

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0905 of 11 May 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system AC200+ for concrete

Bonded fastener for use in concrete

Stanley Black & Decker Deutschland GmbH Richard-Klinger-Straße 11 65510 Idstein DEUTSCHLAND

Plant 1

29 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-16/0905 issued on 20 February 2017

European Technical Assessment ETA-16/0905

Page 2 of 29 | 11 May 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z44430.21 8.06.01-79/21

European Technical Assessment ETA-16/0905

Page 3 of 29 | 11 May 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system AC200+ for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar AC200+ and a steel element according to Annex A3 and A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1 to C 4, C 6, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 5, C 8
Displacements under short-term and long-term loading	See Annex C 9 and C10
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 11 to C 14

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z44430.21 8.06.01-79/21

European Technical Assessment ETA-16/0905

Page 4 of 29 | 11 May 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

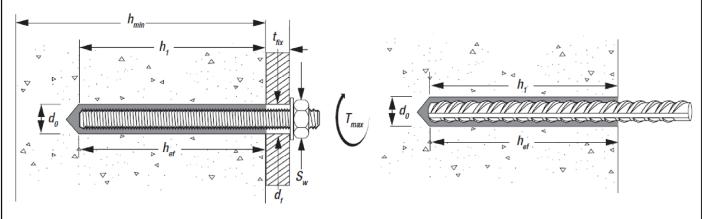
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 May 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z44430.21 8.06.01-79/21

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Reinforcing bar Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø25, Ø28, Ø32

Installation threaded rod M8 to M30

Installation reinforcing bar Ø8 to Ø32

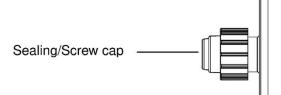
t_{fix} = thickness of fixture

hef = effective anchorage depth

 $h_1 = depth of drill hole$

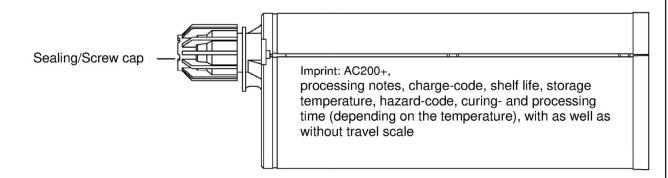
h_{min} = minimum thickness of member

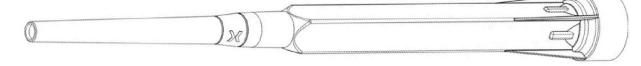
Injection system AC200+ for concrete Product description Installed condition Annex A1


Z44726.21 8.06.01-79/21

Electronic copy of the ETA by DIBt: ETA-16/0905

Cartridge: AC200+


150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)


Imprint: AC200+,

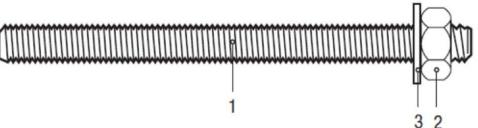
processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: side-by-side)

Static Mixer «Mischer»

Piston Plug and Mixer Extension

Injection system AC200+ for concrete


Product description

Injection system

Annex A2

Table A1: Materials (Threaded rod)

				3 2						
Part	Designation	Material								
Zinc	plated steel: Mate	erial acc. to EN ISO 683-4:2	2018 or EN 10263:201	7:						
		acc. to EN ISO 4042:2018 c		,						
		0 μm acc. to EN ISO 1461:		34:2004+AC:2009 or						
sher	ardized ≥ 45 µm a	cc. to EN ISO 17688:2016								
		Property class acc. to	Characteristic	Characteristic	Fracture					
		EN ISO 898-1:2013	ultimate strength fuk	yield strength fyk	elongation A ₅					
		4.6	400 N/mm²	240 N/mm ²	> 8%					
1	Threaded rod	4.8	400 N/mm ²	320 N/mm ²	> 8%					
		5.6	500 N/mm²	300 N/mm ²	> 8%					
		5.8	500 N/mm ²	400 N/mm ²	> 8%					
		8.8	800 N/mm ²	640 N/mm ²	> 12%3)					
		Property class acc. to EN ISO 898-2:2012	for threaded rod class							
2	Hexagon nut	4	4.6 & 4.8							
		5	5.6 & 5.8							
		8 8.8								
3	Washer	EN ISO 887:2006; EN ISO	7089:2000; EN ISO 70	93:2000; EN ISO 709	94:2000					
Stain	less steel A2: Ma	terial 1.4301 / 1.4307 / 1.43	11 / 1.4567 or 1.4541,	acc. to EN 10088-1:	2014					
		terial 1.4401 / 1.4404 / 1.45								
High	corrosion resista	ince steel HCR: Material 1.	4529 or 1.4565, acc. to	o EN 10088-1: 2014						
		Property class acc. to	Characteristic	Characteristic	Fracture					
		EN ISO 3506-1:2020	ultimate strength fuk	yield strength fyk	elongation A ₅					
1	Threaded rod	50	500 N/mm²	210 N/mm ²	> 8%					
		70 ¹⁾	700 N/mm²	450 N/mm ²	> 12%3)					
		801)2)	800 N/mm ²	600 N/mm ²	> 12%3)					
		Property class acc. to EN ISO 3506-1:2020	for threaded rod class							
2	Hexagon nut	50	50							
		70 ¹⁾	70							
		801)2)	80							
3	Washer	EN ISO 887:2006; EN ISO	7089:2000; EN ISO 70	93:2000; EN ISO 709	94:2000					

