

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0415 of 1 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System VMU plus for concrete

Bonded fastener for use in concrete

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1, D Werk 2, D

29 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-11/0415 issued on 8 December 2017

European Technical Assessment ETA-11/0415

Page 2 of 29 | 1 June 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z47843.21 8.06.01-95/21

European Technical Assessment ETA-11/0415

Page 3 of 29 | 1 June 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system VMU plus for concrete" is a bonded anchor consisting of a cartridge with injection mortar VMU plus or VMU plus Polar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod VMU-IG-M6 to VMU-IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 3, C 4, C 7 and C 9
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2, C 5, C 8, C 10
Displacements (static and quasi-static loading)	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 6 and C 11
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z47843.21 8.06.01-95/21

European Technical Assessment ETA-11/0415

Page 4 of 29 | 1 June 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

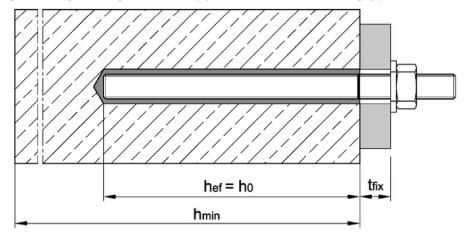
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

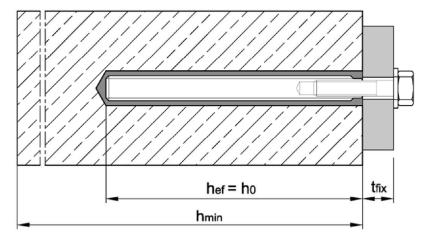
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

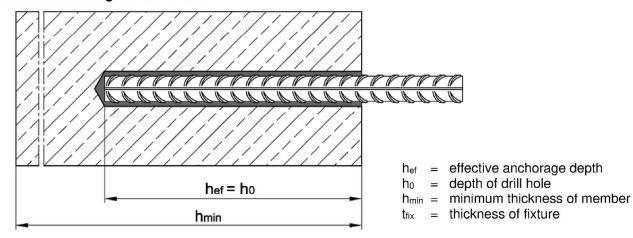
Issued in Berlin on 1 June 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z47843.21 8.06.01-95/21



Installation threaded rod M8 to M30


Pre-setting or through setting installation (optional with filled annular gap)

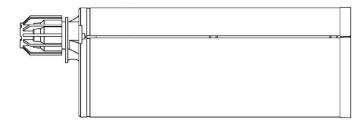
Installation internally threaded anchor rod VMU-IG-M6 to VMU-IG-M20

Installation reinforcing bar Ø8 to Ø32

Injection system VMU plus for concrete

Product description Installation situation Annex A1

Cartridge VMU plus or VMU plus Polar

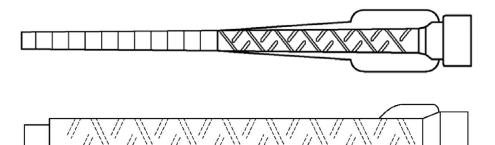

Coaxial cartridge

150 ml, 280 ml, 300 ml bis 333 ml 380 ml bis 420 ml

Side-by-side cartridge

235 ml, 345 ml bis 360 ml 825 ml

Foil tube cartridge


165 ml 300 ml

Cartridge imprint:

VMU plus or VMU plus Polar,

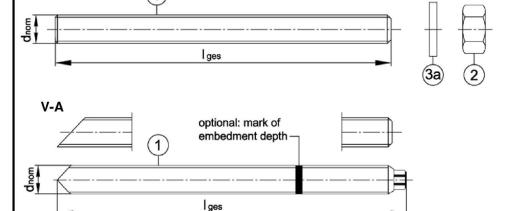
processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and processing time (depending on the temperature), with as well as without travel scale

Static mixer

Injection system VMU plus for concrete

Product description

Cartridges and attachments


Annex A2

Threaded rod

VMU-A

Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)

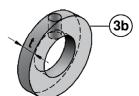
identifying mark of manufacturing plant

M10 size of thread

additional marking:

stainless steel A4

HC high corrosion resistant steel


Threaded rod VM-A (material sold by the metre, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

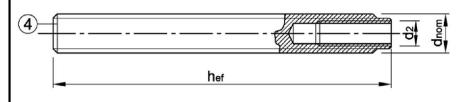
Commercial standard threaded rod with:

M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

- Materials, dimensions and mechanical properties see Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004

Washer with bore and reducing adapter for filling the gap between threaded rod and fixture

Thickness of washer with bore for diameter


< M24: t = 5 mm

≥ M24: t = 6 mm

Internally threaded anchor rod

VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU-IG M20 (zinc plated, A4, HCR)

Marking e.g.: < ► M8

identifying mark of manufacturing plant

internal thread

M8 size of internal thread

additional marking:

A4 stainless steel

HCR high corrosion resistant steel

Injection system VMU plus for concrete

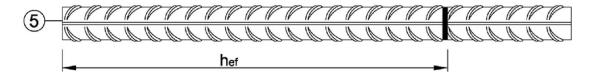
Product description

Threaded rods and internally threaded anchor rod

Annex A3

751293 21

Part	Designation			Material						
electr hot-di		≥ 40 µm	n acc. to EN IS n (50 μm in av n acc. to EN IS	erage) acc	c. to EN IS	6O 1461:20	009, EN IS	SO 10684:2004	+AC:2009 or	
			property class	characteristic characteristic ultimate strength yield strength				fracture elongation	EN ISO 683-4:2018.	
			4.6		400	-	240	A ₅ > 8 %	EN 10263:2001;	
1	Threaded rod		4.8		400		320	A ₅ > 8 %	Commercial	
			5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	standard threaded rod:	
			5.8	[14/11111]	500	1 [14/11111]	400	A ₅ > 8 %	EN ISO 898-1:2013	
			8.8		800		640	A ₅ > 8 %		
			4	for class	4.6 or 4.8	rods				
2	Hexagon nut		5	for class	4.6, 4.8, 5	5.6 or 5.8 r	ods		EN ISO 898-2:2012	
			8	for class	4.6, 4.8, 5	5.6, 5.8 or	3.8 rods		1	
3a	Washer				ISO 7089: 887:2006	7094:2000,				
3b	Washer with bor	·e		steel, zin	c plated					
	Internally thread	steel, electroplated or sherardized $A_5 > 8\%$								
4	Internally thread anchor rod	ed _	5.8 8.8	steel, ele	ectroplated	or sherar	dized	$A_5 > 8\%$ $A_5 > 8\%$	EN ISO 683-4:2018	
Stain Stain		-	8.8 CF CF	RC II (1.43 RC III (1.44	801 / 1.430)7 / 1.4311 04 / 1.457	/ 1.4567	A ₅ > 8% / 1.4541)	EN ISO 683-4:2018	
Stain Stain	less steel A2 1) less steel A4	-	8.8 CF CF	RC II (1.43 RC III (1.44 RC V (1.45	301 / 1.430 401 / 1.44)7 / 1.4311 04 / 1.457	/ 1.4567 1 / 1.4578 teristic	A ₅ > 8% / 1.4541)	EN ISO 683-4:2018	
Stain Stain	less steel A2 1) less steel A4	-	8.8 CF CF PI HCR CF property	RC II (1.43 RC III (1.44 RC V (1.45	301 / 1.430 401 / 1.44 529 / 1.456 eteristic	07 / 1.4311 04 / 1.457 65) charac	/ 1.4567 1 / 1.4578 teristic	A ₅ > 8% / 1.4541)) fracture	EN 10088-1:2014	
Stain Stain High	less steel A2 1) less steel A4 corrosion resista	-	8.8 CF CF Property class	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate	801 / 1.430 401 / 1.44 529 / 1.456 eteristic strength	07 / 1.4311 04 / 1.457 65) charac yield st	/ 1.4567 1 / 1.4578 teristic trength	A ₅ > 8% / 1.4541)) fracture elongation	EN 10088-1:2014	
Stain Stain High	less steel A2 1) less steel A4 corrosion resista	-	8.8 CF CF Property class 50	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate	301 / 1.430 401 / 1.44 529 / 1.456 eteristic strength	07 / 1.4311 04 / 1.457 65) charac yield si	/ 1.4567 1 / 1.4578 teristic trength 210	A ₅ > 8% / 1.4541)) fracture elongation A ₅ > 8%	EN 10088-1:2014	
Stain Stain High	less steel A2 1) less steel A4 corrosion resista	-	8.8 CF	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate	801 / 1.430 401 / 1.44 529 / 1.456 eteristic strength 500 700 800	07 / 1.4311 04 / 1.457 65) charac yield st	/ 1.4567 1 / 1.4578 teristic trength 210 450	A ₅ > 8% / 1.4541) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 - EN ISO 3506-1:202	
Stain Stain High	less steel A2 1) less steel A4 corrosion resista	-	8.8 CF CF CF Property class 50 70 80 50	RC II (1.43 RC III (1.44 RC V (1.45 charac ultimate f _{uk} [N/mm²]	801 / 1.430 401 / 1.44 529 / 1.456 eteristic strength 500 700 800	07 / 1.4311 04 / 1.457 65) charac yield st	/ 1.4567 1 / 1.4578 teristic trength 210 450	A ₅ > 8% / 1.4541) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:202	
Stain Stain High	less steel A2 1) less steel A4 corrosion resista Threaded rod2)	-	8.8 CF CF CF Property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 characultimate fuk [N/mm²] for class for class	301 / 1.430 401 / 1.44 529 / 1.450 eteristic strength 500 700 800 50 rods	07 / 1.4311 04 / 1.457 65) charac yield st f _{yk} [N/mm²]	/ 1.4567 1 / 1.4578 teristic trength 210 450	A ₅ > 8% / 1.4541) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:202	
Stain Stain High	less steel A2 1) less steel A4 corrosion resista Threaded rod2)	-	8.8 CF CF CF Property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 characteristic	501 / 1.430 401 / 1.445 529 / 1.456 steristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or	07 / 1.4311 04 / 1.457 65) charac yield st f _{yk} [N/mm²]	/ 1.4567 1 / 1.4578 teristic crength 210 450 600	$A_5 > 8\%$ $/ 1.4541)$ fracture elongation $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$	EN 10088-1:2014 EN ISO 3506-1:202	
Stain Stain High	less steel A2 1) less steel A4 corrosion resista Threaded rod ²⁾ Hexagon nut ²⁾	ant stee	8.8 CF CF CF Property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 Characultimate fuk [N/mm²] for class for class for class e.g.: EN EN ISO 7	301 / 1.430 401 / 1.44 529 / 1.450 eteristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or ISO 7089 7094:2000	o7 / 1.4311 04 / 1.457 65) charac yield st [N/mm²] ods 80 rods 2000, EN	/ 1.4567 1 / 1.4578 teristic trength 210 450 600	$A_5 > 8\%$ $/ 1.4541)$ fracture elongation $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$	EN 10088-1:2014 EN ISO 3506-1:202 EN 10088-1:2014 EN ISO 3506-2:202	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resista Threaded rod ²⁾ Hexagon nut ²⁾ Washer	ant stee	8.8 CF CF CF CF Property class 50 70 80 70 80	RC II (1.43 RC III (1.44 RC V (1.45 Characultimate fuk [N/mm²] for class for class for class e.g.: EN EN ISO 7	301 / 1.430 401 / 1.44 529 / 1.450 eteristic strength 500 700 800 50 rods 50 or 70 r 50, 70 or ISO 7089 7094:2000	o7 / 1.4311 04 / 1.457 65) charac yield st [N/mm²] ods 80 rods 2000, EN	/ 1.4567 1 / 1.4578 teristic trength 210 450 600	A ₅ > 8% / 1.4541) fracture elongation A ₅ > 8% A ₅ > 8 % A ₅ > 8 % :2000,	EN 10088-1:2014 EN 1SO 3506-2:202	


