

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0438 of 7 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Injection system Anchorstar Plus

Bonded fastener for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

23 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-17/0438 issued on 12 December 2017

European Technical Assessment ETA-17/0438

Page 2 of 23 | 7 June 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z52764.21 8.06.01-78/21

European Technical Assessment ETA-17/0438

Page 3 of 23 | 7 June 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer Injection system Anchorstar Plus" is a bonded fastener consisting of a cartridge with injection fischer mortar Anchorstar Plus or Anchorstar Plus High Speed or Anchorstar Plus Low Speed and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z52764.21 8.06.01-78/21

European Technical Assessment ETA-17/0438

Page 4 of 23 | 7 June 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

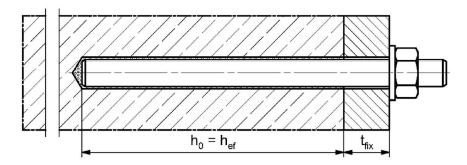
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 7 June 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Z52764.21 8.06.01-78/21

Installation conditions part 1

fischer anchor rod

Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

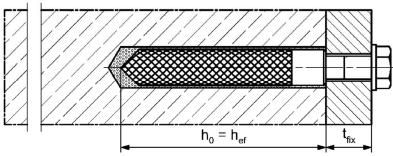
hef = effective embedment depth

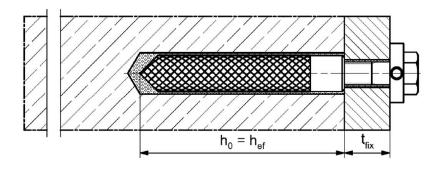
 t_{fix} = thickness of fixture

fischer injection system Anchorstar Plus

Product description

Installation conditions part 1


Annex A 1


Installation conditions part 2

fischer internal threaded anchor RG MI

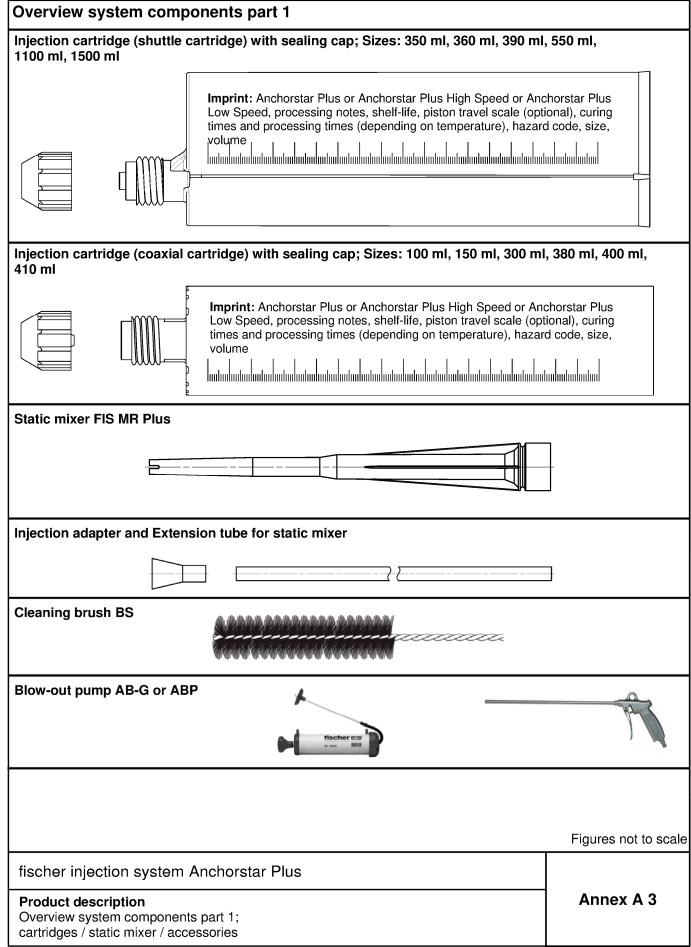
Pre-positioned installation

Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

h_{ef} = effective embedment depth


 t_{fix} = thickness of fixture

fischer injection system Anchorstar Plus

Product description

Installation conditions part 2

Annex A 2

Electronic copy of the ETA by DIBt: ETA-17/0438

Overview system components part 2 fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Figures not to scale fischer injection system Anchorstar Plus Annex A 4 **Product description** Overview system components part 2; steel components

