

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0655 of 2 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Screwbolt TSM

Mechanical fastener for use in concrete

Sikla Holding GmbH Kornstraße 4 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 2

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-16/0655 issued on 19 May 2020

European Technical Assessment ETA-16/0655

Page 2 of 19 | 2 December 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z112899.21 8.06.01-286/21

European Technical Assessment ETA-16/0655 English translation prepared by DIBt

Page 3 of 19 | 2 December 2021

Specific Part

1 Technical description of the product

The Screwbolt TSM is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B 2, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1
Displacements	See Annex C 6
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C 2 to C 4, C 7

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

Z112899.21 8.06.01-286/21

European Technical Assessment ETA-16/0655

Page 4 of 19 | 2 December 2021

English translation prepared by DIBt

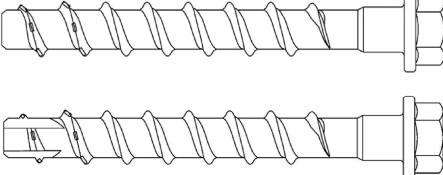
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

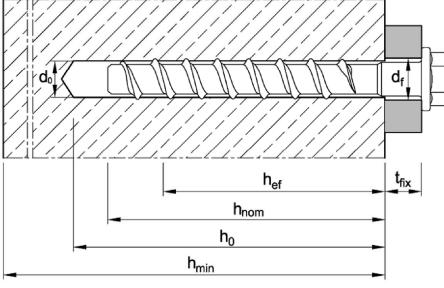
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 2 December 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section Beglaubigt Baderschneider

Z112899.21 8.06.01-286/21



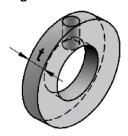
TSM zinc plated TSM A4 TSM HCR

Installation situation in concrete

(e.g. Screwbolt TSM with hexagon head and pressed-on washer)

 $\begin{array}{lll} d_0 & = & nominal \ drill \ bit \ diameter \\ h_{ef} & = & effective \ anchorage \ depth \\ h_{nom} & = & nominal \ embedment \ depth \end{array}$

 h_0 = depth of the drill hole


h_{min} = minimum thickness of member

t_{fix} = thickness of fixture

d_f = diameter of clearance hole

in the fixture

Filling washer and reducing adapter for filling the annular gap between screwbolt and fixture

thickness of filling washer t = 5 mm

Screwbolt TSM

Product description

Product and installation situation

Annex A1

Table A1: Anchor types and description

	Anchor types		TSM -	Description
1		0	ВІ	Anchor version with metric connection thread and hexagon socked
2		0	В	Anchor version with metric connection thread and hexagon drive
3			SUTX	Anchor version with hexagon head, pressed-on washer and TORX drive
4		(652) (46 °C)	SU	Anchor version with hexagon head and pressed-on washer
5		(8) a)	SUB	Anchor version with hexagon head and collar
6		(\$S.2)	s	Anchor version with hexagon head
7			SK	Anchor version with countersunk head and TORX drive
8		(\$\langle \bigcirc\)	LK	Anchor version with pan head and TORX drive
9		\$5.2 \$\frac{\frac{1}{2}}{2}\text{\$\text{\$\color{1}}}	LP	Anchor version with large pan head and TORX drive
10			BSK	Anchor version with countersunk head and metric connection thread
11			ST	Anchor version with hexagon drive and metric connection thread
12			IM	Anchor version with internal thread and hexagon drive

Screwbolt TSM	
Product description Anchor types and description	Annex A2

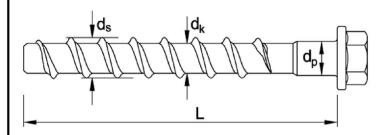


Table A2: Dimensions

Anchor size			TS	M 6	•	TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115	
Length of the anchor	L≤	[mm]		500													
Core diameter	dk	[mm]	5	,1	7,1			9,1			11,1			13,1			
Outside diameter	ds	[mm]	7	,5		10,6			12,6			14,6			16,6		
Shaft diameter	dp	[mm]	5	,7	7,9			9,9			11,7			13,7			

Marking e.g.: ♦BSZ 10 100

or TSM 10 100

TSM O

BSZ Trade name

or (optional with manufacturer

TSM identification ♦)

10 Anchor size

100 Length of anchor

additional marking:

