant steel


Anchor		nor s	leeve					
size	thread	Øb	LH	L _{th}	Version AN (without sleeve)	alternative		Cone
M6x30	M6	8	30	13	♦ E M6x30	♦ ES M6x30	✓ E M6	
M8x30	M8	10	30	13	E M8x30	ES M8x30	E M8	
M8x40	M8	10	40	20		ES M8x40	← E M8x40	
M10x30	M10	12	30	12	-	ES M10x30		
M10x40	M10	12	40	15		ES M10x40	♦ E M10	
M12x50	M12	15	50	18	← E M12x50	ES M12x50	♦ E M12	
M12x80	M12	15	80	45	⇐ M12x80	ES M12x80		
M16x65	M16	19,7	65	23		ES M16x65	◇ E M16	
M16x80	M16	19,7	80	38	⇐ E M16x80	ES M16x80	← E M16x80	
M20x80	M20	24,7	80	34		-	✓ E M20	

SIKLA Drop-in Anchor AN / AN ES

Product description

Dimensions and marking

Table A3: Dimensions and marking of setting tools

Anchor	Anchor Øm f		Setting tool for	or marking	Settin	ig tool
size	0	•	Marking	alternative	Marking	alternative
M6x30	4,9	17	→ M E/ES M6x30	→ M E M6	⇒ E/ES M6x30	⇔ E M6
M8x30	6,4	18	→ M E/ES M8x30		⇒ E/ES M8x30	⇒ E M8
M8x40	6,4	28	→ M E/ES M8x40		⇒ E/ES M8x40	
M10x30	8,0	18	→ M ES M10x30			
M10x40	8,0	24	→ M E/ES M10x40	→ M E M10		
M12x50	10,0	30	→ M E/ES M12x50	→ M E M12		→ E M12
M12x80	10,0	60	→ M E/ES M12x80	→ M E M12x80		
M16x65	13,5	36	→ M E/ES M16x65			
M16x80	13,5	51	→ M E/ES M16x80	→ M E M16x80		
M20x80	16,5	50	→ M E M20x80			

Dimensions in mm

SIKLA Drop-in Anchor AN / AN ES

Product description

Setting tools / Dimensions and marking

Page 9 of European Technical Assessment ETA-10/0257 of 23 November 2021

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete, without fibres according to EN 206:2013 + A1:2016
- Uncracked concrete
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions applies: Use according to EN 1993-1-4:2015 corresponding to corrosion resistance class CRC according to Annex A2, Table A1:
 - Stainless steel A4: CRC III
 - High corrosion resistant steel HCR: CRC V
- Anchor types M6x30 A4 and M8x30 A4 only for dry internal exposure

Design:

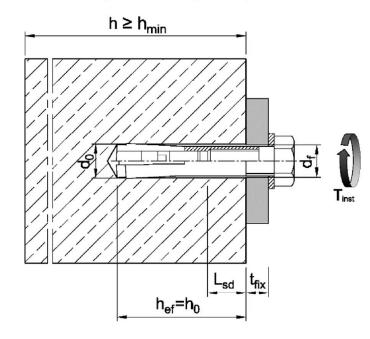
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Design of fastenings according EN 1992-4:2018 (and TR 055, Edition February 2018, if necessary)
- Anchor sizes M6x30, M8x30 and M10x30 for statically indeterminate structural components only, when in case of failure, the load can be distributed to other fasteners.

Installation:

Electronic copy of the ETA by DIBt: ETA-10/0257

- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools
- Drill hole by hammer drilling or vacuum drilling

SIKLA Drop-in Anchor AN / AN ES


Intended use Specifications

Annex B1

Deutsches Institut für Bautechnik

able B1: Installation parameters													
Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80	
Depth of drill hole	h0 =	[mm]	30	30	40	30	40	50	80	65	80	80	
Drill hole diameter	d0 =	[mm]	8	10	10	12	12	15	15	20	20	25	
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55	
Max. installation torque 1)	T _{inst} ≤	[Nm]	4	8	8	15	15	35	35	60	60	120	
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	9	12	12	14	14	18	18	22	
Thread length	L_{th}	[mm]	13	13	20	12	15	18	45	23	38	34	
Minimum screw-in depth	L_{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22	
Steel, zinc plated													
Minimum thickness of member	\mathbf{h}_{min}	[mm]	100	100	100	120	120	130	130	160	160	200	
Minimum spacing	Smin	[mm]	55	60	80	100	100	120	120	150	150	160	
Minimum edge distance	Cmin	[mm]	95	95	95	115	135	165	165	200	200	260	
Stainless steel A4, HCR													
Minimum thickness of member	\mathbf{h}_{min}	[mm]	100	100	100	-	130	140	140	160	160	250	
Minimum spacing	Smin	[mm]	50	60	80	-	100	120	120	150	150	160	
Minimum edge distance	Cmin	[mm]	80	95	95	-	135	165	165	200	200	260	

¹⁾ If the screw or threaded rod is otherwise secured against unscrewing, the torque can be omitted

SIKLA Drop-in Anchor AN / AN ES

Intended use

Installation parameters

Annex B2

Installation instructions	
	Drill hole perpendicular to concrete surface. Using vacuum drill bit proceed with step 3.
2	Blow out dust. Alternatively, vacuum clean down to the bottom of the hole.
	Drive in anchor.
4	Drive in cone by using setting tool.
5	Shoulder of setting tool must fit on anchor rim.
6 Tinst	Turn in screw or threaded rod with nut, observe minimum screw-in depth (see Annex B2). Apply installation torque T _{inst} .