¹⁾ Property class 70 or 80 for threaded rods and hexagon nuts up to M24

 $^{^{3)}}$ A₅ > 8% fracture elongation if <u>no</u> use for seismic performance category C2

Injection system AC200+ for concrete	
Product description	Annex A3
Materials threaded rod	

²⁾ Property class 80 only for stainless steel A4 and high corrosion resistance steel HCR

Table A2: Materials (Reinforcing bar)

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2009+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the rebar, h: Rib height of the bar)

Part	Designation	Material
1	Rebar according EN 1992-1-1:2009+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection system AC200+ for concrete	
Product description	Annex A4
Materials reinforcing bar	

Specifications of intended use

Anchorages subject to static and quasi-static loads:

Working life	50 years	100 years				
Base material	Uncracked and cracked concrete	Uncracked and cracked concrete				
Hammer drilling (HD) Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to M30; ∅8 to ∅32	M8 to M30; ∅8 to ∅32				
Temperature range	I: -40 °C to +40 °C ¹⁾ II: -40 °C to +80 °C ²⁾ III: -40 °C to +120 °C ³⁾ IV: -40 °C to +160 °C ⁴⁾	I: - 40 °C to +40 °C ¹⁾ II: - 40 °C to +80 °C ²⁾				

Anchorages subject to seismic action:

Performance category	C1	C2			
Base material	Uncracked and cracked concrete	Uncracked and cracked concrete			
Hammer drilling (HD) Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to M30; Ø8 to Ø32	M12 to M24			
Temperature range	I: -40 °C to +40 °C ¹⁾ II: -40 °C to +80 °C ²⁾ III: -40 °C to +120 °C ³⁾ IV: -40 °C to +160 °C ⁴⁾	I: -40 °C to +40 °C ¹⁾ II: -40 °C to +80 °C ²⁾ III: -40 °C to +120 °C ³⁾ IV: -40 °C to +160 °C ⁴⁾			

^{1) (}max long-term temperature +24 °C and max short-term temperature +40 °C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A3, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A3, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A3, Table A1: CRC V

Injection system AC200+ for concrete	
Intended use Specifications	Annex B1

²⁾ (max long-term temperature +50 °C and max short-term temperature +80 °C)

^{3) (}max long-term temperature +72 °C and max short-term temperature +120 °C)

^{4) (}max long-term temperature +100 °C and max short-term temperature +160 °C)

Page 10 of European Technical Assessment ETA-16/0905 of 11 May 2021

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling in hammer drill mode with standard drill bit (HD) or with hollow drill bit (HDB), or in compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- The injection mortar is assessed for installation at minimum concrete temperature of -5°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

Injection system AC200+ for concrete	
Intended use Specifications	Annex B2

Z44726.21 8.06.01-79/21

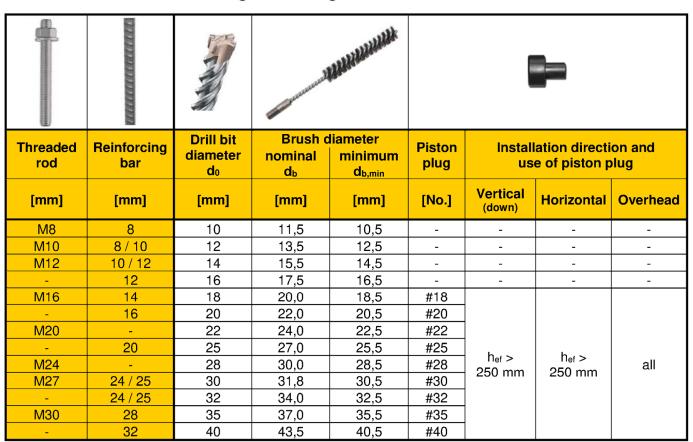
Electronic copy of the ETA by DIBt: ETA-16/0905