A4 stainless steel

HCR high corrosion resistant steel

BC ST version with hexagon head

and collar

Table A3: Materials

Version	Steel, zinc plated TSM	Stainless steel TSM A4	High corrosion resistant steel TSM HCR						
Material	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 or zinc flake coating acc. to EN ISO 10683:2018 (≥ 5µm)	1.4401, 1.4404, 1.4571, 1.4578	1.4529						
Nominal characteristic steel yield strength fyk		560 N/mm²							
Nominal characteristic steel ultimate strength fuk	700 N/mm²								
Elongation at fracture As		≤ 8%							

Product description Dimensions, marking and materials Annex A3

Specifications of Intended use

	Screw	bolt TSM	TSI	VI 6	Т	SM 8	3	T	SM 1	0	T	SM 1	2	TSM 14		4
	Nomin	al embedment depth h _{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
		Static or quasi-static loading							✓							
	t to	✓														
	subject to	Seismic action C1 Seismic action C1 Shear load: BI, B, SUTX, SU, S, SK, LK, LP, BSK, ST, IM Shear load: BI, B, SUTX, SU, S, SK, LK, LP														
	ges	(zinc plated, A4, HCR)	٧		1)	✓	✓	1)	✓	1)	✓	1)	✓
	Anchorages	Tension load and shear load: with filled annular gap: BI, B, SUTX, SU, S, LK, LP without filled annular gap: BI, B, SUTX, SU, S, SK ²⁾ , LK, LP														
			1)	1)	✓	1)	1)	✓	1)	✓	1)	✓
Γ		Cracked or uncracked concrete							✓							
	material	Reinforced or unreinforced concrete (without fibres) acc. to EN 206:2013+A1:2016	√													
	Base	Strength classes according to EN 206:2013+A1:2016, C20/25 to C50/60	✓													

¹⁾ no performance assessed

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015:
 - stainless steel A4, according to Annex A3, Table A3: CRC II
 - high corrosion resistant steel HCR, according to Annex A3, Table A3: CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Design method of anchorages according to EN 1992-4:2018 (if necessary in conection with EOTA Technical Report TR 055, version February 2018)

Installation:

- Making of drill hole by hammer drilling or vacuum drill bit.
 When using a vacuum drill bit no drill hole cleaning is required.
- Anchor installation carried out by appropriately qualified personal and under the responsibility of the person responsible for technical matters on site.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The borehole may be filled with the Injection Systems VME or VME plus.
- Adjustment according to Annex B5 (except for anchorages with filled borehole and anchorages subject to seismic action).

Screwbolt TSM	
Intended use Specifications	Annex B1

²⁾ Version SK, TSM 8 and TSM 10

Table B1: Installation parameters

Anchor size			TSM 6		TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Nominal drill bit diameter	d ₀	[mm]	6		8			10				12			14	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40		8,45			10,45				12,50)	14,50		
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Depth of drill hole	h₀≥	[mm]	45	60	55	65	75	65	85	95	75	95	110	85	110	125
Diameter of clearance hole in the fixture	d _f ≤	[mm]	8	8		12		14			16			18		
Max. installation torque for screws with metric connection thread	T _{inst} ≤	[Nm]	10		20			40			60			80		
Tangential impact screw driver 1)	$T_{imp,max} \\$	[Nm]	160		300			400			650			650		

¹⁾ Installation with tangential impact screw driver, with maximum power output T_{imp,max} acc. to manufacturer's instructions is possible