English translation prepared by DIBt

Part	Designation		Material	
1	Injection cartridge		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance clas CRC V acc. to EN 1993-1-4:201
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hotdip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) $A_5 > 8$ % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 $A_5 > 8$ % fracture elongation
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014
	her injection system duct description	Anchorstar Plus		Annex A 5

Specifications of intended use (part 1) Table B1.1: Overview use and performance categories Anchorstar Plus with ... Anchorages subject to fischer internal threaded Anchor rod anchor RG MI Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit (fischer FHD, Heller Duster Expert"; Nominal drill bit diameter (d₀) Bosch "Speed 12 mm to 35 mm Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max") Tables: C2.1 uncracked all sizes all sizes C3.1 Tables: concrete C5.1 C1.1 Static and quasi C6.2 C3.1 static load, in C4.1 C6.1 cracked M10 bis M20 _2) concrete dry or wet 11 all sizes concrete Use category water filled 12 M 12 to M 30 M 8 bis M 20 hole 1) Installation direction D3 (downward and horizontal and upwards (e.g. overhead) installation) $T_{i,min} = -10 \, ^{\circ}\text{C} \text{ to } T_{i,max} = +40 \, ^{\circ}\text{C}$ Installation temperature For the standard variation of temperature after installation Temperature (max. short term temperature +80 °C; -40 °C to +80 °C max. long term temperature +50 °C) range I In-service temperature Temperature (max. short term temperature +120 °C; -40 °C to +120 °C max. long term temperature +72 °C) range II 1) Only with coaxial cartridges: 380ml, 400 ml, 410 ml 2) No performance assessed fischer injection system Anchorstar Plus Annex B 1 Intended use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 5 table A5.1.

Design:

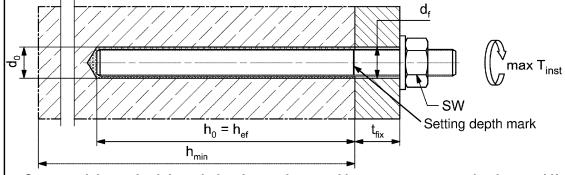
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer injection system Anchorstar Plus	
Intended use Specifications (part 2)	Annex B 2

Table B3.1:	Installation p	paramete	rs for ar	chor	rods							
Anchor rods			Thread	М6	M8	M10	M12	M16	M20	M24	M27	M30
Width across flat	S	SW		10	13	17	19	24	30	36	41	46
Nominal drill hole		8	10	12	14	18	24	28	30	35		
Drill hole depth						$h_0 = h_e$	f					
Effective	h _{ef, min}		50	60	60	70	80	90	96	108	120	
embedment dept	h _{ef, max}		72	160	200	240	320	400	480	540	600	
Minimum spacing and minimum = cdge distance			[mm]	40	40	45	55	65	85	105	125	140
Diameter of the	pre-positioned installation	d _f		7	9	12	14	18	22	26	30	33
clearance hole of the fixture	push through installation	df		9	12	14	16	20	26	30	33	40
Minimum thickness of concrete h _{min}					h _{ef} + 30	(≥100)		h _{ef} + 2d ₀			
Maximum installa	ation torque	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300


Marking (on random place) fischer anchor rod:

Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1:2016

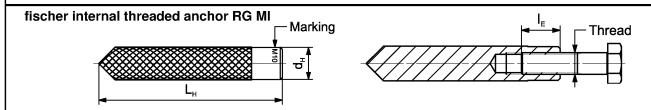
1) PC = property class

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- Materials, dimensions and mechanical properties according to Annex A 5, Table A5.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

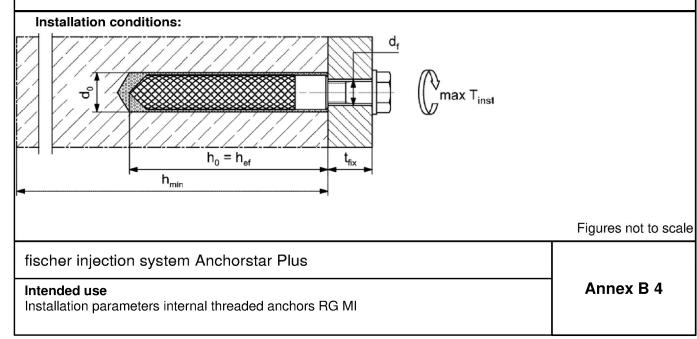
Figures not to scale


fischer injection system Anchorstar Plus

Intended use
Installation parameters anchor rods

Annex B 3

Table B4.1: Installation	on param	eters fo	r fischer	internal th	readed and	hors RG N	1 1
Internal threaded anchors R	G MI	Thread	М8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_{H}$		12	16	18	22	28
Nominal drill hole diameter	d ₀		14	18	20	24	32
Drill hole depth	h ₀				$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}] [18	23	26	35	45
Minimum screw-in depth	I _{E,min}	1 [8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120



