

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0904 of 1 October 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system AC200+ for rebar connection

Systems for post-installed rebar connections with mortar

Stanley Black & Decker Deutschland GmbH Richard-Klinger-Straße 11 65510 Idstein DEUTSCHLAND

Plant 1

16 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-16/0904 issued on 11 January 2018

European Technical Assessment ETA-16/0904 English translation prepared by DIBt

Page 2 of 16 | 1 October 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 16 | 1 October 2021

European Technical Assessment ETA-16/0904 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Injection system AC2000+ for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm according to Annex A and injection mortar AC200+ are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance under static and quasi-static loading	See Annex C 1		
Characteristic resistance under seismic loading	See Annex B 3 and C 2		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C 3		

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-16/0904 English translation prepared by DIBt

Page 4 of 16 | 1 October 2021

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 1 October 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-16/0904 of 1 October 2021

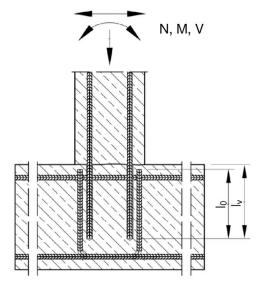
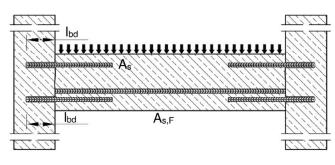
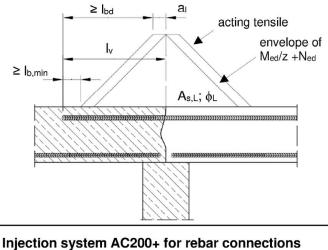

English translation prepared by DIBt

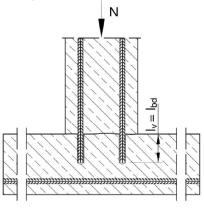
Figure A1: Overlapping joint for rebar connections of slabs and beams

Installation post installed rebar connection

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)


Figure A5: Anchoring of reinforcement to cover the line of acting tensile force

Product description

Installed condition and examples of use for rebar connections

Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B2

Annex A1

Page 6 of European Technical Assessment ETA-16/0904 of 1 October 2021

English translation prepared by DIBt

«Systemname_En»Injection System AC200+	•:				
Cartridge: AC200+					
Type 'coaxial': 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge		hazard-code,	00+, otes, charge-code, shelf life, curing- and processing time n the temperature), optional with		
Type 'side-by-side': 235 ml, 345 ml up to 360 ml and 825 ml cartridge		hazard-code,	00+, otes, charge-code, shelf life, , curing- and processing time n the temperature), optional with		
Static Mixer					
Piston Plug and Mixer Extension					
Reinforcing bar (rebar): Ø8, Ø10, Ø12, Ø	v14, ø16, ø20, v	ø 22 , ø24,	ø25, ø28, ø32		
MANANANANAN AAAAAAAAAAAA		NNN 1111	*********		
 Minimum value of related rip area f_{R,min} according Rib height of the bar shall be in the range 0,05Ø (Ø: Nominal diameter of the bar; h_{rib}: Rib height c 	≤ h _{rib} ≤ 0,07Ø	2004+AC:20	10		
Table A1: Materials					
Designation	Material				
Rebar EN 1992-1-1:2004+AC:2010, Annex CBars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					
Injection system AC200+ for rebar connections					
Product description Injection system and reinforcing bar			Annex A2		

Specifications of intended use							
Anchorages subject to:		Static and quasi-static loads	Seismic action				
	for a working life of 50 years	Ø8 to Ø32	Ø10 to Ø32				
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB)	for a working life of 100 years	Ø8 to Ø32	Ø10 to Ø32				
or compressed air drilling (CD)	Fire exposure	Ø8 to Ø32	No performance assessed				
Temperature Range:	- 40 °C to +80 °C (max long-term temperature +50 °C and max short-term temperature +80 °C)						

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

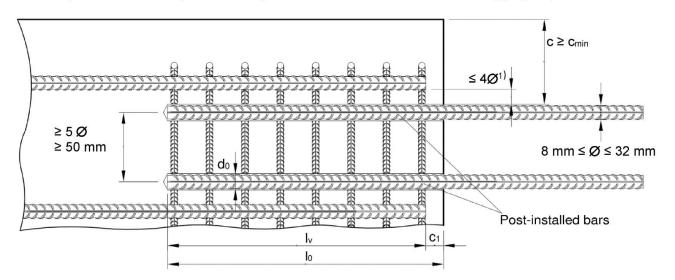
Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of \mathcal{Q} + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010. EN 1992-1-2:2004+AC:2008 and Annex B2.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete. It must not be installed in flooded holes.
- · Overhead installation allowed.
- · Hole drilling in hammer drill mode with standard bit (HD) or with hollow drill bit (HDB), or in compressed air drill mode (CD).
- The installation of post-installed rebar shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Injection system AC200+ for rebar connections	
Intended use	ŀ