Intended use

Installation instructions

Annex B3

Electronic copy of the ETA by DIBt: ETA-10/0257

Anchor size		M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80		
Installation fact	or	[-]		1,2								
Steel failure												
	4.6			8,0	14	I,6	23	3,2	33	8,7	62,8	98,0
o	8.4 <u>a</u> 8			8,0	14	I,6	18,0	20,2	33	3,7	62,8	98,0
Characteristic resistance	4.8 4.8 5.6 5.8	$N_{Rk,s}$	[kN]	10,0	18	3,3	18,0	20,2	42	2,1	78,3	122,4
	do			10,0	17,6	18,3	18,0	20,2	40,2	42,1	67,1	106,4
	8.8			15,0	17,6	19,9	18,0	20,2	40,2	43,0	67,1	106,4
	<u> 4.6</u>							2,0				
	6.5 <u>clas</u>				2,0		1,	5		2	,0	
Partial factor	5.6 5.8 5.8	γMs ¹⁾	[-]									
	do						1,5				1,	,6
	8.8											
Pull-out failure												
Characteristic r concrete C20/2		N _{Rk,p}	[kN]	8,1	8,1	9,0	8,1	12,4	17,4	17,4	25,8	35,2
Increasing facto N _{Rk,p} = ψ _c · N _{Rk,p}		Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{f_{ck}}{20}\right)^{0,5} \qquad \left \left(\frac{f_{ck}}{20}\right)^{0,3} \right \qquad \qquad \left(\frac{f_{ck}}{20}\right)^{0,5}$							
Splitting												
Characteristic r concrete C20/2		N ⁰ Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})								
Characteristic e distance	edge	Ccr,sp	[mm]	95 95 95 115 135 165 200 260					260			
Characteristic s	spacing	Scr,sp	[mm]					2 · C _{cr,sp}				
Concrete cone	failure					1						
Effective ancho depth	-	h _{ef}	[mm]	30	30	40	30	40	50	80	65 80 ²⁾	80
Characteristic e distance	edge	Ccr,N	[mm]					1,5 h _{ef}				
Characteristic s	spacing	Scr,N	[mm]					$2 \cdot c_{\text{cr},\text{N}}$				
uncrac	ked concrete	k _{ucr,N}	[-]					11,0				
crac	ked concrete	k _{cr,N}	[-]				No perfor	mance a	ssessed			
In absence of o For M16x80	ther national re	egulatio	ns									
SIKLA Drop	o-in Ancho	r AN	/ AN	ES								
										_		

Table C2: C	haracteristic val	ues for te	ensior	loads	, stainle	ess stee	el A4, H	CR		
	Anchor size			M6x30	M8x30	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Installation fac	tor	γinst	[-]			•	1,0	•		
Steel failure										
Characteristic (property class		N _{Rk,s}	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0
Characteristic (property class		$N_{Rk,s}$	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0
Partial factor		$\gamma Ms^{1)}$	[-]				1,87			
Pull-out failur	re									
Characteristic concrete C20/		N _{Rk,p}	[kN]	8,1	8,1	11,0	12,4	17,4	25,8	35,2
Increasing fac	tor	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5} \qquad \left \left(\frac{f_{ck}}{20}\right)^{0.3} \right \qquad \left(\frac{f_{ck}}{20}\right)^{0.5}$						
Splitting failu	re									
Characteristic concrete C20/2		N^0 Rk,sp	[kN]			min	(N _{Rk,p} ; N ⁰	⁾ Rk,c)		
Edge distance	•	Ccr,sp	[mm]	80	95	95	135	165	200	260
Spacing		Scr,sp	[mm]	2 · c _{cr,sp}						
Concrete con	e failure									
Effective anch	orage depth	h _{ef}	[mm]	30	30 40		40	50 80 ²⁾	65 80 ²⁾	80
Edge distance	1	Ccr,N	[mm]	1,5 h _{ef}						
Spacing		Scr,N	[mm]	2 · c _{cr,N}						
Factor –	uncracked concrete	k _{ucr,N}	[-]	11,0						
	cracked concrete	k _{cr,N}	[-]			No perfo	ormance a	issessed		

