

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0991 of 3 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product ejotherm S1 and ejotherm S1 short Product family Screwed-in plastic anchor for fixing of external thermal to which the construction product belongs insulation composite systems with rendering in conrete and masonry Manufacturer EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND Manufacturing plant manufacturing plant EJOT 1, 2, 3 and 4 This European Technical Assessment 18 pages including 3 annexes which form an integral part contains of this assessment EAD 330196-01-0604, Edition 10/2017 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-17/0991 issued on 19 January 2021

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0991 English translation prepared by DIBt

Page 2 of 18 | 3 December 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 18 | 3 December 2021

Specific Part

1 Technical description of the product

The screwed-in anchor ejotherm S1 and ejotherm S1 short consists of an anchor sleeve made of polyethylene (virgin material), an anchor plate made of polyethylene (virgin material) and an accompanying specific screw made of polyamide (virgin material).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic load bearing capacity	
- Characteristic resistance under tension load	See Annex C 1
- Minimum edge distance and spacing	See Annex B 2
Displacements	See Annex C 2
Plate stiffness	See Annex C 2

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

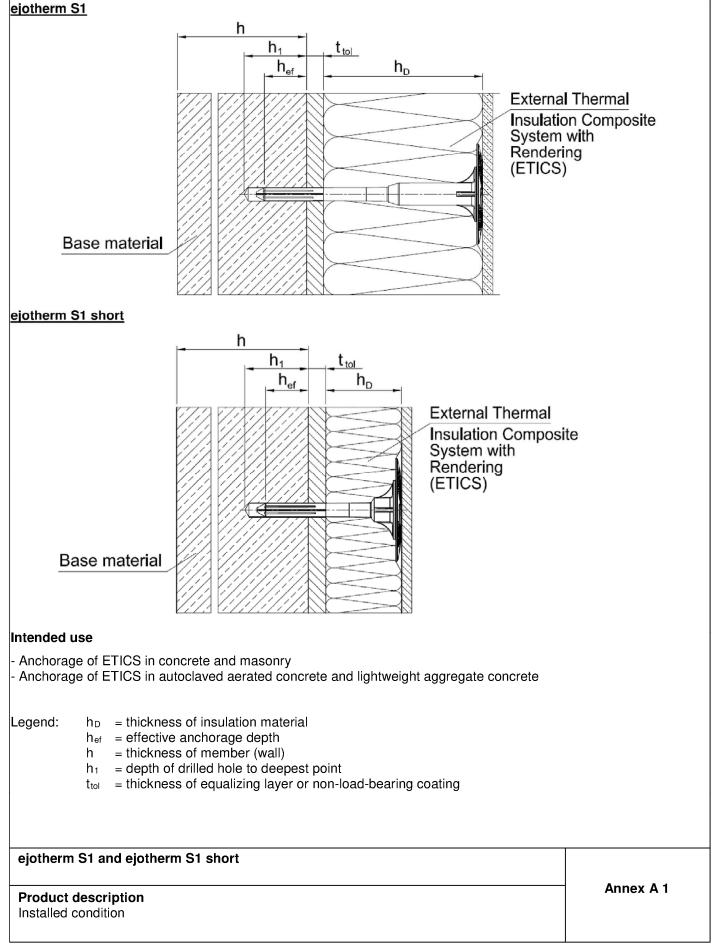
The system to be applied is: 2+

European Technical Assessment ETA-17/0991 English translation prepared by DIBt

Page 4 of 18 | 3 December 2021

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

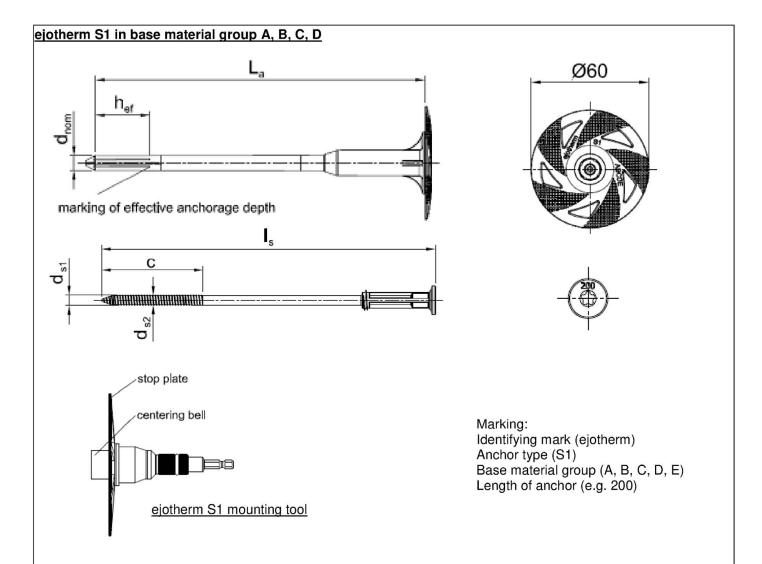
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 3 December 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Ziegler

Page 5 of European Technical Assessment ETA-17/0991 of 3 December 2021

English translation prepared by DIBt



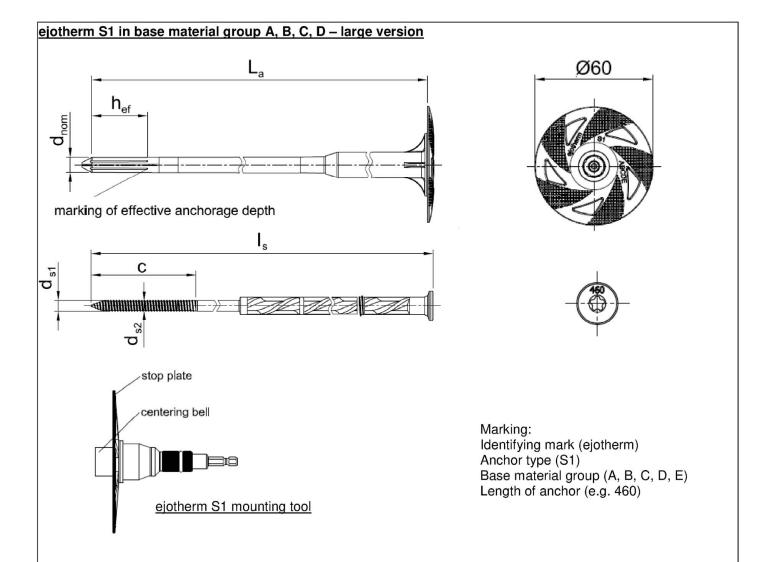
Page 6 of European Technical Assessment ETA-17/0991 of 3 December 2021

English translation prepared by DIBt

Table A1: Dimensions

		Anchor slee	eve		Plas	tic screw	
Anchor Type	d _{nom} [mm]	h _{ef} [mm]	min L _a max L _a [mm]	d₅₁ [mm]	d _{s2} [mm]	c [mm]	min I _s max I _s [mm]
ejotherm S1	8	30	100 300	5,7	5,0	55	100 300

Determination of maximum thickness of insulation h_D [mm] ejotherm S1:


 $\begin{array}{ll} h_D & = L_a - t_{tol} - h_{ef} \\ e.g. & h_D & = 200 - 10 - 30 \\ h_{Dmax} & = 160 \end{array}$

ejotherm S1 and ejotherm S1 short

Product description

Marking and dimension of the anchor sleeve from ejotherm S1; base material group: A, B, C, D; plastic screw