Marking: Anchor size e. g.: M10

Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 5, Table A5.1

Table B5.1: Parameters of the cleaning brush BS (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d ₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter BS	d _b	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Table B5.2 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

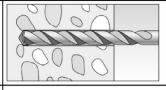
Temperature at	Maxir	num processino t _{work}	g time	Minimum curing time 1) t _{cure}			
anchoring base [°C]			Anchorstar Plus Low Speed	Anchorstar Plus High Speed	Anchorstar Plus	Anchorstar Plus Low Speed	
-10 to -5 ²⁾	-	-	-	12 h	-	-	
> -5 to 0 ²⁾	5 min	-	-	3 h	24 h	-	
> 0 to 5 ²⁾	5 min	13 min	-	3 h	3 h	6 h	
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h	
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h	
> 20 to 30	-	4 min	6 min	-	45 min	60 min	
> 30 to 40	-	2 min	4 min	-	35 min	30 min	

¹⁾ In wet concrete or water filled holes the curing times must be doubled

fischer injection system Anchorstar Plus

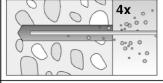
Intended use
Cleaning brush (steel brush)
Processing time and curing time

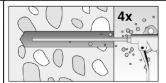
Annex B 5


²⁾ Minimal cartridge temperature +5°C

Installation instructions part 1

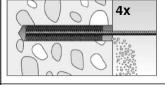
Drilling and cleaning the hole (hammer drilling with standard drill bit)


1

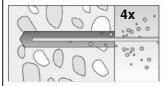

Drill the hole.

Nominal drill hole diameter **d**₀ and drill hole depth **h**₀ see **tables B3.1, B4.1**

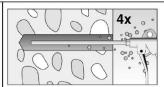
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

3



Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **table B5.1**

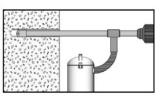
4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5

Drilling and cleaning the hole (hammer drilling with hollow drill bit)


1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Electronic copy of the ETA by DIBt: ETA-17/0438

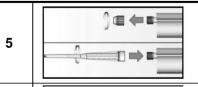
Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **tables B3.1, B4.1**

Go to step 5

fischer injection system Anchorstar Plus

Intended use


Installation instructions part 1

Annex B 6

Installation instructions part 2

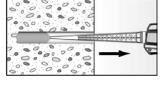
Preparing the cartridge

Remove the sealing cap

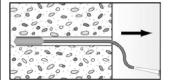
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

Place the cartridge into the dispenser

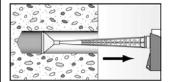
7



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey


Go to step 8

Injection of the mortar


8

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

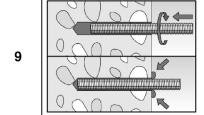
For drill hole depth ≥ 150 mm use an extension tube

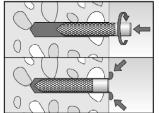
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection adapter

Go to step 9

fischer injection system Anchorstar Plus

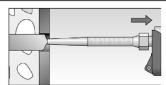
Intended use


Installation instructions part 2


Annex B 7

Installation instructions part 3

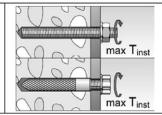
Installation of anchor rods or fischer internal threaded anchors RG MI



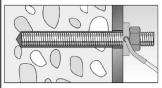
Only use clean and oil-free metal parts. Mark the setting depth of the metal part. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

For overhead installations support the metal part with wedges (e. g. fischer centering wedges) or fischer overhead clips.