Table B1: Installation parameters for threaded rod											
Size of threaded ro		M8	M10	M12	M16	M20	M24	M27	M30		
Diameter of element	t	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole dia	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
		h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in	Preset ins	stallation d _f ≤	[mm]	9	12	14	18	22	26	30	33
the fixture ¹⁾	Through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	ment	max T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member h _{min}		[mm]		h _{ef} + 30 mm ≥ 100 mm							
Minimum spacing S _{min}		[mm]	40	50	60	75	95	115	125	140	
Minimum edge dista	nce	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.

 Table B2:
 Installation parameters for reinforcing bar

Size of reinforcing bar			Ø8 ¹⁾	Ø10 ¹⁾	Ø12 ¹⁾	Ø14	Ø16	Ø20	Ø24 ¹⁾	Ø25 ¹⁾	Ø28	Ø32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					ŀ	n _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	40 50		60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85


¹⁾ Both nominal drill hole diameter can be used

Injection system AC200+ for concrete	
Intended use	Annex B3
Installation parameters	

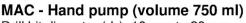
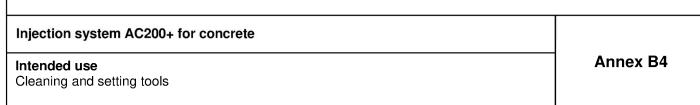

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B3: Parameter cleaning and setting tools

Drill bit diameter (d_0): 10 mm to 20 mm

Drill hole depth (h_0) : < 10 d_s Only in uncracked concrete

CAC - Rec. compressed air tool (min 6 bar)

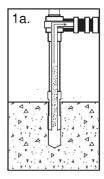

Drill bit diameter (d₀): all diameters

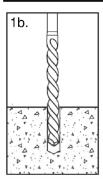
HDB - Hollow drill bit system

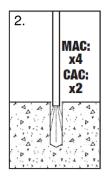
Drill bit diameter (d₀): all diameters

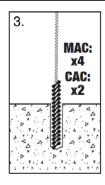
The hollow drill bit system consists of the DEWALT hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa and flow rate of minimum 150 m^3/h (42 l/s).

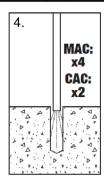
Installation instructions

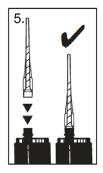

Manual Air Cleaning (MAC)


Cleaning for dry and wet bore hole with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10 d_{nom}$, uncracked concrete only

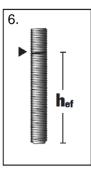

Compressed Air Cleaning (CAC)

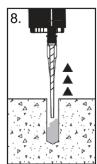

Cleaning for dry, wet and water filled bore hole with all diameter and hole depth, uncracked and cracked concrete

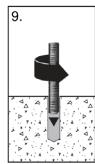

Hollow Drill Bit (HDB) Standard Drill Bit, hammer drill mode (HD) or compressed air drill mode (CD)

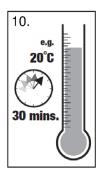

- 1a.) Connect the hollow drill bit of proper size to the vacuum and drill a hole into the base material to the required depth while the vac is running. The drill dust is removed during the drilling process. Proceed with Step 5.
- 1b.) Using the proper drill bit size, drill a hole into the base material to the required depth. Proceed with Step 2.
- 2.) Before cleaning, remove any standing water out of the drilled hole. Starting from the bottom of the hole, blow the hole clean with a hand pump minimum of 4 times (MAC) or with compressed air (min. 6 bar) minimum of 2 times (CAC). If the hole ground cannot be reached, an extension must be used.
- 3.) Select a brush of the correct diameter. Starting from the hole ground, brush the hole a minimum of 4 times (MAC) or 2 times (CAC), respectively. If the hole ground is not reached, a brush extension must be used.
- 4.) Finally, blow the hole clean again with a hand pump minimum of 4 times (MAC) or with compressed air (min. 6 bar) minimum of 2 times (CAC). If the hole ground cannot be reached, an extension must be used.

