

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0315 of 1 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Injection system Hilti HIT-HY 170 with HIT-CS(-F) Product family Bonded expansion fastener for use in concrete to which the construction product belongs Manufacturer Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Plants This European Technical Assessment 16 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330499-01-0601 Edition 04/2020 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-17/0315 issued on 14 December 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0315 English translation prepared by DIBt

Page 2 of 16 | 1 December 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 16 | 1 December 2021

Specific Part

1 Technical description of the product

The injection system Hilti HIT-HY 170 with HIT-CS(-F) is a bonded expansion fastener consisting of a foil pack with injection mortar Hilti HIT-HY 170 and the conical rod HIT-CS-F (including two nuts and a washer) in the sizes M12, M16 and M20 or the conical rod HIT-CS (including a nut and a washer) in the size M12.

The conical rod HIT-CS-F (including nuts and washer) is made of hot dip galvanized steel and the conical rod HIT-CS (including nut and washer) is made of electroplated zinc coated steel.

The conical rod is placed into a drill hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the base material (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 and B2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2
Displacements under short-term and long-term loading	See Annex C3
Characteristic resistance for seismic performance category C1 and C2, displacements	See Annex C4

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 16 | 1 December 2021

European Technical Assessment ETA-17/0315

English translation prepared by DIBt

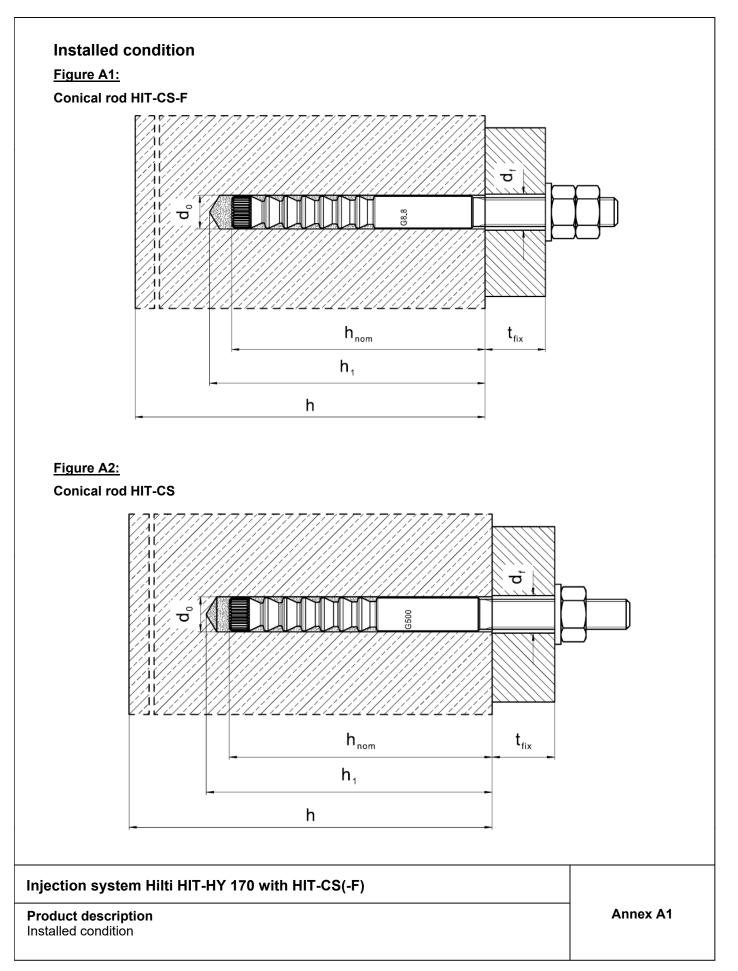
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 1 December 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Page 5 of European Technical Assessment ETA-17/0315 of 1 December 2021