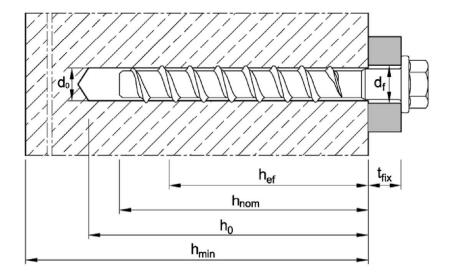
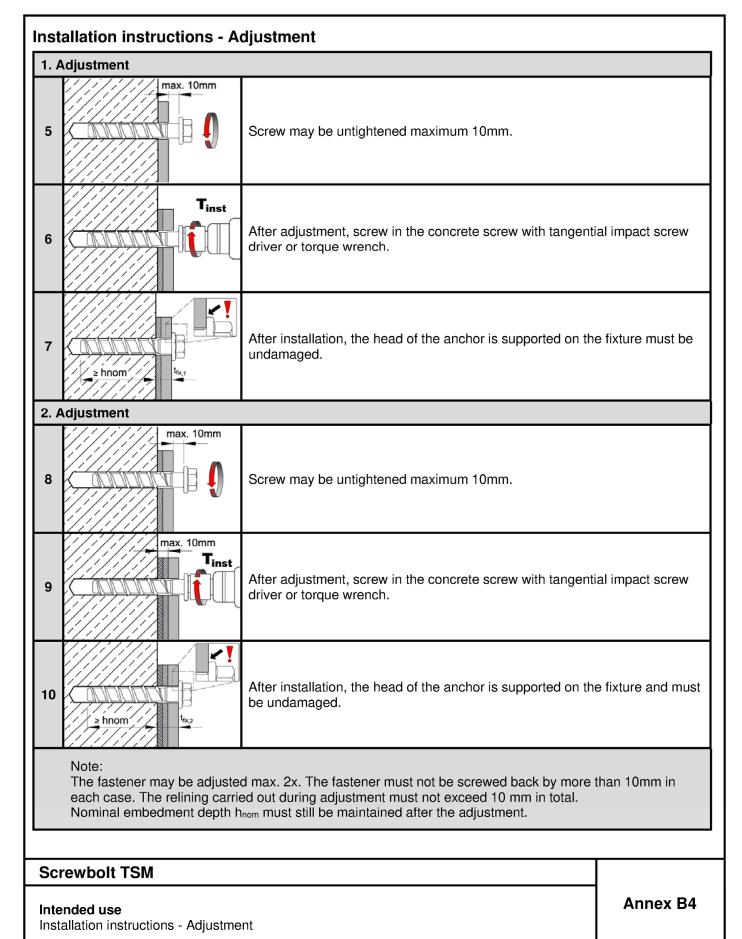
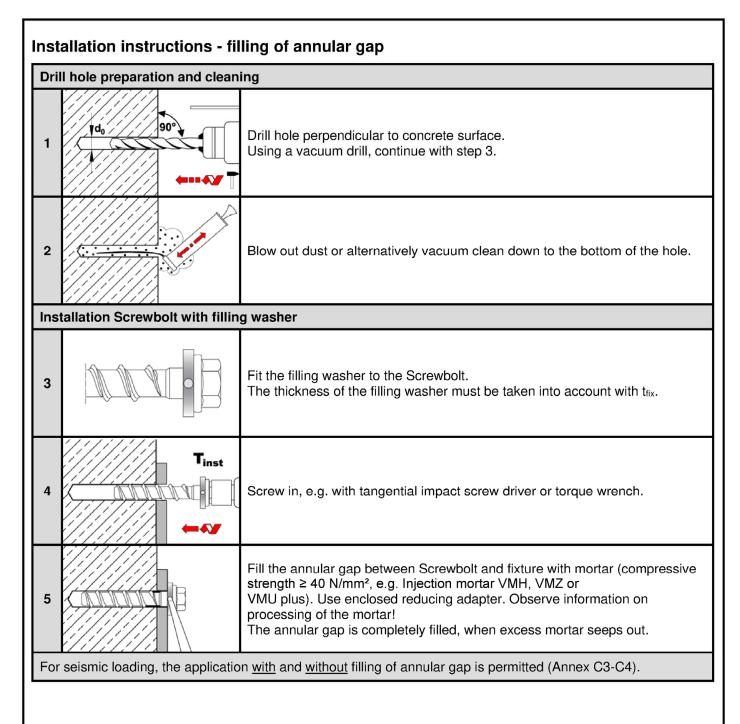


Table B2: Minimum thickness of member, minimum edge distance and minimum spacing

Anchor size	TSI	М 6	٦	rsm a	8	TSM 10			TSM 12			TSM 14				
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Minimum thickness of member	h _{min}	[mm]	100		100		120	100	130		120	130	150	130	150	170
Minimum spacing	Smin	[mm]	4	40		5	0		50		5	50 70		50	7	0
Minimum edge distance	Cmin	[mm]	4	40		40 50		50			50		70	50	7	0


Intended use Installation parameters / Minimum thickness of concrete member, minimum spacing and edge distance Annex B2

Electronic copy of the ETA by DIBt: ETA-16/0655


Installation instructions Drill hole preparation and cleaning Drill hole perpendicular to concrete surface. 1 Using a vacuum drill, continue with step 3. Blow out dust or alternatively vacuum clean down to the bottom of 2 the hole. **Installation Screwbolt** T_{inst} 3 Screw in, e.g. with tangential impact screw driver or torque wrench. After installation, the head of the anchor is supported on the fixture 4 and must be undamaged.