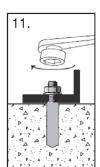
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the adhesive in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the adhesive. In-flowing water must not contaminate the bore hole.


Injection system AC200+ for concrete	
Intended use Installation instructions	Annex B5


Installation instructions (continued)




Electronic copy of the ETA by DIBt: ETA-16/0905



- Attach a supplied static mixing nozzle to the cartridge and load the cartidge into the correct dispensing tool. For foil tube type cartridges, cut off the foil clip before use. For every working interruption longer than the recommneded working time as well as for new cartridges, a new mixer nozzle must be used.
- Mark the required embedment depth on the anchor rod.
- Squeeze out a minimum of 3 full strokes and discard non-balanced adhesive until the adhesive shows a consistent colour.
- Starting from the back of the cleaned hole, fill the hole approximately two thirds with adhesive. Slowly withdraw the nozzle as the hole fills to avoid creating air pockets. For holes with embedment depths greater than 190 mm, a proper extension nozzle must be used. For vertical down installations and horizontal installations in holes deeper than 250 mm, and for overhead installation always, use a piston plug if the hole is 18 mm or larger.
- 9.) Push the threaded rod or reinforcing bar into the hole while turning slightly to properly distribute the adhesive. The anchor should be clean and free of dirt, grease or oil. Be sure that the gap is completedly filled with adhesive. Excess adhesive must be visible at the top of the hole. For overhead application, the threaded rod or reinforcing bar must be fixed (e.g. wedges) until the mortar has started to harden.
- 10.) Allow the adhesive to cure for the specified time prior to applying any load. Do not load the anchor until it is fully cured.
- 11.) After full curing, the fixture can be installed. Make sure the maximum torque is not exceeded.

Injection system AC200+ for concrete Annex B6 Intended use Installation instructions

Table B4: Max	imum working	time and	minimum	curing time
---------------	--------------	----------	---------	-------------

Concrete ter	mperature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
- 5 °C to	- 1 °C	50 min	5 h	10 h
0 °C to	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C to	+ 9 °C	15 min	2 h	4 h
+ 10 °C to	+ 14 °C	10 min	1 h	2 h
+ 15 °C to	+ 19 °C	6 min	40 min	80 min
+ 20 °C to	+ 29 °C	3 min	30 min	60 min
+ 30 °C to	+ 40 °C	2 min	30 min	60 min
Cartridge ter	mperature		+5 °C to +40 °C	

Injection system AC200+ for concrete	
Intended use	Annex B7
Curing time	

Т	Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods										
Ar	nchor size			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cł	naracteristic tension resistance, Steel failu	re ¹⁾		'							
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0	0			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	$\gamma_{Ms,N}$	[-]	2,86							
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87							
Stainless steel A4 and HCR, class 80 γ _{Ms,N} [-] 1,6											
Cł	naracteristic shear resistance, Steel failure										
ᆮ	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
ever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	$V^{U}_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk.s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
<u>~</u>	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
h le	Stainless steel A2, A4 and HCR, class 50 Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Wit	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	naracteristic shear resistance, Partial facto)r ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	57			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	25			
St	ainless steel A2, A4 and HCR, class 50	$\gamma_{Ms,V}$	[-]				2,3	88			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	$\gamma_{Ms,V}$	[-]				1,3	33			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009. In absence of national regulation

³⁾ Anchor type not part of the ETA

Injection system AC200+ for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C1

Anchor size				All anchor types and sizes
Concrete cone fa	ilure			
Uncracked concre	te	k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting failure				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

Electronic copy of the ETA by DIBt: ETA-16/0905

Injection system AC200+ for concrete	
Performances Characteristic values for concrete cone failure and splitting failure	Annex C2