¹⁾ for property classes 50 and 70 ²⁾ property classes 70 and 80 up to M24

Injection system VMU plus for concrete	
Product description Materials threaded rods and internally threaded anchor rod	Annex A4

Reinforcing bar

Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 28, Ø 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A1: Material rebar

Part	Designation	Material						
Rebar								
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL acc. EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$						

Injection system VMU plus for concrete

Product description

Annex A5

Product description and materials reinforcing bar

Z51293.21

Electronic copy of the ETA by DIBt: ETA-11/0415

Specification of intended use

Injection System VMU plus	Threaded rod	Internally threaded anchor rod	Rebar					
Static and quasi-static action	M8 - M30	IG-M6 - IG-M20 (zinc plated, A4, HCR)	Ø8 - Ø32					
Seismic action, performance category C1	M8 - M30	-	Ø8 - Ø32					
Base materials	compacted, reinforced or unreinforced normal weight concrete (without fibers), acc. to EN 206:2013 + A1:2016 strength classes C20/25 to C50/60 acc. to EN 206-1:2013+A1:2016							
Townseroture Dengie L. 4000 to . 4000	cracked and uncracked concrete							
Temperature Range I -40°C to +40°C Temperature Range II -40°C to +80°C	max long term temperature +24 °C and max short term temperature +40°C							
Temperature Range III -40°C to 120°C	max long term temperature +50 °C and max short term temperature +80°C max long term temperature +72 °C and max short term temperature +120°C							

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- · For all other conditions:

Intended use of Material according to Annx A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, IG-M6 to IG-M20, Rebar Ø8 to Ø32
- Waterfilled holes (not sea water): M8 to M16, IG-M6 to IG-M10, Rebar Ø8 to Ø16
- Hole drilling by hammer or compressed air drill mode or vacuum drill mode
- · Installation direction D3: downwards, horizontally and upwards (overhead) installation
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection system VMU plus for concrete	
Intended Use Specifications	Annex B1

Table B1: Installation	parameters fo	r threaded rod
-------------------------------	---------------	----------------

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter threaded	rod	d=d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole d	iameter	d ₀	[mm]	10	12	14	18	24	28	32	35
Effective anchorage	donth -	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellective anchorage	e deptir	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance	Pre-setting installation	d₁ ≤	[mm]	9	12	14	18	22	26	30	33
hole in the fixture	Through setti installation	ng d _f ≤	[mm]	12	14	16	20	25	30	33	38
Installation torque	ma	ıx T _{inst} ≤	[Nm]	10	20	40 (35) ¹⁾	80	120	160	180	200
Minimum thickness of member h _{min} [mm]		h _{ef} + 3	0mm ≥ 1	00mm			$h_{ef} + 2d_0$				
Minimum spacing		Smin	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ance	Cmin	[mm]	40	50	60	80	100	120	135	150

¹⁾ max. installation torque for property class 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod1)	$d=d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	24	28	35
Effective anchorage donth	$h_{\text{ef,min}}$	[mm]	60	70	80	90	96	120
Effective anchorage depth	$h_{\text{ef},\text{max}}$	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque m	nax T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member h _{min} [mm]			30 mm 0 mm		h _{ef} +	- 2d ₀		
Minimum spacing	Smin	[mm]	50	60	80	100	120	150
Minimum edge distance	Cmin	[mm]	50	60	80	100	120	150

¹⁾ with metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter threaded rod	d=d _{nom}	[mm]	8	10	12	14	16	20	24	28	32
Nominal drill hole diameter	d₀	[mm]	12	14	16	18	20	24	32	35	40
Effective analysis alouth	$h_{\text{ef},\text{min}}$	[mm]	60	60	70	75	80	90	100	112	128
Effective anchorage depth —	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d	0		
Minimum spacing	Smin	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	Cmin	[mm]	40	50	60	70	80	100	125	140	160

Injection system VMU plus for concrete

Intended Use

Installation parameters

Annex B2

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Table B4: Parameter cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit ∅	Brush Ø	min. Brush Ø	Retaining washer					
\$		997979797		G CHARACTARACTARACTAR			tion directi retaining v				
[-]	[-]	Ø [mm]	d₀ [mm]	d₅ [mm]	d _{b,min} [mm]	[-]	+	→	1		
M8			10	12	10,5						
M10	VMU-IG M 6	8	12	14	12,5	No retaining washer required					
M12	VMU-IG M 8	10	14	16	14,5						
		12	16	18	16,5						
M16	VMU-IG M10	14	18	20	18,5	VM-IA 18					
		16	20	22	20,5	VM-IA 20					
M20	VMU-IG M12	20	24	26	24,5	VM-IA 24					
M24	VMU-IG M16		28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all		
M27		25	32	34	32,5	VM-IA 32	20011111				
M30	VMU-IG M20	28	35	37	35,5	VM-IA 35					
		32	40	41,5	40,5	VM-IA 40					

Blow-out pump (volume 750ml)

Drill bit diameter (d₀): 10 mm to 20 mm Anchorage depth (h_{ef}): \leq 10 d_{nom}

for uncracked concrete

Recommended compressed air tool (min 6 bar)

All applications

Retaining washer for overhead or horizontal installation

Drill bit diameter (d₀):

18 mm to 40 mm

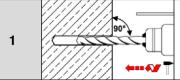
Steel brush

Drill bit diameter (d₀): all diameters

d_b

Injection system VMU plus for concrete

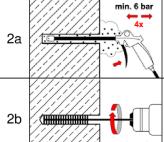
Intended Use


Cleaning and setting tools

Annex B3

Installation instructions

Drilling of the hole

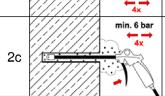

Drill the hole by applying the drilling method acc. to Annex B1, the drill bit diameter (Table B4) and the selected drill hole depth. In case of aborted hole, the drill hole shall be filled with mortar

Cleaning, all drilling methods

Attention! Standing water in the drill hole must be removed before cleaning!