Screwbolt TSM	
Intended use Installation instructions	Annex B3

Screwbolt TSM Intended use Installation instructions with filling of annular gap Annex B5

Anchor size				TSI	М 6	7	rsm 8	8	T:	SM 1	0	T	SM 1	2	T	SM 1	4
Nominal embedment	depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	11/
Installation factor		γinst	[-]							1,	,0						
Tension load																	
Steel failure																	
Characteristic resista	ınce	N _{Rk,s}	[kN]	1	4		27			45			67			94	
Partial factor		γMs,N	[-]							1,	,5						
Pull-out																	
Characteristic	cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12	9,0	≥ N ⁰ i	Rk,c ¹⁾	12		1)		- 10	1)
resistance in — concrete C20/25	uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12	16	12	20	26	16	≥ N°	Rk,c ¹⁾	≥	N ⁰ Rk,c	1)
Increasing factor for $N_{Rk,p}$ Ψ_C [-]									1	$\left(\frac{f_{ck}}{20}\right)$	0,5		l				
Concrete cone failu	re																
Effective anchorage	depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Spacing			[mm]							3 h							_
Edge distance	ام مراء -			<u> </u>							h _{ef}						
Factor k₁ —	cracked	k _{cr,N}		<u> </u>						7,							_
Splitting	uncracked	K _{ucr,N}	[-]		—	—	—		—	11	,0					—	_
Characteristic resista		N ⁰ Rk,sp	[kN]						min [N _{Bk} ,	 N ⁰ B	ر ا (ا					
Spacing			+ -	120	160	120	140	_					210	240	180	240	28
Edge distance			[mm]	60	80	60	70	75	70		105			120		120	
Shear load		Oct, ap	[]	00		00	,,,	ر ت	,,,	55	100	, 0	100	120	00	120	1
Steel failure withou	t lever arm	,															_
Characteristic resista	_	V ⁰ Rk,s	[kN]	7	,0	13	. 5	17,0	22.5	34	n	33,5	42) N		56,0	_
Partial factor	.1100		· ·	, ,			,5	17,5	££,0	1,2		00,0	-1-	.,0			_
Ductility factor		γMs,V k 7								0,							_
Steel failure with le	vor arm	IX/	[-]			—			—	0,	0					—	_
Characteristic bendir resistance		M ⁰ Rk.s	[Nm]	10),9		26			56			113			185	_
Concrete pry-out fa	ilure																
Pry-out factor		k ₈	[-]	1,	,0		1,0		1,0	2,	,0	1,0	2	,0	1,0	2,0	ე
Concrete edge failu	re																_
Effective length of an	ichor	$I_{\rm f} = h_{\rm ef}$	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	9
Outside diameter of a	anchor	d _{nom}	[mm]	6	; 		8			10			12			14	
⁾ N ⁰ _{Rk,c} according to EN 1	992-4:2018																
Screwbolt TSM																	

Table C2:	Characteristic values	for seismic loading,	performance category C1
-----------	-----------------------	----------------------	-------------------------

Anchor size TSM 6 TSM 8 TSM 10 TSM 12 TSM 14											
Anchor size			TS	M 6	TSM 8	TSN	/1 10	TSM 12	TSM 14		
Nominal embedment depth	h _{nom}	[mm]	40	55	65	55	85	100	115		
Installation factor	γinst	[-]				1,	,0				
Tension load	Version: B	I, B, Sl	JTX	, SU, S	S, SK, LK, LI	P, BSK	, ST, I	М			
Steel failure											
Characteristic resistance	$N_{Rk,s,C1}$	[kN]	1	4	27	4	5	67	94		
Partial factor	γMs	[-]				1	,5				
Pull-out											
Characteristic resistance	$N_{Rk,p,C1}$	[kN]	2,0	4,0	12	9,0		$\geq N^0_{Rk,c}$	1)		
Concrete cone failure											
Effective anchorage depth	h _{ef}	[mm]	31	44	52	43	68	80	92		
Spacing	S _{cr,N}	[mm]				31	ીef				
Edge distance	C _{cr,N}	[mm]				1,5	h _{ef}				
Shear load	Version: B	BI, B, SI	UTX	, SU, S	8, SK, LK, LI	P					
Steel failure without lever arn	n										
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4		
Partial factor	γMs	[-]				1,	25				
Concrete pry-out failure											
Pry-out factor	k ₈	[-]			1,0			2,0			
Concrete edge failure											
Effective length of anchor	$I_f = h_{\text{ef}}$	[mm]	31	44	52	43	68	80	92		
Outside diameter of anchor	d _{nom}	[mm]	(6	8	1	0	12	14		
Factor for filling of annular g	ар										
with filling of annular gap (acc. to Annex B5, figure 5)	$lpha_{ extsf{gap}}$	[-]				1	,0				
without filling of annular gap	$lpha_{ extsf{gap}}$	[-]			0,5						