II: 80°C/50°C Concrete and flooded bore hole Trak,uor IN/mm² 17 17 16 15 14 13 12 12 11 11 10 9,5 9,0	M8 M10 M12 M16 M20	M24	M27	M3				
Partial factor	N _{Rk s} [kN] A _s · f _{uk} (or see Ta	ble C1)						
Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete C20/25	72							
E 40°C/24°C Dry, wet concrete and flooded bore hole T _{Rk,ucr} [N/mm²] 17 17 16 15 14 13 12 12 12 11 11 10 9,5 9,0	1110,14							
Characteristic bond resistance in cracked concrete C20/25	ncracked concrete C20/25							
Characteristic bond resistance in cracked concrete C20/25	Titige 1	13	13	13				
Characteristic bond resistance in cracked concrete C20/25	e and Rk,ucr [N/IIIII] 17 16 15 14	13	13	13				
Characteristic bond resistance in cracked concrete C20/25	Dore τ _{Rk,ucr} [N/mm²] 15 14 14 13 12	12	11	1				
1: 40°C/24°C 11: 80°C/50°C 11: 120°C/72°C 11: 120	111,435	9,0	9,0	9,				
Reduction factor ψ ⁰ _{sus} in cracked and uncracked concrete C20/25 1: 40°C/24°C		<u> </u>	I					
Reduction factor ψ0 Sus in cracked and uncracked concrete C20/25 1: 40°C/24°C II: 80°C/50°C Dry, wet concrete and flooded bore hole Ψ0 Sus [-] 0,87 1: 120°C/72°C III: 120°C/72°C 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,87 0,90 0,75 1: 10°C/100°C 0,87 0,90 0,66 1: 10°C/100°C 0,87 0,90 0,75 1: 10°C/100°C 0,87 0,90 0,66 1: 10°C/100°C 0,87 0,90 0,66 1: 10°C/100°C 0,87 0,90 0,87 0,90 1: 10°C/100°C 0,87 0,90 0,90 0,90 0,90 1: 10°C/100°C 0,87 0,90 0,90 0,90 0,90 0,90 0,90 1: 10°C/100°C 0,90 0,	1.13,51	7,0	7,0	7,0				
Reduction factor ψ0 Sus in cracked and uncracked concrete C20/25 1: 40°C/24°C II: 80°C/50°C Dry, wet concrete and flooded bore hole Ψ0 Sus [-] 0,87 1: 120°C/72°C III: 120°C/72°C 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,66 0,66 1: 10°C/100°C 0,87 0,90 0,75 1: 10°C/100°C 0,87 0,90 0,66 1: 10°C/100°C 0,87 0,90 0,75 1: 10°C/100°C 0,87 0,90 0,66 1: 10°C/100°C 0,87 0,90 0,66 1: 10°C/100°C 0,87 0,90 0,87 0,90 1: 10°C/100°C 0,87 0,90 0,90 0,90 0,90 1: 10°C/100°C 0,87 0,90 0,90 0,90 0,90 0,90 0,90 1: 10°C/100°C 0,90 0,	e and Rk,cr [N/mm²] 7,0 7,5 8,0 9,0 8,5	7,0	7,0	7,0				
Reduction factor ψ ⁰ sus in cracked and uncracked concrete C20/25	Dore τ _{Rk,cr} [N/mm²] 6,0 6,5 7,0 7,5 7,0	6,0	6,0	6,0				
I: 40°C/24°C	1.11,54	5,5	5,5	5,				
C25/30	and uncracked concrete C20/25							
		0,90						
	e and 110 C.3	0,87						
	bore 0,75	0,75						
C30/37								
C35/45								
C40/50		· · · · · · · · · · · · · · · · · · ·						
C45/55 1,09 C50/60 1,10 Concrete cone failure Relevant parameter See Table C2 Splitting failure Relevant parameter See Table C2 Installation factor No P								
C50/60 1,10 Concrete cone failure Relevant parameter See Table C2 Splitting failure Relevant parameter See Table C2 Installation factor MAC No P								
Concrete cone failure Relevant parameter See Table C2 Splitting failure Relevant parameter See Table C2 Installation factor MAC No P	,							
Splitting failure Relevant parameter See Table C2 Installation factor No P	1,10							
Relevant parameter See Table C2 Installation factor No P	See Table 0	2						
Installation factor MAC 1 2 No P								
MAC 1.2 No P	See Table C	2						
-1 $N/\Delta t$.		No Po	rformai	200				
	1,2	No Performance Assessed						
For dry and wet concrete CAC γ_{inst} [-] 1,0	γ _{inst} [-] 1,0	,0						
HDB	1,2							
For flooded bore hole CAC 1,4	1,4							
Injustion and ACCOO. for a moust-								
Injection system AC200+ for concrete Performances Ann	oncrete							