Cleaning with compressed air

(all diameters, cracked and uncracked concrete)

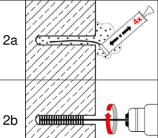


Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) **four** times, until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) **four** times.

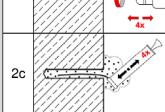
If the drill hole ground is not reached, a brush extension shall be used.



Finally blow the hole clean again with compressed air (min. 6 bar) **four** times, until the outgoing airstream is free of dust. If the drill hole ground is not reached an extension shall be used.

Manual cleaning

2


<u>uncracked concrete:</u> Drill hole diameter $d_0 \le 20$ mm and effective anchorage depth $h_{ef} \le 10$ d_{nom} Drill hole diameter: 14mm $\le d_0 \le 20$ mm and effective anchorage depth $h_{ef} \le 10$ d_{nom}

Starting from the bottom or back of the drill hole, blow the hole clean with the blow-out pump **four** times until retur air stream is free of noticeable dust.

Brush the hole **four** times with an appropriate sized wire brush > d_{b,min} (Table B4).

If the drill hole ground is not reached, a brush extension shall be used.

Finally blow the hole clean again with the blow-out pump **four** times until retur air stream is free of noticeable dust.

After cleaning, the drill hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drill hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the drill hole again.

Injection system VMU plus for concrete

Intended Use

Installation instructions

Annex B4

751293 21 8 06 01-95/21

Installation instructions (continuation)

		(00
Inje	ction	
3	MI III 3	Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5 or Table B6) as well as for new cartridges, a new static-mixer shall be used.
4	hef	Before injecting the mortar, mark the required anchorage depth on the fastening element.
5	min.3x →	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For tubular film cartridges dismiss a minimum of six full strokes.
6a		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. For embedment larger than 190mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B5 or Table B6.
6b		Retaining washer and mixer nozzle extensions shall be used according to Annex B3 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection system VMU plus for concrete

Intended Use

Installation instructions (continuation)

Annex B5

Installation instructions (continuation)

Setting the fastening element Push fastening element into the hole while turning slightly to ensure proper 7 distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material. Make sure that the fastening element is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not 8 maintained, the application has to be renewed before the end of the working time. For overhead installation, the anchor should be fixed (e.g. by wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. 9 Do not move or load the anchor until it is fully cured (Table B5 or Table B6). 10 Remove excess mortar. T_{inst} The fixture can be mounted after curing time. Apply installation torque ≤ T_{inst} 11 톤 according to Table B1or B2. Optionally, for pre-setting installation, the annular gap between anchor rod and attachment can be filled with mortar. Therefor replace the regular washer by washer 12 with drill and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Injection system VMU plus for concrete Intended Use Installation instructions (continuation) Annex B6

Table B5: Maximum processing time and minimum curing time, VMU plus

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾				
- 10°C to - 6°C	90 min ²⁾	24 h ²⁾				
- 5°C to - 1°C	90 min	14 h				
0°C to +4°C	45 min	7 h				
+ 5°C to + 9°C	25 min	2 h				
+ 10°C to + 19°C	15 min	80 min				
+ 20°C to + 29°C	6 min	45 min				
+ 30°C to + 34°C	4 min	25 min				
+ 35°C to + 39°C	2 min	20 min				
+ 40°C	1,5 min	15 min				
Cartridge temperature	+ 5°C to + 40°C					

¹⁾ in wet concrete the curing time must be doubled

Table B6: Maximum processing time and minimum curing time, VMU plus Polar

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
- 20°C to - 16°C	75 min	24 h
- 15°C to - 11°C	55 min	16 h
- 10°C to - 6°C	35 min	10 h
- 5°C to - 1°C	20 min	5 h
0°C to + 4°C	10 min	2,5 h
+ 5°C to + 9°C	6 min	80 min
+10°C	6 min	60 min
Cartridge temperature	- 20°C to	o + 10°C

¹⁾ in wet concrete the curing time must be doubled

Injection system VMU plus for concrete	
Intended Use Processing time and curing time	Annex B7

²⁾ cartridge temperature must be at min. +15°C

Table C1: Characteristic steel resistances for threaded rods under tension loads

Thread	ded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	cteristic resistance under tens	sion load	1)								
Steel, zinc plated	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Stainless steel	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
	A2, A4 and HCR Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
	A4 and HCR Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Partial	factors 2)										
	Property class 4.6	γ̃Ms,N	[-]	2,0							
, ted	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]				2	,0			
Szinc	Property class 5.8	γMs,N	[-]				1	,5			
	Property class 8.8	γMs,N	[-]				1	,5			
S	A2, A4 and HCR Property class 50	γ̃Ms,N	[-]	2,86							
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]			1	,87			_3)	_3)
Ś	A4 and HCR Property class 80	γMs,N	[-]			1	,6			_3)	_3)

¹⁾ the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Injection system VMU plus for concrete	
Performance Characteristic steel resistances for threaded rods under tension loads	Annex C1