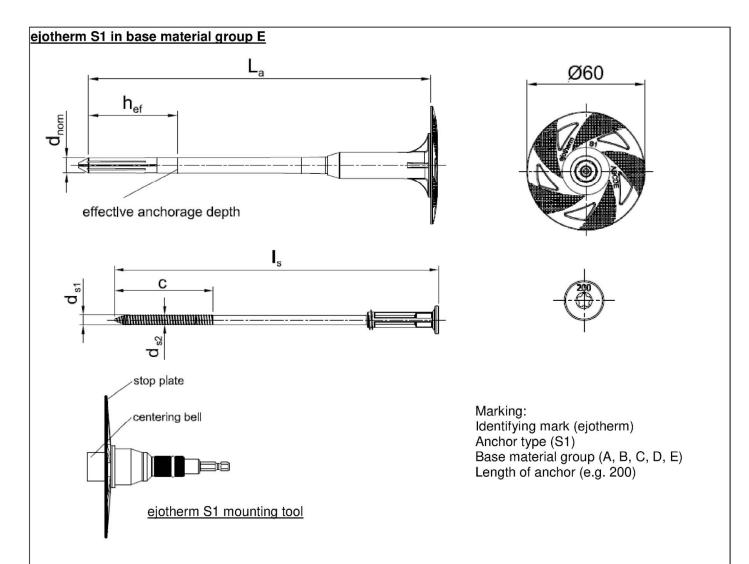
Table A2: Dimensions

		Anchor Sle	eve		Plas	stic screw	
Anchor Type	d _{nom} [mm]	h _{ef} [mm]	min L _a max L _a [mm]	d _{s1} [mm]	d₅₂ [mm]	c [mm]	min I _s max I _s [mm]
ejotherm S1	8	30	320 460	5,7	5,0	55	320 460

Determination of maximum thickness of insulation h_D [mm] ejotherm S1:

 $\begin{array}{rl} h_{D} & = La - t_{tol} - h_{ef} \\ e.g. & h_{D} & = 460 - 10 - 30 \\ h_{Dmax} & = 420 \end{array}$

ejotherm S1 and ejotherm S1 short


Product description

Marking and dimension of the anchor sleeve ejotherm S1- large version; base material group: A, B, C, D; plastic screw

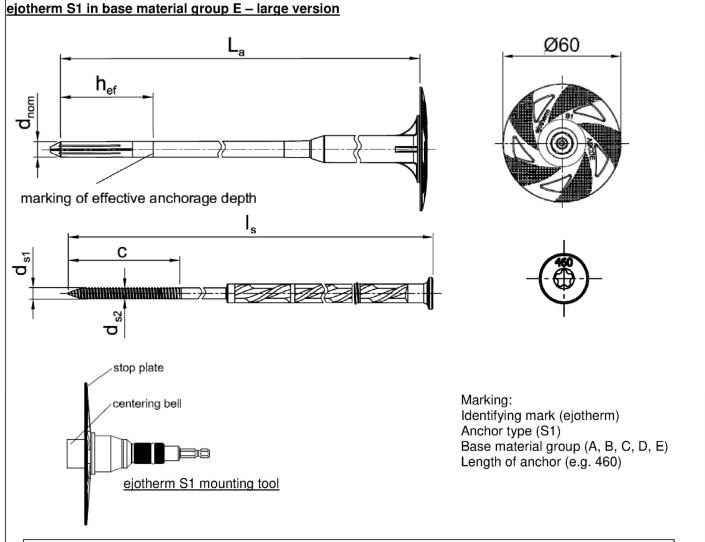
Page 8 of European Technical Assessment ETA-17/0991 of 3 December 2021

English translation prepared by DIBt

Table A3: Dimensions

		Anchor Sle	eve		Plas	tic screw	
Anchor Type	d _{nom}	h _{ef}	min L _a max L _a	d _{s1}	d₅₂	с	min l₅ max l₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ejotherm S1	8	50	100 300	5,7	5,0	55	100 300

Determination of maximum thickness of insulation h_D [mm] ejotherm S1:


 $\begin{array}{rl} h_D & = L_a - t_{tol} - h_{ef} \\ e.g. & h_D & = 200 - 10 - 50 \\ h_{Dmax} & = 140 \end{array}$

ejotherm S1 and ejotherm S1 short

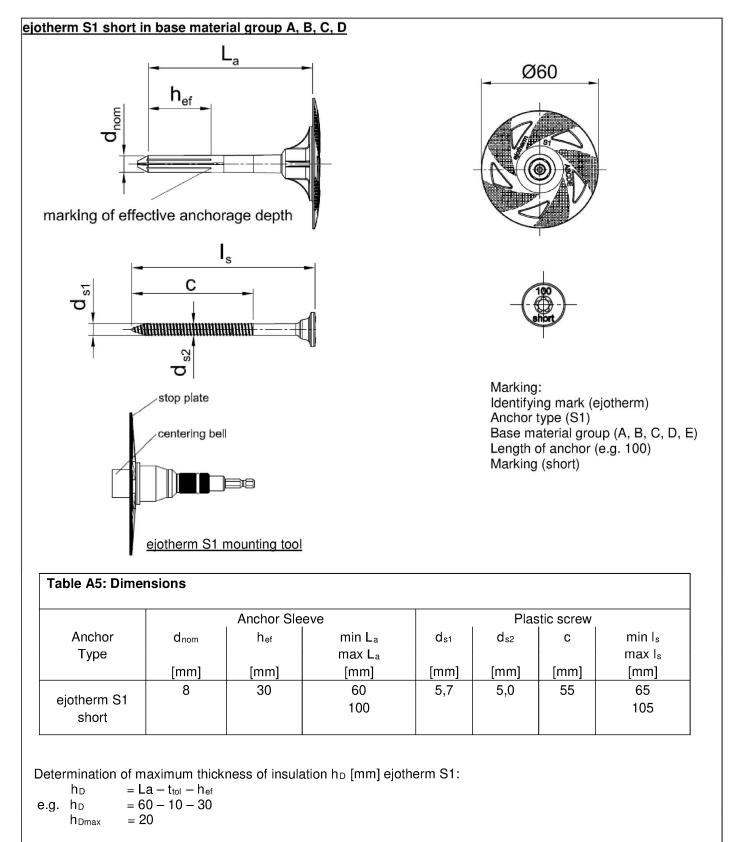
Product description

Marking and dimension of the anchor sleeve ejotherm S1; base material group: E; plastic screw

Table A4: Dimensions

		Anchor Sle	eve		Plas	tic screw	
Anchor Type	d _{nom}	h _{ef}	min L _a max L _a	d _{s1}	d _{s2}	с	min l₅ max l₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ejotherm S1	8	50	320 460	5,7	5,0	55	320 460

Determination of maximum thickness of insulation h_D [mm] ejotherm S1:

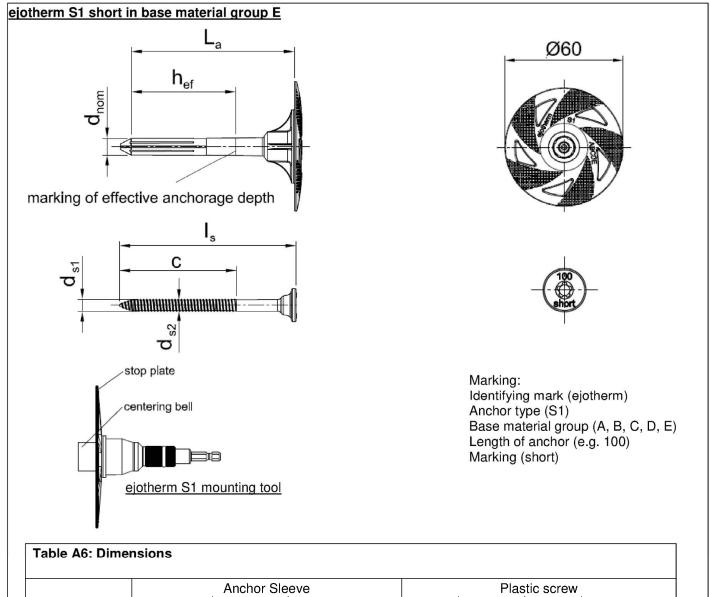

$$\begin{array}{ll} h_D & = L_a - t_{tol} - h_{ef} \\ e.g. & h_D & = 460 - 10 - 50 \\ h_{Dmax} & = 400 \end{array}$$

ejotherm S1 and ejotherm S1 short

Product description

Marking and dimension of the anchor sleeve ejotherm S1- large version; base material group: E; plastic screw

ejotherm S1 and ejotherm S1 short


Product description

Marking and dimension of the anchor sleeve ejotherm S1 short; base material group: A, B, C, D; plastic screw