For push through installation fill the annular gap with mortar

10


Wait for the specified curing time t_{cure} see table B5.2

11

Mounting the fixture max T_{inst} see tables B3.1 and B4.1

Option

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars Anchorstar Plus, FIS HB, FIS SB, FIS V, FIS EM Plus). ATTENTION: Using fischer filling disc.

reduces t_{fix} (usable length of the anchor)

fischer injection system Anchorstar Plus

Intended use

Installation instructions part 3

Annex B 8

Table C1.1: Charact and sta					der ten	sion / s	shear	load o	f fisch	er an	chor r	ods	
Anchor rod / standard threa	aded rod			М6	M8	M10	M12	M16	M20	M24	M27	M30	
Bearing capacity under ten	sion load	d, ste	el fail	ure 3)									
ο̈́		4.8		8	15(13)	23(21)	33	63	98	141	184	224	
Steel zinc plated	 >	5.8		10	19(17)	29(27)	43	79	123	177	230	281	
ce	ropert	8.8	[kN]	16	29(27)	47(43)	68	126	196	282	368	449	
Characteristic Stainless steel R and high corrosion	Property class	50	[KIN]	10	19	29	43	79	123	177	230	281	
는 영화 high corrosion	-	70		14	26	41	59	110	172	247	322	393	
resistant steel HCR		80		16	30	47	68	126	196	282	368	449	
Partial factors 1)													
		4.8						1,50					
ੈ Steel zinc plated	_{>}	5.8						1,50					
ial factors standing Nas. N	ropert	8.8	[-]	1,50									
Stainless steel R and high corrosion	Property class	50	[-]	2,86									
	"	_70					1,	50 ²⁾ / 1,	87				
resistant steel HCR	80						1,60						
Bearing capacity under she	ar load,	steel	failu	re ³⁾									
without lever arm													
o ×		4.8		4	9(8)	14(13)	20	38	59	85	110	135	
it of Steel zinc plated		5.8		6	11(10)	17(16)	25	47	74	106	138	168	
Characteristics Stance of Stainless steel R and high corrosion	Property class	8.8		8	15(13)	23(21)	34	63	98	141	184	225	
Characters steel B and signature of the	1000	50		5	9	15	21	39	61	89	115	141	
high corrosion	🖵	70		7	13	20	30	55	86	124	161	197	
L Tesistant steel HON		80		8	15	23	34	63	98	141	184	225	
Ductility factor		k ₇	[-]					1,0					
with lever arm										ı	1		
Steel zinc plated		4.8		6		30(27)	52	133	259	448	665	899	
Steel zinc plated	≥	5.8		7		37(33)	65	166	324	560	833	1123	
	 per ass	8.8	[Nm]	12		60(53)	105	266	519	896	1333	1797	
Stainless steel R and high corrosion	Property class	50	[]	7	19	37	65	166	324	560	833	1123	
l ∺ high corrosion		70		10	26	52	92	232	454	784	1167	1573	
		80		12	30	60	105	266	519	896	1333	1797	
Partial factors 1)			-										
O Charles alated		4.8						1.25					
인 Steel zinc plated	arty s	5.8						1.25					
Steel zinc plated Stainless steel R and high corrosion	Property class	8.8 50	[-]					1.25 2.38					
high corrosion	4	70					1.2	25 ²⁾ / 1.	 56				
L resistant steel LICD			-										

¹⁾ In absence of other national regulations

resistant steel HCR

fischer injection system Anchorstar Plus

Performances

Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods

80

Annex C 1

1.33

²⁾ Only admissible for high corrosion resistant steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1:					or steel fa	ilure under s RG MI	tension / sl	near load of	f		
fischer internal	threade	ed anchors	RG MI		M8	M10	M12	M16	M20		
Bearing capacit	y unde	r tension lo	ad, ste	el fai	ure	-		-			
		Property	5.8		19	29	43	79	123		
Charact. resistance with	$N_{Rk,s}$	class	8.8	[kN]	29	47	68	108	179		
screw	I N Rk,s	Property	R	נאואן	26	41	59	110	172		
		class 70	HCR		26	41	59	110	172		
Partial factors1)											
		Property	5.8				1,50				
Partial factors	γMs,N	class	8.8	[-]	1,50						
Tarilar lactors	y IVIS,IN	Property	R		1,87						
	_	class 70	HCR				1,87				
Bearing capacit	y unde	r shear loa	d, steel	failu	re						
Without lever ar	m										
Obawast		Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0		
Charact. resistance with	$V^0_{Rk,s}$	class	8.8		14,6	23,2	33,7	54,0	90,0		
screw	V nk,s	Property	_R	[[[,]	12,8	20,3	29,5	54,8	86,0		
		class 70	HCR		12,8	20,3	29,5	54,8	86,0		
Ductility factor			k ₇	[-]			1,0				
With lever arm											
Obanast		Property	5.8		20	39	68	173	337		
Charact. resistance with	M^0 Rk,s	class	8.8	[Nm]	30	60	105	266	519		
screw	IVI DK,S	Property	R]]	26	52	92	232	454		
		class 70	HCR		26	52	92	232	454		
Partial factors ¹⁾											
		Property	5.8				1,25				
Partial factors	γMs,V	class	8.8	[-]			1,25				
i artial lactors	y IVIS, V	Property	R				1,56				
		class 70	HCR				1,56				