²⁾ in absence of national regulation

³⁾ Anchor type not part of the ETA

Table C2: Characteristic steel resistances for threaded rods under shear load

	• C2: Characteristic steel resist	lances	ioi tiiit						ı		
Threa	ded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel	failure					_		ı			
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	cteristic resistance under shear load	1)									
Steel	failure <u>without</u> lever arm										
eq	Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zir	Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	V^0 Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
S	A4 and HCR, property class 80	V^0 Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
Steel	failure <u>with</u> lever arm										
pe	Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
zin	Property class 8.8	M^0 Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
SS	A2, A4 and HCR, property class 50	$M^0_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, property class 70	M^0 Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
S	A4 and HCR, property class 80	M^0 Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Partia	I factor ²⁾										
	Property class 4.6	γMs,V	[-]				1,6	67			
teel, plated	Property class 4.8	γMs,V	[-]				1,2	25			
	Property class 5.6	γ̃Ms,V	[-]				1,6	67			
S zinc	Property class 5.8	γMs,V	[-]				1,2				
	Property class 8.8	γMs,V	[-]				1,2	25			
SS	A2, A4 and HCR, property class 50	γ̃Ms,V	[-]				2,3	38		ı	
Stainless steel	A2, A4 and HCR, property class 70	γMs,V	[-]			1,5	56			_3)	_3)
Ś	A4 and HCR, property class 80	γ̃Ms,V	[-]			1,3	33			_3)	_3)

the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

³⁾ Anchor type not part of the ETA

Injection system VMU plus for concrete	
Performance Characteristic steel resistances for threaded rods under tension loads	Annex C2

²⁾ in absence of national regulation

Table C3: Characteristic values for concrete cone and splitting failure

Threaded rods / Inter	nally threaded anchor	ebars	all sizes	
Concrete cone failure	e			
Easter k	uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0
Factor k ₁	cracked concrete	k _{cr,N}	[-]	7,7
Edge distance		C _{cr} ,N	[mm]	1,5 ∙ h _{ef}
Spacing		S _{cr,N}	[mm]	2 • C _{cr,N}
Splitting failure				
Characteristic resistan	ce	$N^0_{Rk,sp}$	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4 • h _{ef}
Spacing		S _{cr,sp}	[mm]	2 • C _{cr,sp}

Injection system VMU plus for concrete

Performance

Characteristic values for concrete cone and splitting failure

Annex C3

Performance

Characteristic values for threaded rods under tension loads

Threa	aded rod				M8	M10	M12	M16	M20	M24	M27	Мз
Steel	l failure											
Chara	acteristic resistanc	е	N _{Rk,s}	[kN]			A _s • f _{ul}	k (or se	e Tab	 le C1)		
Partia	al factor		γMs,N	[-]				see Ta	ble C1			
Coml	bined pull-out and	d concrete failure										
			concrete	C20/25								
	1				10	12	12	12	12	11	10	9
<u>e</u>	II: 80°C/50°C	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,
ratu ge	III: 120°C/72°C		·	-	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,
npe ran	I: 40°C/24°C				7,5	8,5	8,5	8,5				
Ter	II: 80°C/50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	1 no	-		е
	III: 120°C/72°C				4,0	5,0	5,0	5,0	<u> </u>	asse	55 c u	
Chara	acteristic bond re	esistance in <u>cracked</u> co	ncrete C	20/25								
	I: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,
<u>re</u>	II: 80°C/50°C	dry or wet concrete	τ̃Rk,cr	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,
eratı ige	III: 120°C/72°C	;			2,0	2,5	3,0	3,0	3,0	3,0	3,5	3
rar	I: 40°C/24°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	no performance assessed			
<u>–</u>	II: 80°C/50°C	waterfilled drill hole			2,5	3,0	4,0	4,0				е
	III: 120°C/72°C				2,0	2,5						
Redu	ıctionfactor ψ ⁰ sus i	in concrete C20/25										
ature e			ψ^0 sus			0,73						
pera	II: 80°C/50°C	concrete;		γ ⁰ sus [-]	0,65							
Temperature range range					0,57							
				C25/30				1,0	ງ2			
				C30/37	1,04							
Partial factor γ _{Ms,N} [-]												
	II.	Ψ¢										
				C50/60				1,	10			
					T							
	·						•	see la	ble C3	,		
-					Ī			T-	hl- 00			
	•							see ra	ble C3	,		
				l ra	10				1.2			
					1,0		4			 o perfo	rmanc	
water	filled drill hole		γ inst	[-]		1,	4					•

Z51293.21 8.06.01-95/21

Annex C4

Installation factor

1,0

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic resistance, steel zinc plated, property class 4.6, 4.8, 5.6, 5.8	$V^0_{Rk,s}$	[kN]			0,6 • A	s • fuk (O	r see ta	ble C2)		
Characteristic resistance, steel zinc plated, property class 8.8, stainless steel A2 / A4 / HCR, all property classes	$V^0_{Rk,s}$	[kN]			0,5 • A	s•fuk (O	r see ta	ble C2)		
Ductility factor	k ₇	[-]				1	,0			
Partial factor	[-]				see Ta	ble C2				
Steel failure with lever arm										
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]			1,2 • W	el • f _{uk} (c	or see ta	able C2)		
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]			I	see ta	ble C2			
Concrete pry-out failure										
Pry-out Factor	k ₈	[-]				2	,0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]		1	min(h _{ef} ;	12 d _{nom})		m (h _{ef} ; 30	in Oomm
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30

[-]

γinst

Injection system VMU plus for concrete	
Performance Characteristic value for threaded rods under shear loads	Annex C5

Table C6: Characteristic values for threaded rods under tension load, seismic action, performance category C1