English translation prepared by DIBt

Page 6 of European Technical Assessment ETA-17/0315 of 1 December 2021

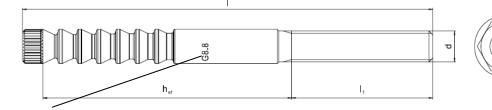
English translation prepared by DIBt

Product description: Injectio Injection mortar Hilti HIT-HY 170: H 330 ml and 500 ml		S
Marking: HILTI HIT Production number and production line Expiry date mm/yyyy	HILL HIT-HY 170	
	Product name: "Hilti HIT-HY	170"
Static mixer Hilti HIT-RE-M		
Steel elements (8.8)	washer washer washer	nuts
Steel element (5.8)		
Hilti anchor rod HIT-CS with wash Thread size M12	washer nut	
ection system Hilti HIT-HY 170 w	ith HIT-CS(-F)	
oduct description ection mortar / Static mixer / Steel elen		Annex A2

Designation	Material						
Steel elements made of hot dip galvanized steel							
	Strength class 8.8, f _{uk} = 800 N/mm², f _{yk} = 640 N/mm²						
Anchor rod HIT-CS-F 8.8	Elongation at fracture ($I_0 = 5d$) > 12% ductile						
111-03-1 0.0	(F) hot dip galvanized \ge 55 μ m						
Washer	(F) hot dip galvanized $\ge 55 \ \mu m$ or $\ge 80 \ \mu m$						
NL	Strength class of nut adapted to strength class of threaded rod						
Nut	(F) hot dip galvanized \ge 55 μ m						
Steel elements n	nade of zinc coated steel						
	Strength class 5.8, f _{uk} = 500 N/mm², f _{yk} = 400 N/mm²						
Anchor rod HIT-CS 5.8	Elongation at fracture ($I_0 = 5d$) > 10% ductile						
111-03 5.0	Electroplated zinc coated $\ge 5 \ \mu m$						
Washer	Electroplated zinc coated $\ge 5 \ \mu m$						
N14	Strength class of nut adapted to strength class of threaded rod						
Nut	Electroplated zinc coated \geq 5 μ m						

Injection system Hilti HIT-HY 170 with HIT-CS(-F)

Product description Materials


Annex A3

Specifications of intended use	
•	
Anchorages subject to:	
Static and quasi static loading. Science performance extension (C1 and C2) sizes M16 and M20 ank/	
 Seismic performance category C1 and C2: sizes M16 and M20 only. 	
Base material:	
Compacted reinforced or unreinforced normal weight concrete	without fibres
according to EN 206:2013+A1:2016.	
 Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016. Cracked and uncracked concrete. 	
• Cracked and uncracked concrete.	
Temperature in the base material:	
At installation	
-5 °C to +40 °C for the standard variation of temperature after installation	
· In-service	
Temperature range I: -40 °C to +40 °C	
(max. long term temperature +24 °C and max. short term temp	perature +40 °C)
Temperature range II: -40 °C to +80 °C (max. long term temperature +50 °C and max. short term temp	
	,
Use conditions (Environmental conditions):	
Structures subject to dry internal conditions (all materials).	
Design:	
 Fastenings are designed under the responsibility of an engineer experienced in fas 	tenings and concrete
work.	
· Verifiable calculation notes and drawings are prepared taking account of the loads	s to be fastened. The
position of the fastener is indicated on the design drawings (e.g. position of the	e fastener relative to
reinforcement or to supports, etc.).	
 The anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018. 	
Installation:	
 Use category: dry or wet concrete (not in flooded holes) for all drilling techniques. 	
 Drilling technique: 	
Hammer drilling	
 Installation direction D3: downward, horizontal and upward (e.g. overhead) installat 	tion admissible for all
elements.	
· Fastener installation carried out by appropriately qualified personnel and under the	ne supervision of the
person responsible for technical matters of the site.	
njection system Hilti HIT-HY 170 with HIT-CS(-F)	
ntended Use	Annex B1
Specifications	