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- · The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4Ø, then the lap length shall be increased by the difference between the clear bar distance and 4Ø.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- cmin minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- Ø diameter of post-installed rebar
- I_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- I_v effective embedment depth, $\ge I_0 + c_1$
- d₀ nominal drill bit diameter, see Table B5 and B6

Injection system AC200+ for rebar connections

Intended use

General construction rules for post-installed rebars

Drilling method	Rebar diameter	Without drilling aid	With di	rilling aid
Immer drilling (HD)	< 25 mm	30 mm + 0,06 · l _v ≥ 2 Ø	30 mm + 0,02 · l _v ≥ 2 Ø	Drilling a
Immer drilling with llow drill (HDB)	≥ 25 mm	40 mm + 0,06 · I _v ≥ 2 Ø	40 mm + 0,02 · l _v ≥ 2 Ø	a additional Drilling a
mpressed air	< 25 mm	50 mm + 0,08 · l _v	50 mm + 0,02 · l _v	
lling (CD)	≥ 25 mm	60 mm + 0,08 · l _v ≥ 2 ∅	60 mm + 0,02 · l _v ≥ 2 Ø	
		te cover min c _{min,seis}		
Duillin a model		Design condition	Distance of 1 st edge	Distance of 2 nd edg
Drilling metho	bd			
ammer drilling (HD); ammer drilling with	bd	Edge	≥2∅	≥2∅
ammer drilling (HD); ammer drilling with blow drill (HDB); ompressed air drilling	ı (CD)		≥ 2 Ø ≥ 2 Ø	≥ 2 Ø ≥ 2 Ø
ammer drilling (HD); ammer drilling with blow drill (HDB); ompressed air drilling	(CD) naterial ter	Edge Corner	≥ 2 Ø ≥ 2 Ø	≥ 2 Ø
ammer drilling (HD); ammer drilling with blow drill (HDB); ompressed air drilling able B3: Base m	(CD) naterial ter	Edge Corner mperature, gelling tin Maximum	≥ 2 Ø ≥ 2 Ø ne and curing time Minimum curing time	≥ 2 Ø
ammer drilling (HD); ammer drilling with illow drill (HDB); ompressed air drilling able B3: Base m Concrete tempera - 5 °C to	(CD) naterial ter	Edge Corner mperature, gelling tin Maximum working time tgel ¹⁾	≥ 2 Ø ≥ 2 Ø me and curing time Minimum curing time t _{cure} in dry concrete	≥ 2 Ø Minimum curing tim t _{cure} in wet concrete
ammer drilling (HD); ammer drilling with illow drill (HDB); ompressed air drilling able B3: Base m Concrete tempera - 5 °C to 0 °C to	(CD) naterial ter nture	Edge Corner mperature, gelling tin Maximum working time tgel ¹⁾ 50 min	≥ 2 Ø ≥ 2 Ø me and curing time Minimum curing time t _{cure} in dry concrete 5 h	≥ 2 Ø Minimum curing tim t _{cure} in wet concrete 10 h
ammer drilling (HD); ammer drilling with illow drill (HDB); ompressed air drilling able B3: Base m Concrete tempera - 5 °C to 0 °C to + 5 °C to	(CD) naterial ter nture - 1 °C + 4 °C	Edge Corner mperature, gelling tin Maximum working time tgel ¹⁾ 50 min 25 min	≥ 2 Ø ≥ 2 Ø me and curing time Minimum curing time tcure in dry concrete 5 h 3,5 h	≥ 2 Ø Minimum curing tim t _{cure} in wet concrete 10 h 7 h
ammer drilling (HD); ammer drilling with blow drill (HDB); compressed air drilling able B3: Base m Concrete tempera - 5 °C to 0 °C to + 5 °C to + 10 °C to +	aterial ter naterial ter ture - 1 °C + 4 °C + 9 °C	Edge Corner mperature, gelling tin Maximum working time tgel ¹⁾ 50 min 25 min 15 min	$≥ 2 \emptyset$ $≥ 2 \emptyset$ The and curing time $\frac{\text{Minimum curing time}}{\text{t_{cure} in dry concrete}}$ $5 h$ $3,5 h$ $2 h$	≥ 2 Ø Minimum curing tim t _{cure} in wet concrete 10 h 7 h 4 h
ammer drilling (HD); ammer drilling with ollow drill (HDB); ompressed air drilling able B3: Base m Concrete tempera - 5 °C to 0 °C to + 5 °C to + 10 °C to + + 15 °C to +	(CD) aterial ter ture - 1 °C + 4 °C + 9 °C - 14 °C	Edge Corner mperature, gelling tin Maximum working time t _{gel} 1) 50 min 25 min 15 min 10 min	≥ 2 ∅ ≥ 2 ∅ he and curing time Minimum curing time tcure in dry concrete 5 h 3,5 h 2 h 1 h	≥ 2 Ø Minimum curing tim t _{cure} in wet concrete 10 h 7 h 4 h 2 h
ammer drilling (HD); ammer drilling with ollow drill (HDB); ompressed air drilling able B3: Base m Concrete tempera $-5 \circ C$ to $0 \circ C$ to $+5 \circ C$ to $+5 \circ C$ to $+10 \circ C$ to $+10 \circ C$ to $+15 \circ C$ to $+20 \circ C$ to $+20 \circ C$ to	(CD) aterial ter ture - 1 °C + 4 °C + 9 °C - 14 °C - 19 °C	Edge Corner mperature, gelling tin Maximum working time t _{gel} 1) 50 min 25 min 15 min 10 min 6 min	≥ 2 ∅ ≥ 2 ∅ he and curing time Minimum curing time tcure in dry concrete 5 h 3,5 h 2 h 1 h 40 min	≥ 2 Ø Minimum curing tim t _{cure} in wet concrete 10 h 7 h 4 h 2 h 80 min
ammer drilling (HD); ammer drilling with billow drill (HDB); compressed air drilling able B3: Base m Concrete tempera - 5 °C to 0 °C to + 5 °C to + 10 °C to + + 15 °C to + + 20 °C to +	aterial ter naterial ter nure - 1 °C + 4 °C + 9 °C - 14 °C - 19 °C - 29 °C - 40 °C	Edge Corner mperature, gelling tin Maximum working time t _{gel} 1) 50 min 25 min 15 min 15 min 10 min 6 min 3 min	≥ 2 Ø ≥ 2 Ø he and curing time Minimum curing time tcure in dry concrete 5 h 3,5 h 2 h 1 h 40 min 30 min	≥ 2 Ø Minimum curing tim tcure in wet concrete 10 h 7 h 4 h 2 h 80 min 60 min