Threa	ided	rod				М8	M10	M12	M16	M20	M24	M27	M30
Steel	failu	ire											
Chara	acteri	stic resistance		N _{Rk,s,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Partia	l fac	tor		γMs,V	[-]	see Table C1							
Comb	oine	d pull-out and c	oncrete failure										
Chara	acter	istic bond resis	stance in concrete C	C50/60									
Φ	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
range	II:	80°C/50°C	dry or wet concrete	TRk,C1	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
erat	1:	40°C/24°C				2,5	2,5	3,7	3,7				
Temperature	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,C1}	[N/mm²]	1,6	1,9	2,7	2,7] n	o perfo asse		e
	III: 120°C/72°C					1,3	1,6	2,0	2,0		4,555		
Insta	latio	n factor											
Dry o	r wet	concrete	γinst	[-]	1,0 1,2								
Wate	fillec	l drill hole		γ̃inst	[-]		1,	,4		no	perfo asse		е

Table C7: Characteristic values for threaded rods under shear load, seismic action, performance category C1

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure											
Characteristic res	characteristic resistance						0,7 •	V^0 Rk,s			
Partia factor		γMs,V	[-]	See Table C2							
Factor for annul	ar gap										
Factor for	without hole clearance	$lpha_{ ext{gap}}$	[-]	1,0							
anchorages	with hole clearance between fastener and fixture	Mana -					0	,5			

Injection system VMU plus for concrete	
Performance Characteristic values for threaded rods under seismic action, category C1	Annex C6

Interr	nally	threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel	failu	re 1)									
Chara	acteri	stic resistance	e, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
steel	zinc p	olated, strengt	th class 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partia	ıl fact	or		γMs,N	[-]			1	,5		
		stic resistance		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾
Partia			, strength class 70	γMs,N	[-]			1,87			2,86
			I concrete cone failu		[-]			1,07			2,00
		•	sistance in uncracke		rete C20/	25					
Onare	1:	40°C/24°C	sistance in <u>uncrack</u>	<u> </u>	[N/mm ²]	12	12	12	12	11	9,0
ē	II:	80°C/50°C	dry and wet	τ _{Rk,ucr}	[N/mm ²]	9,0	9,0	9,0	9,0	8,5	6,5
Temperature range	III:	120°C/72°C	concrete	- Tin,uoi	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0
nperatı range	1:	40°C/24°C			[N/mm ²]	8,5	8,5	8,5	, , ,		
Ten	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	no perf	formance a	assessed
	III:	120°C/72°C		,	[N/mm²]	5,0	5,0	5,0	1		
Chara	acter	istic bond re	sistance in <u>cracked</u>	concre	te C20/25						
	1:	40°C/24°C	C dry and wet concrete		[N/mm²]	5,0	5,5	5,5	5,5	5,5	6,5
<u>r</u>	II:	80°C/50°C		τ _{Rk,cr}	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
eratu nge	III:	120°C/72°C			[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
mperar	l:	40°C/24°C			[N/mm²]	4,0	5,5	5,5			
Te	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,cr}	[N/mm²]	3,0	4,0	4,0	no perf	formance a	assessec
	III:	120°C/72°C			[N/mm ²]	2,5	3,0	3,0			
	ction	rfactor ψ ⁰ sus i	n concrete C20/25								
iture	l:	40°C/24°C	dry and wet					0	,73		
Temperature range	II:	80°C/50°C	concrete	ψ^0 sus	[-]			0	,65		
en E	III:	120°C/72°C	waterfilled drill hole					0.	,57		
	<u> </u>			1	C25/30				,02		
					C30/37				,04		
Increa	asina	factors for τ_{Rk}		Ψο	C35/45				,07		
	3		`	10	C40/50				,08		
					C45/55 C50/60				,09 ,10		
Conc	rete (cone failure a	and splitting failure		030/00				, 10		
		arameter						see Ta	able C3		
		n factor									
		et concrete		γinst	[-]			1	,2		
		drill hole		γinst	[-]		1,4			rmance de	

fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

2) for VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads

Annex C7

Table C9: Characteristic values for internally threaded anchor rods under shear loads

Internally threaded anchor roo	I			IG-M 6	IG-M8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm	1)								
Characteristic resistance,	5.8	$V^0_{Rk,s}$	[kN]	6	10	17	25	45	74
steel zinc plated, strength class	8.8	$V^0_{Rk,s}$	[kN]	8	14	23	34	60	98
Partial factor		γMs,V	[-]			1,	25		
Characteristic resistance, stainless steel A4 / HCR, strength class	70	V ⁰ Rk,s	[kN]	7	13	20	30	55	62 ²⁾
Partial factor		γMs,V	[-]			1,56			2,38
Ductility factor		k ₇	[-]			1	,0		
Steel failure with lever arm1)									
Characteristic bending	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
moment, steel zinc plated, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Partial factor		γMs,V	[-]			1,	25		
Characteristic bending resistance, stainless steel A4 / HCR, strength class	70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
Partial factor		γMs,V	[-]			1,56			2,38
Concrete pry-out failure									
Pry-out factor		k 8	[-]			2	,0		
Concrete edge failure									
Effective length of anchor		lf	[mm]		mi	in(h _{ef} ; 12 d _n	om)		min (h _{ef} ; 300mm)
Outside diameter of anchor		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γinst	[-]	_	_	1	,0	_	_

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Injection system VMU plus for concrete	
Performance Characteristic values for internally threaded anchor rods under shear loads	Annex C8