Page 11 of European Technical Assessment ETA-17/0991 of 3 December 2021

English translation prepared by DIBt

		Anchor Sle	eve		Plas	tic screw	
Anchor Type	d _{nom}	h _{ef}	min La max La	d _{s1}	d _{s2}	С	min I₅ max I₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ejotherm S1 short	8	50	80 100	5,7	5,0	55	85 105

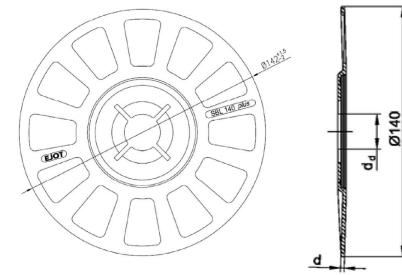
Determination of maximum thickness of insulation h_D [mm] ejotherm S1:

 $\begin{array}{ll} h_D & = L_a - t_{tol} - h_{ef} \\ e.g. & h_D & = 80 - 10 - 50 \\ h_{Dmax} & = 20 \end{array}$

ejotherm S1 and ejotherm S1 short

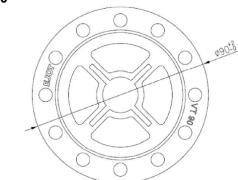
Product description

Marking and dimension of the anchor sleeve ejotherm S1 short; base material group: E; plastic screw


Page 12 of European Technical Assessment ETA-17/0991 of 3 December 2021

English translation prepared by DIBt

Table A7: Materials ejotherm S1 / ejotherm S1 short				
Anchor plate	Polyethylene (virgin material) PE-HD nature, yellow, orange, red, blue, grey, white, green, anthracite			
Anchor sleeve	Polyethylene (virgin material) PE-HD nature, yellow, orange, red, blue, grey, white, green, anthracite			
Plastic screw	Polyamide (virgin material) PA 6 GF 50 colour: nature, black			


SBL 140 plus

	SBL 1	40 plus	
colo	our	nature	
dd	[mm]	21,0	
d	[mm]	2,0	
Mat	terial	1) 2)	

VT 90

Electronic copy of the ETA by DIBt: ETA-17/0991

VT 90				
colour	nature			
d _d [mm]	18,5			
d [mm]	1,2			
Material	1) 2)			

¹⁾ polyamide, PA 6
²⁾ polyamide, PA GF 50

ejotherm S1 and ejotherm S1 short

Product description Materials and slip on plates

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Compacted normal weight concrete without fibres (base material group A) according to Annex C 1.
- Solid masonry (base material group B), according to Annex C 1.
- Hollow or perforated masonry (base material group C), according to Annex C 1.
- Prefabricated reinforced components of lightweight aggregate concrete (LAC) (base material group D), according to Annex C 1.
- Autoclaved aerated concrete (base material group E), according to Annex C 1.
- For other base materials of base material groups A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 51 edition April 2018.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed under the responsibility of an engineer experienced in accordance and masonry work with the partial safety factors $\gamma_m = 2,0$ and $\gamma_F = 1,5$ if there are no other regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering \leq 6 weeks

ejotherm S1 and ejotherm S1 short

Intended use Specifications Annex B 1

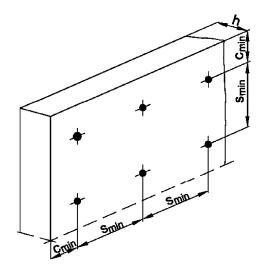


Table B1: Installation parameters			
Anchor type		ejotherm S1 / ej	otherm S1 short
		Base mate	erial group
		A, B, C, D	E
Drill hole diameter	d₀ [mm] =	8	8
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45	8,45
Depth of drilled hole to deepest point	h₁ [mm] ≥	40	60
Effective anchorage depth	h _{ef} [mm] ≥	30	50