Anchor size threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure		l NI	FI N II			Λ τ	/27.0	oo Tob	I= O1\		
Characteristic tension resi	stance	N _{Rk,s}	[kN]			A _S · I		ee Tab			
Partial factor		γ _{Ms,N}	[-]				See Ta	able C1			
Combined pull-out and on Characteristic bond resistate			0/25								
	ance in uncracke	ed concrete C2	0/25								
II: 80°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm ²]	17	17	16	15	14	13	13	13
<u> </u>	flooded bore hole	^τ Rk,ucr,100	[N/mm ²]	17	17	16	15	14	13	13	13
Characteristic bond resista	ance in cracked	concrete C20/2	25								
II: 40°C/24°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5
II: 80°C/50°C	flooded bore hole	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5
		C25/30					1,	,02			
		C30/37						,04			
Increasing factors for cond	crete	C35/45					,07				
Ψc		C40/50						,08			
C45/55 C50/60				1,09 1,10							
Concrete cone failure		C50/60					- 1	,10			
Relevant parameter							See Ta	able C2	2		
Splitting failure											
Relevant parameter							See Ta	able C2	2		
Installation factor											
	MAC				1,2		No Performance Assessed				
For dry and wet concrete	CAC	γ_{inst}	[-]	<u> </u>			,0 Assessed				
	HDB	- inst	[1]	1,2							
For flooded bore hole	CAC							,4			

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm									,	
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6	A _s · f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γ _{Ms,V}	[-]	See Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 · '	W _{el} · f _{uk}	(or see	Table C	;1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				See	Table C	71		•
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	l _f	[mm]		n	nin(h _{ef} ; 1	I2 · d _{nor}	n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]	1,0							

Injection system AC200+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C5

	r size reinforcing	bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø3	
Steel fa			NI	FL 5-17					Λ	f 1)					
	teristic tension resi	stance	N _{Rk,s}	[kN]						f _{uk} 1)		1.01			
	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	80	
Partial			γ _{Ms,N}	[-]					1,	4 ²⁾					
	ned pull-out and cateristic bond resista			to C20/25											
	I: 40°C/24°C			[N/mm ²]	14	14	14	14	13	13	13	13	13	13	
Temperature range		Dry, wet concrete	^τ Rk,ucr	-											
iperati range	II: 80°C/50°C	and	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	10	
emp	III: 120°C/72°C	flooded	^τ Rk,ucr	[N/mm ²]	13	12	12	12	12	11	11	11	11	1	
<u> </u>	IV: 160°C/100°C	bore hole	^τ Rk,ucr	[N/mm ²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,	
	teristic bond resista														
Temperature range	I: 40°C/24°C	Dry, wet	^τ Rk,cr	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,	
nperati range	II: 80°C/50°C	concrete and	^τ Rk,cr	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,	
ral	III: 120°C/72°C	flooded	^τ Rk,cr	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6	
Te	IV: 160°C/100°C	bore hole	τ _{Rk,cr}	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5	
Reduct	tion factor ψ^0_{sus} in (cracked and	uncracked c	oncrete C2	0/25										
	I: 40°C/24°C	Dry, wet							0,	90					
- g	II: 80°C/50°C	concrete	ψ ⁰ sus	[-]					0,	87	5,5 6,0 6,0 6,				
perat	III: 120°C/72°C flooded bore hole	flooded	Ψ sus	[[]					0,	0,75 0,66					
Теп	IV: 160°C/100°C	5010 11010						<u> </u>							
			C25							02					
Inorone	sing factors for cond	proto	C30		1,04 1,07										
ποreas Ψ _C	sing factors for cond	rete	C35		1,07 1,08										
10			C45												
			C50		1,09 1,10										
Concre	ete cone failure														
	nt parameter								See Ta	able C	2				
Splittir	ng failure														
	nt parameter							,	See Ta	able C	2				
Installa	ation factor	1													
Fam. I	and wet ee	MAC					1,2				Perfor	mance	Asses	ssec	
For dry	and wet concrete	CAC HDB	γ_{inst}	[-]						,0					
For floo	oded bore hole	CAC								,2 ,4					
1) f _{uk} s	hall be taken from t bsence of national	he specificat	ions of reinfo	orcing bars						, 					
		00+ for cond													