 $^{1)}$ In absence of other national regulations $^{2)}$ For M12x80 and M16x80

Performance

Characteristic values for tension loads, stainless steel A4, HCR

Annex C2

Anchor size				M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80	
Steel failure wi	ithout lev	ver arm											
	4.6	4.6 sse 2 4.8		4,0	7	7,3	11,6	9,6 16,8		5,8	31,3	49,0	
Characteristic resistance	Scalar Scalar Scalar Scalar Scalar V ⁰ _{Rk}			4,0	7	7,3	10,1 10,1		16,9		31,3	49,0	
		$V^0_{Rk,s}$	[kN]	5,0	5,0 9,1		10,1	9,6	21	∣ ,1	39,2	61,2	
	5.6 5.8			5,0	e	6,9	10,1	7,2	19,4	21,1	33,5	53,2	
	8.8			5,0	ε	8,9	10,1			21,5	33,5	53,2	
	s 4.6 class 5.6				1.07		1.05	1,67		1.07			
Partial factor	b.c 5.6 5.8 5.8 5.8 8.8	γms ¹⁾	[-]	1,67 1,25 1,67 1,25								1,33	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Steel failure wi	ith lever a	arm											
Characteristic bending resistance	4.6 ss 4.8	4.8 5.6 5.8 8.8	[Nm]	6,1		15	30		52		133	259	
	5.6 5.8			7,6		19		37	65		166	324	
				12	(30	59	60	1	05	266	519	
Partial factor	4.6 5.6 5.8 5.8 8.8	γms ¹⁾	[-]	1,67 1,25									
Factor of ductilit	ty	k 7	[-]					1,0					
Concrete pry-c	out failure	e								-			
Pry-out factor		k ₈	[-]			1,0			1,5		2,0		
Concrete edge										I	,		
Effective length fastener in shea	ar loading	lf	[mm]	30	30	40	30	40	50	80	65 80 ²⁾	80	
Outside diameter of fastenerdnom[mm]8101215								5	20	25			
⁾ In absence of o ⁾ For M16x80	ther natio	nal regul	ations										
		chor A											

Performance

Characteristic values for shear loads, zinc plated steel

Table C4: Characteristic values for shear loads, stainless steel A4, HCR														
Anchor size			M6x30	M8x30	M8x40	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80			
Steel failure without lever a						,	,							
Characteristic resistance (property class 70)			7,0	10,6		13,4	25,1		41,9		66,5			
Characteristic resistance (property class 80)	$V^0_{Rk,s}$	[kN]	8,7 10,6		13,4	25,1		41,9		66,5				
Partial factor $\gamma_{Ms}^{(1)}$ [-]			1,56											
Factor of ductility k7 [-]				1,0										
Steel failure with lever arm														
Characteristic bending resistance (property class 70)	M ⁰ Rk,s	[Nm]	11 26		52	92		233		454				
Partial factor	$\gamma { m Ms}^{1)}$	[-]		1,56										
Characteristic bending resistance (property class 80)	M ⁰ Rk,s	[Nm]	12 30		60	105		266		519				
Partial factor $\gamma_{Ms}^{1)}$ [-]			1,33											
Factor of ductility	Factor of ductility k ₇ [-]		1,0											
Concrete pry-out failure														
Pry-out factor k ₈ [-]		1,0 1,7					2,0							
Concrete edge failure														
Effective length of fastener in shear loading	lf	[mm]	30	30	40	40	50	80	65	80	80			
Outside diameter of fastener	dnom	[mm]	8	1	0	12	1	5	20		25			

¹⁾ In absence of other national regulations

Performance

Characteristic values for shear loads, stainless steel A4, HCR

Annex C4

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x80		
Steel, zinc plated						·		<u>.</u>				
Tension load in uncracked concrete	N	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8		
D'	δνο	[mm]	0,24									
Displacements	δ _{N∞}	[mm]	0,36									
Stainless steel A4 / HCR												
Tension load in uncracked concrete	N	[kN]	4	4	4,3	_ 1)	6,1	8,5	12,6	17,2		
	$\delta_{\sf N0}$	[mm]	0,12									
Displacements	δ _{N∞}	[mm]	0,24									

¹⁾ Anchor version is not part of the ETA

Table C6: Displacements under shear loads

Anchor size	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80		
Steel, zinc plated										
Shear load in uncracked concrete	V	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Diaplacemente	δνο	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
Displacements	δν∞	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Stainless steel A4 / HCR				<u>.</u>	<u>.</u>			<u>.</u>	<u>.</u>	
Shear load in uncracked concrete	V	[kN]	3,5	5,2	5,2	_ 1)	6,5	11,5	19,2	30,4
Diaplacemente	δνο	[mm]	1,9	1,1	0,7	_ 1)	1,0	1,7	2,4	2,6
Displacements	δν∞	[mm]	2,8	1,6	1,0	- 1)	1,5	2,6	3,6	3,8

1) Anchor version is not part of the ETA

Performance Displacements Annex C5