Table B2: Anchor distances and dimensions of members

Anchor type	ejotherm S1 / ejotherm S1 short		
Minimum spacing	s _{min} ≥ [mm]	100	
Minimum edge distance	$c_{min} \geq [mm]$	100	
Minimum thickness of member	h ≥ [mm]	100	

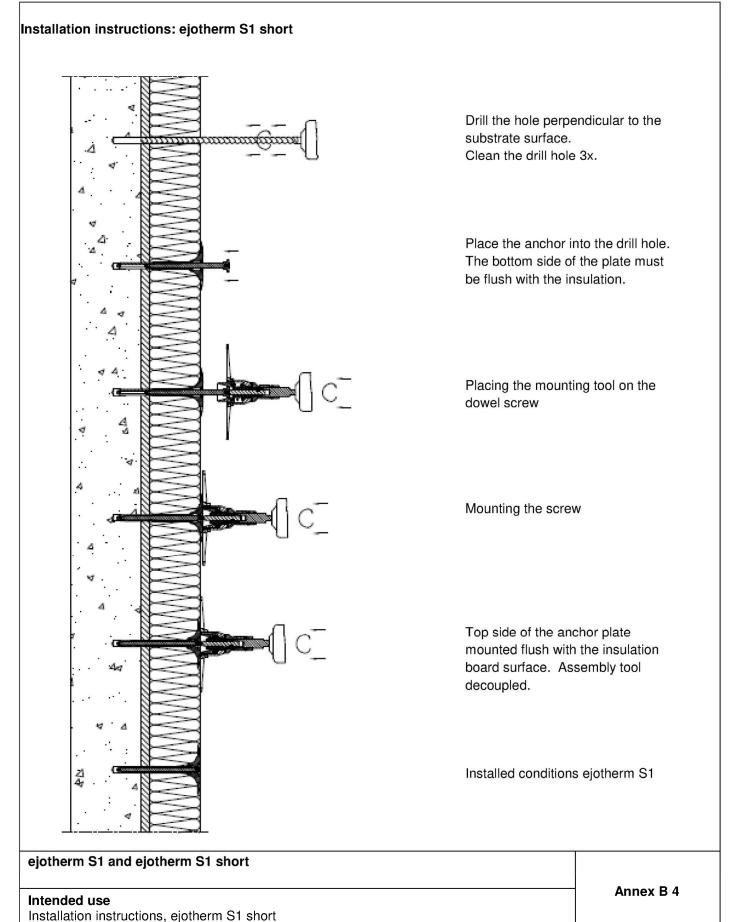
Scheme of distance and spacing


ejotherm S1 and ejotherm S1 short

Installations parameters, Edge distances and spacing Annex B 2

Page 15 of European Technical Assessment ETA-17/0991 of 3 December 2021

English translation prepared by DIBt



Page 16 of European Technical Assessment ETA-17/0991 of 3 December 2021

English translation prepared by DIBt

Anchor type					ejotherm S1	ejotherm S1 short
Base materials	Bulk density ρ [kg/dm³]	Minimum com- pressive strength f₅ [N/mm²]	General remarks	Drill method	N _{Rk} [KN]	N _{Rk} [kN]
Concrete C12/15 – C50/60 as per EN 206:2013+A1:2016			Compacted normal weight concrete without fibres	hammer	1,5	1,5
Thin concrete members (e.g. weather resistant skin) Concrete C16/20 – C50/60 as per EN 206:2013+A1:2016			Compacted normal weight concrete without fibres Thickness of the thin skin: 100 mm > h ≥ 40 mm	hammer	1,4	1,4
Clay bricks, Mz as per EN 771-1:2011+A1:2015	≥ 1 ,8	12	Vertically perforation ⁴⁾ up to 15 %.	hammer	1,5	1,5
Sand-lime solid bricks, KS as per EN 771-2:2011+A1:2015	≥ 1 ,8	12	Vertically perforation ⁴⁾ up to 15 %.	hammer	1,5	1,5
Vertically perforated clay bricks, HLz as per EN 771-1:2011+A1:2015	> 1,6	20	Vertically perforation ⁴⁾ > 15 % and ≤ 50 %.	hammer / rotary	1,5 ¹⁾	1,5 ¹⁾
Sand-lime perforated bricks, KSL as per EN 771-2:2011+A1:2015	≥ 1,6	12	Vertically perforation ⁴⁾ > 15 % and ≤ 50 %.	hammer / rotary	1,5 ²⁾	1,5 ²⁾
Lightweight concrete hollow blocks, Hbl as per EN 771-3:2011+A1:2015	≥ 1 , 2	6		hammer / rotary	0,9 ³⁾	0,9 ³⁾
lightweight aggregate concrete, LAC as per EN 1520:2011, EN 771-3:2011+A1:2015	≥ 0 ,7	4		rotary	0,9	0,9
Autoclaved aerated concrete as per EN 771-4:2011 +A1:2015	≥ 0,55	4		rotary	0,75	0,75

¹⁾ The value applies only for outer web thickness \geq 25 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