1,4

I .	Table C7: Characteristic values of tension loads under static and quasi-static action for a working life of 100 years														
Anchor size reinforcing I		: O1 100 ye	7a1 S	Ø8	Ø10	<i>(</i> X12	Ø14	Ø16	<i>(</i> X20	CX2/1	CX25	(X28	<i>(</i> 322		
Steel failure	Jui			20	210	212	217	210	220	224	223	220	202		
Characteristic tension resis	stance	N _{Rk,s}	[kN]					A _c ·	f _{uk} 1)						
Cross section area		A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804		
Partial factor		γ _{Ms,N}	[-]	- 00	1,42)										
	Combined pull-out and concrete failure							٠,							
-	Characteristic bond resistance in uncracked concrete C20/25														
II: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm ²]	14	14	14	14	13	13	13	13	13	13		
Tempe II: 80°C/50°C	^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13			
Characteristic bond resista	nce in crack	ed concrete	C20/25												
emperature B: 40°C/24°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0		
II: 80°C/50°C	flooded bore hole	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0		
		C25	/30	1,02											
		C30,							04						
Increasing factors for cond	rete	C35							07						
ΨC		C40							08						
		C45							09 10						
Concrete cone failure		<u> </u>	700					Ι,	10						
Relevant parameter								See Ta	able C	2					
Splitting failure															
Relevant parameter							;	See Ta	able C	2					
Installation factor															
	MAC			1,2 No Performance Assessed											
For dry and wet concrete	CAC	γ	[-]					1	,0			Ø25 Ø28 Ø3 491 616 80 13 13 13 4,0 4,0 4,0 4,0 4,0 4,0			
	HDB	γ _{inst}	[-]					1	,2						

CAC $^{1)}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulation

For flooded bore hole

Injection system AC200+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C7
·	

Table C8: Characteristic	values of	shear l	oads	und	er st	atic	and	quas	si-sta	itic ac	tion	
Anchor size reinforcing bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]					0,50	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2	· W _{el} ·	$f_{uk}^{(1)}$			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure												
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mi						mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	Illation factor Y _{inst} [-] 1,0											

 $^{^{\}rm 1)}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{\rm 2)}$ In absence of national regulation

Injection system AC200+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C8

Table C9: Displ	acements	under tensior	load ¹	threa	aded re	od)						
Anchor size threaded re	od		M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete C2	Uncracked concrete C20/25 under static and quasi-static action for a working life of 50 and 100 years											
Temperature range I: 40°C/24°C	δ _{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046		
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048		
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179		
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184		
Cracked concrete unde	r static and o	uasi-static action	n for a w	orking l	ife of 50	and 100) years					
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106		
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110		
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412		
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load²⁾ (threaded rod)

Anchor size threade	M8	M10	M12	M16	M20	M24	M27	M30				
Uncracked and cracked concrete under static and quasi-static action												
All temperature ranges	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor} \quad V;$

Injection system AC200+ for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C9

Anchor size reinfo	orcing bar		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Uncracked concre	ete under sta	atic and quasi-s	tatic ac	tion for	a work	ing life	of 50 a	nd 100	years			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	under statio	and quasi-stat	ic actio	n for a	workin	g life of	50 and	100 ye	ears			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor }\cdot\tau;$ τ: action bond stress for tension

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau;$

Table C12: Displacements under shear load²⁾ (reinforcing bar)

Table C11: Displacements under tension load¹⁾ (reinforcing bar)

Anchor size rein	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32		
Uncracked and cracked concrete under static and quasi-static action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Injection system AC200+ for concrete	
Performances Displacements under static and quasi-static action (reinforcing bar)	Annex C10

Table C13: Characteristic values of tension loads under seismic action
(performance category C1) for a working life of 50 and 100 years

Ancho	r size threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure											
Charac	teristic tension resist	tance	N _{Rk,s,eq,C1}	[kN]	1,0 · N _{Rk,s}							
			$\gamma_{Ms,N}$	[-]				See Ta	able C1			
Combi	Combined pull-out and concrete failure											
Charac	Characteristic bond resistance in cracked and uncracked concrete C20/25											
<u>e</u>	р I: 40°С/24°С	^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
nperatu range	II: 80°C/50°C	Dry, wet concrete and	^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C	flooded bore hole	^τ Rk,eq,C1	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Te	IV: 160°C/100°C	TIOIE	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Increas	sing factors for concre	ete ψ _C	C25/30 to	C50/60	1,0							
Install	ation factor											
For dn	For dry and wet concrete CAC				1,0							
Por dry	and wet concrete	HDB	γ _{inst}	[-]				1	,2			
For floo	oded bore hole	CAC						1	,4			

Table C14: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod	Anchor size threaded rod					M16	M20	M24	M27	M30
Steel failure										
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]	$0.70 \cdot V^0_{Rk,s}$							
Partial factor	γ _{Ms,V}	[-]	See Table C1							
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5							

Injection system AC200+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performa category C1) for a working life of 50 and 100 years (threaded rod)	Annex C11