Intended use Minimum concrete cover; gelling and curing time

Cartridge type/size	Har	nd tools	Pneumatic tools					
Coaxial cartridges 150, 280, 300 up to 333 ml	e.g. Type F	e.g. Type TS 492 X						
Coaxial cartridges 380 up to 420 ml	e.g. Type CCM 380/10	e.g. Type H 285 or H244C	e.g. Type TS 485 LX					
Side-by-side cartridges 235, 345 ml	e.g. Type CBM 330A	e.g. Type H 260	e.g. Type TS 477 LX					
Side-by-side cartridge 825 ml	-	-	e.g. Type TS 498X					
	/stem contains the DEWALT Hol gative pressure of 253 hPa							
Brush«Pro	WWWWWWWW oduktzusatz	SDS F	Plus Adapter					
		h extension						
Piston Plug	Hand pump (volum	e 750 ml) Compre	ssed air nozzle (min 6 bar)					
Injection system AC200	Annex B4							

Table B5: Brushes, piston plugs, max anchorage depth and mixer extension, hammer drilling with standard bit (HD) and compressed air drilling (CD)											
Rebar	Drill bit		Drill bit Brush diameter		Piston		Cartri All si		Cartridge: 825 ml		
size	diame	eter d₀	nominal	minimum	plug	Hand or battery tool		Pneumatic tool		Pneumatic tool	
Ø	HD	CD	d⊳	d _{b,min}		I _{v,max}	Mixer	I _{v,max}	Mixer	I _{v,max}	Mixer
[mm]	[m	m]	[mm]	[mm]	[No]	[mm]	extension	[mm]	extension	[mm]	extension
8	10	-	11,5	10,5	-	250		250		250	
0	12		12.5	12,5		700		800		800	VL10/0,75 or
10	12	-	13,5	12,5	2,5 -	250		250		250	
10	14	155	145	<i>#</i> 4 <i>A</i>	700		1000		1000	VL16/1,8	
10		-	15,5	14,5	#14	250		250		250	
12	1	6	17,5	16,5	#16	700				1200	
14	1	8	20,0	18,5	#18		VL10/0.75	VL10/0,75	1000	VL10/0,75	1400
16	2	0	22,0	20,5	#20	1	or		or	1600	