 $^{^{\}rm 1)}~N^0_{Rk,c}$ for concrete strength class C20/25, according to EN 1992-4:2018

Screwbolt TSM	
Performance Characteristic resistance for seismic loading, performance category C1	Annex C2

Table C3: Characteristic values for **seismic loading**, performance category **C2**, with filling of annular gap, Screwbolt TSM zinc plated

				·		
Anchor size			TSM 8	TSM 10	TSM 12	TSM 14
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115
Installation factor	γinst	[-]		1	,0	
Tension load	Version: BI, B, S	SUTX	, SU, S, LK, LI			
Steel failure						
Characteristic resistance	$N_{Rk,s.C2}$	[kN]	27	45	67	94
Partial factor	γMs	[-]		1	,5	
Pull-out						
Characteristic resistance	$N_{Rk,p,C2}$	[kN]	2,4	5,4	7,1	10,5
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	52	68	80	92
Spacing	Scr,N	[mm]		31	Nef	
Edge distance	C cr,N	[mm]		1,5	5h _{ef}	
Shear load	Version: BI, B, S	SUTX,	SU, S, LK, LF)		
Steel failure without lever ar	m					
Characteristic resistance	$V_{Rk,s.C2}$	[kN]	9,9	18,5	31,6	40,7
Partial factor	γMs	[-]		1,	25	
Concrete pry-out failure						
Pry-out factor	k ₈	[-]	1,0		2,0	
Concrete edge failure						
Effective length of anchor	$I_{f} = h_{ef}$	[mm]	52	68	80	92
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14
Factor for filling of annular	gap					
with filling of annular gap (acc. to Annex B5, figure 5)	$lpha_{ extsf{gap}}$	[-]		1	,0	

Screwbolt TSM	
Performance Characteristic resistance for seismic loading, performance category C2 with filling of annular gap	Annex C3

Table C4: Characteristic values for **seismic loading**, performance category **C2**, without filling of annular gap, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14			
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115			
Installation factor	γinst	[-]		1	,0				
Tension loads									
Steel failure	Version	BI, B, \$	SUTX, SU, S	S, LK, LP					
Characteristic resistance	$N_{\text{Rk,s.C2}}$	[kN]	27	45	67	94			
Partial factor	γMs	[-]		1	,5				
Pull-out	Version	: BI, B, \$	SUTX, SU, S	S, LK, LP					
Characteristic resistance	$N_{Rk,p,C2}$	[kN]	2,4	5,4	7,1	10,5			
Steel failure	Version	: SK							
Characteristic resistance	N _{Rk,s.C2}	[kN]	27	45	no porformer	noo ooooood			
Partial factor	γMs	[-]	1	,5	по репоппа	nce assessed			
Pull-out	Version	: SK							
Characteristic resistance	N _{Rk,p,C2}	[kN]	2,4	5,4	no performar	nce assessed			
Concrete cone failure	Version	: BI, B, \$	SUTX, SU, S	S, SK, LK, LP					
Effective anchorage depth	h _{ef}	[mm]	52	68	80	92			
Spacing	Scr,N	[mm]		3	h _{ef}				
Edge distance	Ccr,N	[mm]		1,5	h _{ef}				
Shear loads									
Steel failure <u>without</u> lever arm	Versior	: BI, B,	SUTX, SU,	S, SK, LK, LP					
Characteristic resistance	$V_{\text{Rk,s.C2}}$	[kN]	10,3	21,9	24,4	23,3			
Partial factor	γMs	[-]		1,	25				
Steel failure <u>without</u> lever arm	Version	SK							
Characteristic resistance	$V_{\text{Rk,s.C2}}$	[kN]	3,6	13,7	no performar	nce assessed			
Partial factor	γMs	[-]	1,	25	по репоппа	100 00000000			
Concrete pry-out failure	Version	BI, B, \$	SUTX, SU, S	S, SK, LK, LP					
Pry-out factor	k ₈	[-]	1,0		2,0				
Concrete edge failure	Version	: ВІ, В, \$	SUTX, SU, S	S, SK, LK, LP					
Effective length of anchor	$I_f = h_{\text{ef}}$	[mm]	52	68	80	92			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14			
Factor for annular gap <u>without</u> filling of annular gap	lphagap	[-]		0	,5				