²⁾ The value applies only for outer web thickness \geq 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

³⁾ The value applies only for outer web thickness \geq 40 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

⁴⁾ Cross section reduced by perforation vertically to the resting area

ejotherm S1 and ejotherm S1 short

Performances

Characteristic resistance

Annex C 1

Electronic copy of the ETA by DIBt: ETA-17/0991

Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2016-05			
anchor type	insulation thickness h⊳ [mm]	point thermal transmittance χ [W/K]	
ejotherm S1	60	0,001	
ejotherm S1	80 – 460	0,000	
ejotherm S1 short	20	0,002	
ejotherm S1 short	40 – 60	0,001	

Table C3: Plate stiffness according EOTA Technical Report TR 026:2016-05				
anchor type	diameter load resistance		plate stiffness	
	of the anchor plate	of the anchor plate		
	[mm]	[kN]	[kN/mm]	
ejotherm S1	60	1,5	0,7	
ejotherm S1 short	60	1,5	0,7	

Base materials	Bulk density	minimum	Tension load N	Displacements Δδ _N [mm]	
	ρ	compressive strength	[kN]	$L_a =$	$L_a =$
	ہو [kg/dm³]	f _b [N/mm ²]		60 – 300 mm	320 – 460 mm
Concrete C12/15 – C50/60	[
(EN 206:2013+A1:2016)			0,5	0,6	0,9
Thin concrete members					
(e.g. weather resistant skin)			0,45	0,6	0,9
Concrete C16/20 – C50/60			0,45	0,6	0,9
(EN 206:2013+A1:2016)					
Clay bricks, Mz	≥ 1 ,8	12	0,5	0,6	0,9
(EN 771-1:2011+A1:2015)	<u> </u>	12	0,0	0,0	0,0
Sand-lime solid bricks, KS	≥ 1 ,8	12	0,5	0,6	0,9
(EN 771-2:2011+A1:2015)	_ 1,0	12		0,0	0,0
Vertically perforated clay bricks,	≥ 1,6	20	0,5	0,6	0,9
HLz (EN 771-1:2011+A1:2015)	_ 1,0	20	0,0		
Sand-lime perforated bricks, KSL	≥ 1,6	12	0,5	0,6	0,9
(EN 771-2:2011+A1:2015)	_ 1,0				
Lightweight concrete hollow					
blocks, Hbl	≥ 1,2	6	0,3	0,4	0,6
(EN 771-3:2011+A1:2015)					
Lightweight aggregate concrete,					
LAC (EN 1520:2011 /	\geq 0,7	4	0,3	0,4	0,6
EN 771-3:2011+A1:2015)					
Autoclaved aerated concrete	<u> </u>	4	0,25	0,3	0,4
EN 771-4:2011+A1:2015)	\geq 0,55	4	0,25	0,3	0,4

ejotherm S1 and ejotherm S1 short

Performances

Point thermal transmittance, plate stiffness, displacements