00	25	-	27,0	25,5	#25		VL16/1,8		VL16/1,8		
20	-	26	28,0	26,5	#25			700			
22	2	8	30,0	28,5	#28					VL16/1,8	
04/05	3	0	32,0	30,5	#30	500				2000	
24/25	3	2	34,0	32,5	#32						
28	3	5	37,0	35,5	#35	1	-	500			
32	4	0	43,5	40,5	#40	1					

Table B6: Brushes, piston plugs, max anchorage depth and mixer extension, hammer drilling with hollow drill bit (HDB)

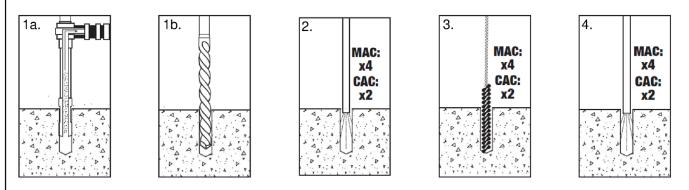
Rebar	Drill bit	Brush diameter nominal minimal		Diston				Cartridge: All sizes				Cartridge: 825 ml	
size	diameter d ₀			plug	Hand or	Hand or battery tool		matic tool	Pneumatic tool				
Ø	HDB	db	db		I _{v,max}	Mixer	l _{v,max}	Mixer	l _{v,max}	Mixer			
[mm]	[mm]	[mm]	[mm]	[No]	[mm]	extension	[mm]	extension	[mm]	extension			
8	10				250		250		250				
0	12			-	700		800		800	VL10/0,75			
10	12				250		250		250	or			
10	14		700		1000]	1000	VL16/1,8					
10	14			#14	250		250	1	250				
12	16			#16			1000						
14	18	No oloopir	ng required	#18	700	VL10/0,75		VL10/0,75					
16	20	NU Cleanin	ig required	#20]	or VL16/1,8		or VL16/1,8					
20	25			#25			700						
22	28			#28			700		1000	VL16/1,8			
24/25	30			#30	500								
24/25	32			#32	500		500						
28	35			#35			500						
32	40			#40									

Injection system AC200+ for rebar connections

Intended use

Brushes, piston plugs, max anchorage depth and mixer extension

Installation instructions


Manual Air Cleaning (MAC)

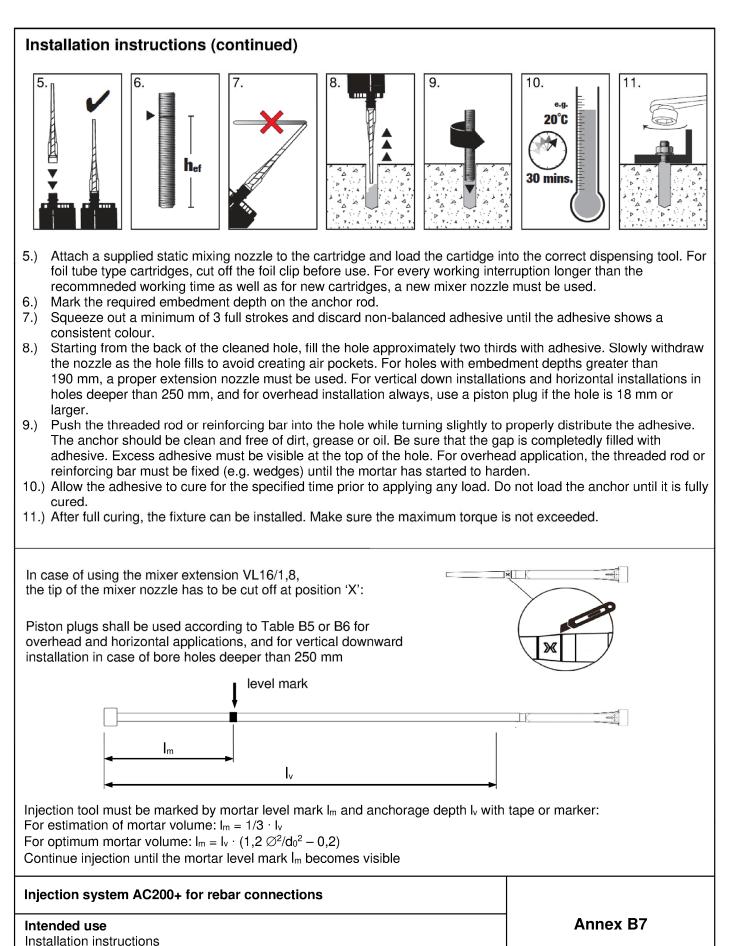
Cleaning for dry and wet bore hole with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$, uncracked concrete only