HIT-CS(-F)	Size		M12 5.8	M12 8.8	M16	M20
Diameter of element	d	[mm]	12	12	16	20
Nominal diameter of drill bit	d ₀	[mm]	14	14	18	24
I anoth of another	min l	[mm]	160	160	190	240
Length of anchor	max I	[mm]	660	660	675	720
Effective embedment depth	h _{ef}	[mm]	102	102	117	158
Nominal embedment depth	h _{nom}	[mm]	110	110	125	170
Drill hole depth	h ₁	[mm]	115	115	130	175
Maximum diameter of clearance hole in the fixture	df	[mm]	14	14	18	22
Maximum fixture thickness	t _{fix}	[mm]	525	462	506	496
Minimum thickness of concrete member	h _{min}	[mm]	140	140	170	230
Minimum spacing and edge	Smin	[mm]	80	60	96	120
distance	for c ≥	[mm]	80	120	220	120
Minimum edge distance	Cmin	[mm]	80	60	96	120
and spacing	for s ≥	[mm]	80	120	350	120
Installation torque	T _{inst}	[Nm]	30	40	80	150

Head marking: "H I"

Marking:

Embossing: "M..xh_{nom}/I₁ G8.8" hot dip galvanized steel (HIT-CS-F) (e.g. M16x125/85 G8.8) Embossing: "M..xh_{nom}/I₁ G500" zinc coated steel (HIT-CS) (e.g. M12x110/50 G500)

Injection system Hilti HIT-HY 170 with HIT-CS(-F)

Intended Use Installation parameters Annex B2

Table B2: Maximum working time and minimum curing time HIT-HY 170

Temperature in the base material T ¹⁾	Maximum working time t _{work}	Minimum curing time ²⁾ t _{cure}
-5°C to 0°C	10 min	12 h
> 0°C to 5°C	10 min	5 h
> 5°C to 10°C	8 min	2,5 h
> 10°C to 20°C	5 min	1,5 h
> 20°C to 30°C	3 min	45 min
> 30°C to 40°C	2 min	30 min

¹⁾ The minimum foil pack temperature is +5 °C

²⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B3: Parameters of drilling, cleaning and setting tools

Steel elements	Drill an	Drill and clean		
Anchor rod HIT-CS(-F)	Drill bit	Brush	Piston plug	
	60000	******	Þ	
Size	d₀ [mm]	HIT-RB	HIT-SZ	
M12	14	14	14	
M16	18	18	18	
M20	24	24	24	

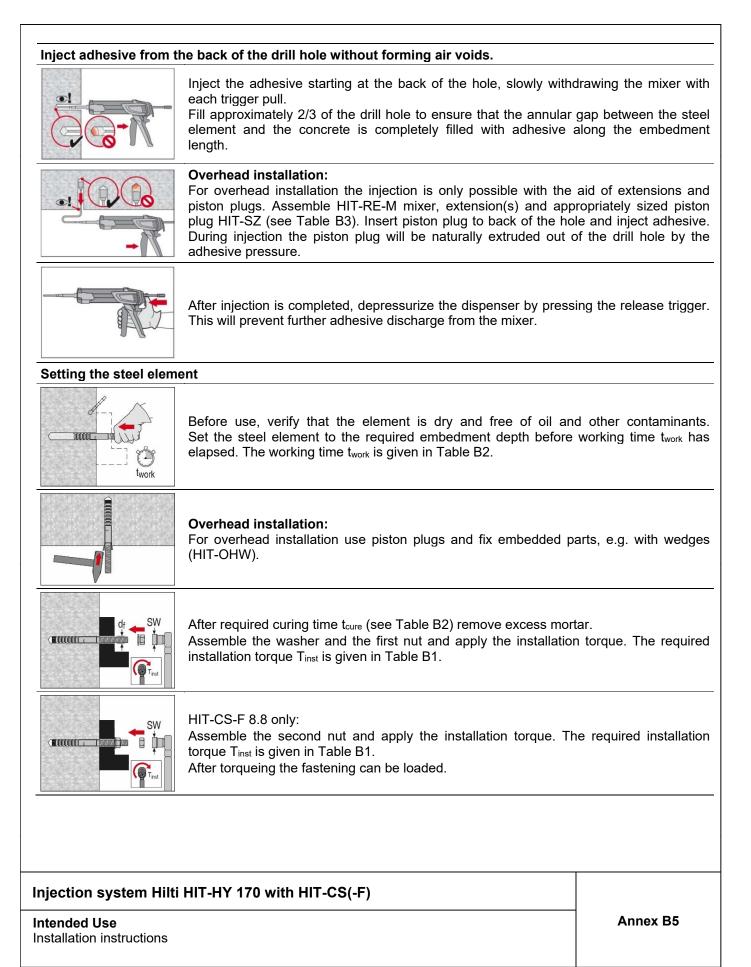
Cleaning equipment

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Injection system Hilti HIT-HY 170 with HIT-CS(-F)