1,4

Table	Table C15: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years													
Ancho	r size reinforcing	bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Steel fa	ailure													
Characteristic tension resistance N _{Rk,s,eq,C1} [kN]					$1.0 \cdot A_s \cdot f_{uk}^{1)}$									
Cross s	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial 1	factor		γ _{Ms,N}	[-]					1,	4 ²⁾				
Combined pull-out and concrete failure														
Charac	teristic bond resista	ance in crack	ed and uncra	acked cond	crete C	20/25								
ange	I: 40°C/24°C	Dry, wet	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
ure ra	II: 80°C/50°C	concrete	τ _{Rk,eq,C1}	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Femperature range	III: 120°C/72°C	and flooded	τ _{Rk,eq,C1}	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Tem	IV: 160°C/100°C	bore hole	τ _{Rk,eq,C1}	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Increas	Increasing factors for concrete ψ _C C25/30 to C50/60					1,0								
Installa	ation factor													
For day	CAC								1	,0				
Por dry	and wet concrete	HDB	γ_{inst}	[-]					1	,2				

CAC $^{1)}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulation

For flooded bore hole

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32	
Steel failure												
Characteristic shear resistance	V _{Rk,s,eq}	[kN]	0,35 ⋅ A _s ⋅ f _{uk} ¹)									
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Factor for annular gap	tor for annular gap [-] 0,5											

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulation

Electronic copy of the ETA by DIBt: ETA-16/0905

Injection system AC200+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance	Annex C12
category C1) for a working life of 50 and 100 years (reinforcing bar)	

8.06.01-79/21 Z44726.21

Electronic copy of the ETA by DIBt: ETA-16/0905

Table C17: Characteristic values of tension loads under seismic action (performance category C2) for a working life of 50 and 100 years

Ancho	r size threaded rod				M12	M16	M20	M24			
Steel fa	ailure										
Characteristic tension resistance, Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70			N _{Rk,s,eq,C2}	[kN]	1,0 · N _{Rk,s}						
Partial factor			$\gamma_{Ms,N}$	[-]	[-] See Table C1						
Combi	Combined pull-out and concrete failure										
Characteristic bond resistance in cracked and uncracked concrete C20/25											
<u>E</u>	I: 40°C/24°C	Dry, wet	τ _{Rk,eq,C2}	[N/mm ²]	3,6	3,5	3,3	2,3			
nperatu range	II: 80°C/50°C	concrete and	τ _{Rk,eq,C2}	[N/mm ²]	3,6	3,5	3,3	2,3			
Temperature range	III: 120°C/72°C	flooded bore	τ _{Rk,eq,C2}	[N/mm ²]	3,1	3,0	2,8	2,0			
Te	IV: 160°C/100°C	hole	τ _{Rk,eq,C2}	[N/mm ²]	2,5	2,7	2,5	1,8			
Increas	ing factors for concre	ete ψ _c	C25/30 to	C50/60	1,0						
Installa	ation factor										
For dry and wet concrete CAC HDB		γ _{inst}	[-]	1,0 1,2							
For floo	ded bore hole	CAC				1	,4				

Table C18: Characteristic values of shear loads under seismic action (performance category C2)

Anchor size threaded rod			M12	M16	M20	M24			
Steel failure									
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	0,70 · V ⁰ _{Rk,s}						
Partial factor	$\gamma_{Ms,V}$	[-]	See Table C1						
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5						

Injection system AC200+ for concrete

Performances
Characteristic values of tension and shear loads under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod)

Annex C13

Table C19: Di	Table C19: Displacements under tension load (threaded rod)											
Anchor size threaded rod M12 M16 M20												
Uncracked and cracked concrete under seismic action (performance category C2)												
All temperature ranges	δ N,eq,C2(DLS)	[mm]	0,24	0,27	0,29	0,27						
	$\delta_{ ext{N,eq,C2(ULS)}}$	[mm]	0,55	0,51	0,50	0,58						

Table C20: Displacements under shear load (threaded rod)

Anchor size thread	ed rod		M12	M16	M20	M24				
Uncracked and cracked concrete under seismic action (performance category C2)										
All temperature	$\delta_{V,eq,C2(DLS)}$	[mm]	3,6	3,0	3,1	3,5				
ranges	$\delta_{V,eq,C2(ULS)}$	[mm]	7,0	6,6	7,0	9,3				

Injection system AC200+ for concrete	
Performances Displacements under seismic action (performance category C2) (threaded rods)	Annex C14