²⁾ for VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Characteristic resistance N_RRILS [kN] Second S	Reba	r					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø	
Cross sectional area As mm² 50 79 113 154 201 314 491 616	Steel	failu	ıre													
Partial factor 7/Ms, N [-] 1,4 2) Combined pull-out and concrete cone failure Characteristic bond resistance in uncracked concrete C20/25	Chara	acter	istic resistance	Э	$N_{Rk,s}$	[kN]				,	∆ s • f _{uk} ¹)				
Characteristic bond resistance in uncracked concrete C20/25 II:	Cross	sec	tional area		As	[mm²]	50	79	113	154	201	314	491	616	80	
Characteristic bond resistance in uncracked concrete C20/25 II	Partia	al fac	tor		γMs,N	[-]			•	•	1,4 ²⁾					
Section Parameter Parameter Section Parameter	Coml	bine	d pull-out and	d concrete cone	failure											
	Chara	acte	ristic bond re	sistance in uncr	acked c	oncrete C	20/25									
1		l:	40°C/24°C				10	12	12	12	12	12	11	10	8,	
Tellow T	<u>re</u>	II:	80°C/50°C		τ _{Rk,ucr}	[N/mm²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,	
Tellow T	eratu Ige	III:	120°C/72°C	Concrete			5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,	
The concrete cone failure and splitting failure The concrete The concrete concrete concrete The concrete concrete concrete The concrete concrete concrete The concrete concrete The concrete concrete The concrete concrete concrete The concrete concrete concrete The concrete concrete concrete concrete The concrete conc	mpe ran	l:	40°C/24°C				7,5	8,5	8,5	8,5	8,5					
III: 120°C/72°C 4,0 5,0 5,0 5,0 5,0 5,0 5,0	<u></u>	II:	80°C/50°C		τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	n	-		е	
See Table C3 See Table C4 See		III:	120°C/72°C	Tiole			4,0	5,0	5,0	5,0	5,0		4330			
II: 80°C/50°C III: 120°C/72°C III: 120°C/72°C III: 80°C/50°C III: 120°C/72°C III: 120°C/72°C III: 120°C/72°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 120°C/72°C	Chara	acte	ristic bond re	sistance in crac	ked con	crete C20	/25									
III 120°C/72°C III 120°		l:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,	
III: 120°C/72°C hole 120°C/72°C hole 2,0 2,5 3,0 3,0 3,0 assessed	ē	II:	80°C/50°C		τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,	
III: 120°C/72°C hole 120°C/72°C hole 2,0 2,5 3,0 3,0 3,0 assessed	ratu ge	III:	120°C/72°C	Concrete			2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,	
III: 120°C/72°C hole 2,0 2,5 3,0 3,0 3,0 assessed	Day Temperature range	l:	40°C/24°C				4,0	4,0	5,5	5,5	5,5					
III: 120°C/72°C 2,0 2,5 3,0 3,0 3,0 3,0 Reduction factor ψ ⁰ sus in concrete C20/25 III: 40°C/24°C III: 80°C/50°C IIII: 120°C/72°C IIII: 120°C/72°C IIII: 120°C/72°C IIII: 120°C/72°C IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		II:	80°C/50°C	hole	τ _{Rk,cr}	[N/mm ²]	2,5	3,0	4,0	4,0	4,0	n	•			
I: 40°C/24°C II: 80°C/50°C III: 120°C/72°C III: III: III: III: III: III: III: I		III:	120°C/72°C	TIOIC			2,0	2,5	3,0	3,0	3,0		assessed			
$ \text{ncreasing factors for τ_{Rk}} = \frac{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	Redu	ctio	nfactor ψ ⁰ sus i	n concrete C20/	25											
$ \text{ncreasing factors for τ_{Rk}} = \frac{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	ture	I:	40°C/24°C								0,73					
$ \text{ncreasing factors for τ_{Rk}} = \frac{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	pera ange	H:	80°C/50°C		ψ^0_{sus}	[-]	0,65									
ncreasing factors for τ_{Rk} $\psi_c = \frac{C30/37}{C35/45} = \frac{1,04}{1,07}$ $\frac{C40/50}{C45/55} = \frac{1,09}{1,09}$ $\frac{C50/60}{C50/60} = \frac{1,10}{1,10}$ Concrete cone failure and splitting failure Relevant parameter see Table C3	Tem	III:	120°C/72°C								0,57					
ncreasing factors for τ_{RR} $\psi_c = \frac{C35/45}{C40/50} = \frac{1,07}{1,08}$ $\frac{C45/55}{C50/60} = \frac{1,09}{1,10}$ $\frac{C50/60}{C} = \frac{1,09}{1,10}$ $\frac{C}{C} = \frac{1,09}{C}$ $\frac{C}{C} = \frac{1,09}{$		1				C25/30					1,02					
ncreasing factors for τ_{RK} $ \frac{\psi_c}{C40/50} = \frac{1,08}{C45/55} = 1,09 $ $ \frac{C50/60}{C50/60} = 1,10 $ Concrete cone failure and splitting failure Relevant parameter $ = \frac{1,08}{C50/60} = \frac{1,08}{1,10} = \frac{1,08}{C50/60} = \frac{1,08}{1,10} = \frac{1,08}{C50/60} = \frac{1,08}{1,10} = \frac{1,08}{C50/60} = \frac{1,09}{1,10} = \frac{1,08}{C50/60} = \frac{1,09}{1,10} = \frac{1,08}{C50/60} = \frac{1,09}{1,10} = \frac{1,09}{C50/60} = \frac{1,09}{C50/$						C30/37					1,04					
C40/50 1,08 C45/55 1,09 C50/60 1,10 Concrete cone failure and splitting failure Relevant parameter see Table C3	ncrea	asino	ı factors for τ _{RI}	k	We											
C50/60 1,10 Concrete cone failure and splitting failure Relevant parameter see Table C3		g	,		Ψο											
Concrete cone failure and splitting failure Relevant parameter see Table C3																
Relevant parameter see Table C3	Cono	roto	cono foiluro	and anlitting fail		C50/60					1,10					
				and spilling fair	uie					\$66	Table	C3				
										300	Table	00				
					26	r_1	1.0				1	2				
dry and wet concrete γ_{inst} [-] 1,0 1,2 waterfilled drill hole γ_{inst} [-] 1,4 no performance ass							1,0		1.4				ormano	e asse	SSE	