Intended Use Maximum working time and minimum curing time Parameters of drilling, cleaning and setting tools, cleaning equipment Annex B3



Hole drilling Hammer drilling		
	Drill hole to the required embedment depth with a hammer drill mode using an appropriately sized carbide drill bit.	set in rotation-hamme
Drill hole cleaning:	Just before injection of the mortar, the drill hole must be free of dual ladequate hole cleaning = poor load values.	st and debris.
Compressed air clear	ing (CAC): For all drill hole diameters d ₀ and all drill hole depths h ₁ .	
2x 33A; 7	Blow 2 times from the back of the hole (if needed with nozzle whole length with oil-free compressed air (min. 6 bar at 6 m³/h) u is free of noticeable dust.	
2x	Brush 2 times with the specified brush (see Table B3) by insertin HIT-RB to the back of the hole (if needed with extension) in removing it. The brush must produce natural resistance as it (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must proper brush diameter.	a twisting motion and t enters the drill hold
2x 33;	Blow again with compressed air 2 times until return air stream is fr	ee of noticeable dust.
Injection preparation		
	Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifo mixing nozzle. Observe the instruction for use of the dispenser Check foil pack holder for proper function. Insert foil pack into for holder into dispenser.	and the morta
njection system Hilt	i HIT-HY 170 with HIT-CS(-F)	
ntended Use		Annex B4

Installation instructions

Electronic copy of the ETA by DIBt: ETA-17/0315

	Size		M12 5.8	M12 8.8	M16	M20
For a working life of 50 yea	ars			•		
Installation factor	γinst	[-]		1,	0	
Steel failure						
Characteristic resistance	N _{Rk,s}	[kN]	42,5	65,4	125,6	190,2
Partial factor	γ _{Ms,N} 1)	[-]		1,	5	
Pull-out failure						
Characteristic resistance in u	uncracked	concret	e C20/25			
Temperature range I: 40 °C / 24 °C	$N_{Rk,p}$	[kN]	5	9	_2)	_2)
Temperature range II: 80 °C / 50 °C	N _{Rk,p}	[kN]	5	1	78,0	_2)
Increasing factor ψ_c for	C30/37	[-]	1,12		1,10	_2)
concrete strength class > C20/25:	C40/50	[-]	1,22		1,18	_2)
$N_{Rk,p} = N_{Rk,p,(C20/25)} \cdot \psi_c$	C50/60	[-]	1,30		1,23	_2)
Characteristic resistance in o	cracked co	oncrete (220/25			
Temperature range I: 40 °C / 24 °C	N _{Rk,p}	[kN]	38		_2)	_2)
Temperature range II: 80 °C / 50 °C	N _{Rk,p}	[kN]	33		_2)	_2)
Concrete cone failure						
Effective anchorage depth for calculation of N _{Rk,c}	h _{ef}	[mm]	10)2	117	158
Factor for uncracked concrete	K ucr,N	[-]		1	1	
Factor for cracked concrete	k _{cr,N}	[-]		7,	7	
Edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}			
Spacing	S _{cr,N}	[mm]				
Splitting failure relevant fo	r uncrack		crete			
Effective anchorage depth for calculation of N _{Rk,sp}	h _{ef}	[mm]	102		117	158
Edge distance	C _{cr,sp}	[mm]	2,7·h _{ef} 2,6·h _{ef}		·h _{ef}	
Spacing	Scr,sp	[mm]	2·C _{cr,sp}			

¹⁾ In absence of national regulations.