Compressed Air Cleaning (CAC)

Cleaning for dry, wet and water filled bore hole with all diameter and hole depth, uncracked and cracked concrete

Hollow Drill Bit (HDB) Standard Drill Bit, hammer drill mode (HD) or compressed air drill mode (CD)

- 1a.) Connect the hollow drill bit of proper size to the vacuum and drill a hole into the base material to the required depth while the vac is running. The drill dust is removed during the drilling process. Proceed with Step 5.
- 1b.) Using the proper drill bit size, drill a hole into the base material to the required depth. Proceed with Step 2. Before cleaning, remove any standing water out of the drilled hole. Starting from the bottom of the hole, blow 2.) the hole clean with a hand pump minimum of 4 times (MAC) or with compressed air (min. 6 bar) minimum of 2 times (CAC). If the hole ground cannot be reached, an extension must be used.
- 3.) Select a brush of the correct diameter. Starting from the hole ground, brush the hole a minimum of 4 times (MAC) or 2 times (CAC), respectively. If the hole ground is not reached, a brush extension must be used.
- Finally, blow the hole clean again with a hand pump minimum of 4 times (MAC) or with compressed air (min. 4.) 6 bar) minimum of 2 times (CAC). If the hole ground cannot be reached, an extension must be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the adhesive in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the adhesive. In-flowing water must not contaminate the bore hole.

Injection	system	AC200+	for rebar	connections
-----------	--------	--------	-----------	-------------

Intended use Installation instructions Annex B6

Z91802.21

Minimum anchorage length and minimum lap length under static or quasi-static loading

The minimum anchorage length I_{b,min} and the minimum Iap length I_{0,min} according to EN 1992-1-1:2004+AC:2010 $(I_{b,min} \text{ acc. to Eq. 8.6 and Eq. 8.7 and } I_{0,min} \text{ acc. to Eq. 8.11})$ shall be multiplied by the amplification factor $\alpha_{lb} = \alpha_{lb,100v}$ according to Table C1.

Table C1: Amplification factor $\alpha_{lb} = \alpha_{lb,100y}$ related to concrete class and drilling method; working life 50 and 100 years

Concrete class	Drilling method	Rebar size	Amplification factor α _{lb} = α _{lb,100y}
C12/15 to C50/60	all drilling methods	8 mm to 32 mm	1,0

Table C2: Reduction factor $k_b = k_{b,100y}$ for all drilling methods; working life 50 and 100 years

Rebar	Concrete class								
Ø	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm	1,0								

Table C3: Design values of the ultimate bond stress fbd.PIR and fbd.PIR.100v in N/mm² for all drilling methods and for good conditions; working life 50 and 100 years $\mathbf{f}_{bd,PIR} = \mathbf{k}_b \cdot \mathbf{f}_{bd}$

 $f_{bd,PIR,100y} = K_{b,100y} \cdot f_{bd}$

with

fbd: Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for good bond condition (for all other bond conditions multiply the values by $\eta_1 = 0.7$) and recommended partial factor $\gamma_c = 1.5$ according to EN 1992-1-1:2004+AC:2010. kb, kb, 100v: Reduction factor according to Table C2

Rebar	Concrete class								
Ø	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Injection system AC200+ for rebar connections Minimum anchorage length and minimum lap length, Performances Amplification factor, Reduction factor and Design values of ultimate bond

Annex C1

Z91802.21

resistance

Minimum anchorage length and minimum lap length under seismic action

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($I_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $I_{0,min}$ acc. to Eq. 8.11) shall be multiplied by the amplification factor $\alpha_{Ib,seis,100y}$ according to Table C4.