Annex C9

Injection system VMU plus for concrete

Characteristic values for rebar under tension loads

Performance

Table C11:	Characteristic	values	for re l	bar und	ler s l	hear	load

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic resistance	$V^0_{Rk,s}$	[kN]				0,5	0 • A _s •	f _{uk} 1)			
Cross sectional area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]				•	1,5 ²⁾	1	1	•	
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} ¹⁾								
Elastic section modulus	Wel	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γMs,V	[-]				•	1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Concrete edge failure											
Effective length of anchor	I _f	[mm]			min(h _{ef} ;	12 d _{nom})		min((h _{ef} ; 300	mm)
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				

 $^{^{1)}\,}f_{uk}\,shall$ be taken from the specifications of reinforcing bars

Performance Characteristic values for rebar under shear load Annex C10

²⁾ in absence of national regulation

English translation prepared by DIBt

Table C12: Characteristic values for rebar under seismic action, tension load performance category C1

Reba	r					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel	failu	ıre												
Chara	acter	istic resistance)	$N_{Rk,s,C1}$	[kN]		As • fuk1)							
Cross	sec	tional area		As	[mm²]	50 79 113 154 201 314 491 616							804	
Partia	al fac	tor		γMs,N	[-]			•		1,4 ²⁾				
Com	bine	d pull-out and	I concrete cor	e failure										
Char	acte	ristic bond re	sistance in co	ncrete C	20/25 to C	C50/60								
e Je	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
range	II:	80°C/50°C	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
nre	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
erat	1:	40°C/24°C				2,5	2,5	3,7	3,7	3,7				
emperature	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,C1}	[N/mm ²]	1,6	1,9	2,7	2,7	2,7	no per	forman	ce ass	essed
L	III:	120°C/72°C	Grill Holo			1,3	1,6	2,0	2,0	2,0				
Insta	llatic	n factor												
dry a	nd w	et concrete	[-]	1,0 1,2										
water	waterfilled drill hole γ _{inst}						1,4 no performance assess					essed		

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C13: Characteristic values for **rebar** under **seismic action**, **shear load**, performance category **C1**

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	0,35 • A _s • f _{uk} 1)								
Cross sectional area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]	1,5 ²)								
Ductility factor	k 7	[-]	1,0								

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Injection system VMU plus for concrete	
Performance Characteristic values for rebar under seismic action, category C1	Annex C11

²⁾ in absence of national regulation

²⁾ in absence of national regulation

Table C14: Displacement factor under tension loads1)

(threaded rod and internally threaded anchor rod)

Threaded rod					M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20	
Uncracked concrete C	20/25, stati	c and quasi-sta	atic actio	n							
Temperature range I:	δ _{N0} -factor		0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
40°C/24°C	δ _{N∞} -factor		0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range II:	δ _{N0} -factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
0000/5000	δ _{N∞} -factor	^L N/mm ² J	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range III: 120°C/72°C	δ _{N0} -factor		0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
	δ _{N∞} -factor		0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C20	/25, static a	nd quasi-station	caction								
Temperature range I:	δ _{N0} -factor		0,0	90	0,070						
40°C/24°C	δ _{N∞} -factor		0,1	05			0,1				
Temperature range II:	δ _{N0} -factor	r mm	0,2	219			0,170				
80°C/50°C	δ _{N∞} -factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm^2}}\right]$	0,2	255			0,2	245			
Temperature range III:	δ _{N0} -factor		0,2	219			0,1	170			
120°C/72°C	δ _{N∞} -factor		0,2	255		0,245					

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ - factor $\cdot \tau$;

τ: acting bond stress for tension load

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C15: Displacement factor under shear load1)

(threaded rod and internally threaded anchor rod)

Threaded rod			M8	M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20
Uncracked concrete	tatic act	ion								
All temperature ranges	δ _{v0} -factor	mm 1	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	δ _{V∞} -factor	N/mm ²	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C20/25, static and quasi-static action										
All temperature ranges	δvo-factor	mm 1	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
	δ _{V∞} -factor	$[\frac{N}{mm^2}]$	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Injection system VMU plus for concrete

Performance

Displacements (threaded rod and internally threaded anchor rod)

Annex C12

Table C16: Displacement factor under tension load¹⁾ (rebar)

Rebar	Rebar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concrete Ca	20/25, static a	and quasi-st	atic act	ion								
Temperature range I: 40°C/24°C	δ_{N0} -factor		0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
	δ _{N∞} -factor		0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature range II:	δ _{N0} -factor		0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
80°C/50°C	δ _{N∞} -factor	$\left[\frac{N/mm^2}{N}\right]$	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature range III:	δ_{N0} -factor		0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
120°C/72°C	δ _{N∞} -factor		0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete C20/	25, static and	d quasi-stati	c action	า								
Temperature range I:	δ_{N0} -factor		0,0	0,090 0,070								
40°C/24°C	δ _{N∞} -factor		0,105		0,105							
Temperature range II:	δ _{N0} -factor	_ mm	0,2	219	0,170							
80°C/50°C	δ _{N∞} -factor	[[] N/mm ²]	0,255		0,245							
Temperature range III:	δ_{N0} -factor		0,2	219	0,170							
120°C/72°C	δ _{N∞} -factor		0,2	255	0,245							

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : acting bond stress for tension load

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor }\cdot\tau;$

Table C17: Displacement factor under shear load¹⁾ (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25, static and quasi-static action											
All temperature ranges	δ _{v0} -factor	[mm]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	δ _{V∞} -factor	N/mm ²	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25, static and quasi-static action											
All temperature ranges	δ_{V0} -factor	mm 1	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	δv∞-factor	^l N/mm ²	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor }\cdot V;$

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Injection system VMU plus for concrete

Performance

Displacements (rebar)

Annex C13