²⁾ > $N^{0}_{Rk,c}$ according to EN 1992-4:2018

Injection system Hilti HIT-HY 170 with HIT-CS(-F)

Performances Essential characteristics under tension load in concrete

Annex C1

	Size		M12 5.8	M12 8.8	M16	M20
For a working life of 50 years	S	-				
Steel failure without lever ar	m					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	21,9	33,7	62,8	98,0
Partial factor	γ _{Ms,V} 1)	[-]		1,2	25	
Ductility factor	k 7	[-]		1,0	D	
Steel failure with lever arm		·				
Characteristic resistance	M ⁰ Rk,s	[Nm]	68	105	266	519
Partial factor	γ _{Ms,V} 1)	[-]	1,25			
Ductility factor	k 7	[-]	1,0			
Concrete pry-out failure		-				
Pry-out factor	k ₈	[-]		2,	D	
Concrete edge failure						
Effective length of fastener	lf	[mm]	h _{ef}			
Outside diameter of fastener	d _{nom}	[mm]	1	2	16	20

¹⁾ In absence of national regulations.

Injection system Hilti HIT-HY 170 with HIT-CS(-F)

Performances Essential characteristics under shear load in concrete Annex C2

	Size	M12	M16	M20				
Uncracked concrete temperature range I: 40°C / 24°C								
Dianlagament	δΝΟ	[mm/kN]	0,009	0,006	0,006			
Displacement	δ _{N∞}	[mm/kN]	0,029	0,029	0,029			
Uncracked concrete	e temperature range	ll: 80 °C / 50 °C		· · · ·				
Displacement	δΝΟ	[mm/kN]	0,021	0,021	0,021			
	δ _{N∞}	[mm/kN]	0,040	0,040	0,040			
Cracked concrete te	emperature range I: 4	0°C / 24°C						
Dianlagament	δ_{N0}	[mm/kN]	0,020	0,020	0,020			
Displacement	δ _{N∞}	[mm/kN]	0,035	0,029	0,029			
Cracked concrete te	emperature range II:	80°C / 50°C						
Dianlagament	δΝΟ	[mm/kN]	0,032	0,035	0,035			
Displacement	δ _{N∞}	[mm/kN]	0,046	0,040	0,040			

Table C4: Displacements under shear load

	Size		M12	M16	M20
Displacement	δνο	[mm/kN]	0,060	0,040	0,030
	δv∞	[mm/kN]	0,090	0,060	0,045

Injection system Hilti HIT-HY 170 with HIT-CS(-F)

Performances Displacements with HIT-CS(-F) Annex C3

Table C5: Essential characteristics for HIT-CS-F under tension load for seismic performance categories C1 and C2

		Size		M16	M20
For a working life of 5	50 years				
Steel failure					
Characteristic resistance	e HIT-CS-F	$N_{Rk,s,C1} = N_{Rk,s,C2}$	[kN]	125,6	190,2
Pull-out failure					
Characteristic resistance	ce (only C20/25)				
Temperature range I:	40 °C / 24 °C	$N_{Rk,p,C1} = N_{Rk,p,C2}$	[kN]	43,1	71,5
Temperature range II:	80 °C / 50 °C	$N_{Rk,p,C1} = N_{Rk,p,C2}$	[kN]	43,1	71,5

Table C6: Essential characteristics for HIT-CS-F under shear load for seismic performance categories C1 and C2

	Size		M16	M20
For a working life of 50 years				
Annular gap factor	αgap	[-]	0,	,5
Steel failure				
Characteristic resistance HIT-CS-F	$V_{Rk,s,C1} = V_{Rk,s,C2}$	[kN]	31,6	51,9

Table C7: Displacements for HIT-CS-F under tension load for seismic performance categories C2

	Size		M16	M20
Displacement DLS	$\delta_{\rm N,C2(DLS)}$	[mm]	1,2	1,5
Displacement ULS	$\delta_{N,C2(ULS)}$	[mm]	2,7	2,6

Table C8: Displacements for HIT-CS-F under shear load for seismic performance categories C2

	S	Size	M16	M20
Displacement DLS	$\delta_{V,C2(\text{DLS})}$	[mm]	3,0	3,3
Displacement ULS	δ V,C2(ULS)	[mm]	4,6	5,3

Annex C4

Performances

Essential characteristics and displacements for seismic performance categories C1 + C2