Table C4: Amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ related to concrete class and drilling method; working life 50 and 100 years

Concrete class	Drilling method	Rear size	Amplification factor αlb,seis = αlb,seis,100y	
C16/20 to C50/60	all drilling methods	10 mm to 32 mm	1,0	

Table C5:Reduction factor kb,seis = kb,seis,100y for all drilling methods;
working life 50 and 100 years

Rebar	Concrete class								
Ø	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 32 mm	No performance assessed	1,0							

Table C7:Design values of the ultimate bond stress fbd,PIR,seis and fbd,PIR,seis,100y in N/mm²
for all drilling methods and for good conditions; working life 50 and 100 years
fbd,PIR,seis = kb,seis · fbd

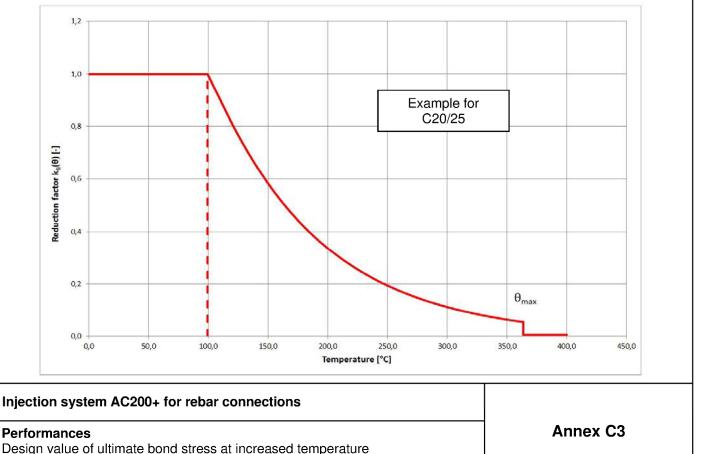
 $f_{bd,PIR,seis,100y} = k_{b,seis,100y} \cdot f_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for good bond condition (for all other bond conditions multiply the values by $\eta_1 = 0.7$) and recommended partial factor $\gamma_c = 1,5$ according to EN 1992-1-1:2004+AC:2010. $k_{b,seis, 100y}$: Reduction factor according to Table C5

Rebar	Concrete class								
Ø	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 32 mm	No performance assessed	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Injection system AC200+ for rebar connections	
Performances Minimum anchorage length and minimum lap length, Amplification factor, Reduction factor and Design values of ultimate bond stress under seismic action	Annex C2


Design value of the ultimate bond stress fbd,fi, fbd,fi,100y at increased temperature for concrete classes C12/15 to C50/60, (all drilling methods); working life 50 and 100 years: The design value of the bond stress fbd,fi at increased temperature has to be calculated by the following equation: $\begin{array}{l} \textbf{f}_{bd,fi} = \textbf{k}_{fi}(\theta) \cdot \textbf{f}_{bd,PIR} \cdot \textbf{\gamma}_{c} \ / \ \textbf{\gamma}_{M,fi} \\ \textbf{k}_{fi}(\theta) = 30,34 \cdot e^{(\theta \cdot \textbf{-}0,011)} \ / \ (\textbf{f}_{bd,PIR} \cdot 4,3) \leq 1,0 \end{array}$ For working life 50 years: θ ≤ 364°C: with: $\theta > 364^{\circ}C$: $k_{fi}(\theta) = 0$ For working life 100 years: $f_{bd,fi,100y} = k_{fi,100y}(\theta) \cdot f_{bd,PIR,100y} \cdot \gamma_c / \gamma_{M,fi}$ $k_{fi,100y}(\theta) = 30,34 \cdot e^{(\theta \cdot -0,011)} / (f_{bd,PIR,100y} \cdot 4,3) \le 1,0$ $\theta \leq 364^{\circ}C$: with: θ > 364°C: $k_{fi,100y}(\theta) = 0$ Design value of the ultimate bond stress at increased temperature in N/mm² fbd,fi, fbd,fi,100y Temperature in °C in the mortar layer A Reduction factor at increased temperature $k_{fi}(\theta), k_{fi,100y}(\theta)$ Design value of the bond stress $f_{bd,PIR} = f_{bd,PIR,100y}$ in N/mm² in cold condition according to fbd,PIR, fbd,PIR,100y Table C3 considering the concrete classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2004+AC:2010

For evidence at increased temperature the anchorage length shall be designed according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent design value of ultimate bond stress $f_{bd,fi}$.

= 1,5, recommended partially safety factor according to EN 1992-1-1:2004+AC:2010

= 1.0, recommended partially safety factor according to EN 1992-1-2:2004+AC:2008

Example graph of Reduction factor $k_{\rm fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

γc

γM,fi