Screwbolt TSM	
Performance Characteristic resistance for seismic loading, performance category C2 without filling of annular gap	Annex C4

Table C5: Characteristic values of resistance under fire exposure

Anchor size	Anchor size						SM 8	В	TSM 10			TSM 12			TSM 14		4
Nominal anchorag	e depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Steel failure (tens	sion and	shear res	istance)													
	R30			0	,9		2,4			4,4			7,3			10,3	
Characteristic	R60	$N_{Rk,s,fi}$	[LNI]	0	,8		1,7			3,3			5,8			8,2	
resistance	R90	$V_{Rk,s,fi}$	נאואן	0,6 0,4		1,1		2,3			4,2		5,9				
	R120						0,7		1,7			3,4		4,8			
Steel failure <u>with</u> l	lever arm	l															
	R30			0	,7		2,4			5,9			12,3			20,4	
Characteristic bending	R60	- M ⁰ Rk,s,fi	[Nm]	0	,6		1,8			4,5			9,7			15,9	
resistance	R90	IVI HK,S,fi	נואוון	נואוון	0,5		1,2		3,0		7,0			11,6			
	R120			0	,3		0,9			2,3			5,7			9,4	
Edge distance	Edge distance C _{cr,fi} [mm]									2	h _{ef}						
In case of fire attac	ck from m	ore than c	ne side	, the	minir	num	edge	dista	ance	shall	be ≥	300	mm				
Spacing		S _{cr} ,fi	[mm]							4	h _{ef}						

The characteristic resistance for pull-out $N_{Rk,p,fi}$, concrete cone failure $N^0_{Rk,c,fi}$, concrete pry-out $V_{Rk,cp,fi}$ and concrete edge failure $V^0_{Rk,c,fi}$ shall be calculated according to EN 1992-4:2018.

The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given values

Screwbolt TSM

Performance

Characteristic values of resistance under fire exposure

Annex C5

Table C6: Displacements under static or quasi-static loads

_																	
Anch	or size			TSI	M 6	•	TSM 8	3	T	SM 1	0	1	SM 1	2	1	SM 1	4
Nomir embe	nal dment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Tensi	Tension load																
T 0	Tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	5,7	9,4	12,3	7,6	12,0	15,1
cracked	D'auta a susant	δηο	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	0,9	0,5	1,0	0,5	0,8	0,7
⁰ 8	Displacement -	δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
p ₀	Tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	7,6	13,2	17,2	10,6	16,9	21,2
uncracked	Diamlacament	δηο	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	1,0	1,1	1,2	0,9	1,2	0,8
ξŏ	Displacement	δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
Shear	r load																
	Shear load	٧	[kN]	3,	,3		8,6			16,2			20,0			30,5	
	Displacement	δνο	[mm]	1,5	55		2,7		2,7			4,0			3,1		
	Displacement	δν∞	[mm]	3,	,1		4,1			4,3	·		6,0			4,7	

Screwbolt TSM	
Performance Displacements under static or quasi-static loads	Annex C6

Table C7: Displacements under **seismic loading**, performance category **C2**with filling of annular gap, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115
Tension load						
Version: BI, B, SUTX, SU, S, LK, L	P					
Displacement DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Shear load						
Version: BI, B, SUTX, SU, S, LK, L	P (with cle	earance	hole)			
Displacement DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	δ v,c2(ULS)	[mm]	5,19	6,72	5,37	9,27

Table C8: Displacements under **seismic loading**, performance category **C2**<u>without filling of annular gap</u>, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115
Tension load						
Version: BI, B, SUTX, SU, S, LK	, LP					
Displacement DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Version: SK						
Displacement DLS	δn,c2dls)	[mm]	0,66	0,32	no performance assessed	
Displacement ULS	δn,c2(uls)	[mm]	1,74	1,36		
Shear load						
Version: BI, B, SUTX, SU, S, LK	, LP (with cle	earance	hole)			
Displacement DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	4,21	4,71	4,42	5,60
Displacement ULS	δv,c2(uls)	[mm]	7,13	8,83	6,95	12,63
Version: SK (with clearance hole))					
Displacement DLS	δ V,C2(DLS)	[mm]	2,51	2,98	no performance assessed	
Displacement ULS	δv,c2(ULS)	[mm]	7,76	6,25		

Performance Displacements under seismic loading, performance category C2 Annex C7