¹⁾ In a	absence	of oth	er nation	ial regula	ations
--------------------	---------	--------	-----------	------------	--------

fischer injection system Anchorstar Plus	
Performances Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG MI	Annex C 2

Size Tension load								\						
Tension load								All size	s					
									4 . 0 .					
Installation facto		γinst	[-]				See an	nex C 4	4 to C 5					
Factors for the	compressive stren	gth of	concr	ete > C	20/25									
-	C25/30							1,05						
-	C30/37 C35/45							1,10						
Increasing	Ψ_{c}	[-]					1,15							
factor for τ _{Rk}	10	' '					1,19							
-							1,22							
	C50/60							1,26						
Splitting failure														
-	h / h _{ef} ≥ 2,0							1,0 h _{ef}						
Edge distance $2.0 > h / h_{ef} > 1.3$			[mm]					6 h _{ef} - 1,						
	h / h _{ef} ≤ 1,3							2,26 h _e	f					
Spacing		S _{cr,sp}						2 C _{cr,sp}						
Concrete cone	failure													
Uncracked cond	crete	$k_{\text{ucr},N}$	[-]					11,0						
Cracked concre	te	k cr,N	LJ					7,7						
Edge distance		Ccr,N	[mm]					1,5 h _{ef}						
Spacing		Scr,N	[111111]					$2\;c_{\text{cr},N}$						
Factors for sus	stained tension load	k												
Temperature ra	nge		[-]	50 °C / 80 °C					7:	72 °C / 120 °C				
			[-]	0,74 0,87										
Factor		T sus	[-]			0,74								
Factor Shear load		Y*sus	[-]			0,74				0,67				
	or					0,74		1,2		0,67				
Shear load Installation factor		Y*sus γinst	[-]			0,74		1,2		0,07				
Shear load	out failure	γinst	[-]			0,74		1,2		0,07				
Shear load Installation facto Concrete pry-c Factor for pry-o	out failure ut failure					0,74		-		0,67				
Shear load Installation factor Concrete pry-of Factor for pry-of Concrete edge Effective length	out failure ut failure failure	γinst	[-]		or d _{nom}	≤ 24 m		2,0 (h _{ef} ; 12						
Shear load Installation factor Concrete pry-o Factor for pry-o Concrete edge Effective length shear loading	out failure ut failure failure of fastener in	γinst k ₈	[-]		or d _{nom}			2,0 (h _{ef} ; 12						
Shear load Installation factor Concrete pry-of Factor for pry-of Concrete edge Effective length shear loading Calculation dia	out failure ut failure failure of fastener in	γinst k ₈	[-]	1	or d _{nom}	≤ 24 m > 24 m	m: min	2,0 (h _{ef} ; 12 (h _{ef} ; 8 c	I _{nom} ; 300) mm)		M30		
Shear load Installation factor Concrete pry-o Factor for pry-o Concrete edge Effective length shear loading	out failure ut failure failure of fastener in meters ods and	γinst k ₈	[-]		or d _{nom}	≤ 24 m		2,0 (h _{ef} ; 12			M27 27	M30		

Table C4.1:	Characteristic values for combined pull-out and concrete failure for fischer
	anchor rods and standard threaded rods in hammer drilled holes;
	uncracked or cracked concrete

uncracked or cracked concrete												
Anchor re	od / standard thread	ded rod		М6	М8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and concrete cone failure												
Calculatio	Calculation diameter d [mm]					10	12	16	20	24	27	30
Uncracke	Jncracked concrete											
Characte	ristic bond resistan	ce in un	cracked	concre	te C20/	25						
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)												
Tem-	I: 50 °C / 80 °C		FB.17 27	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature range	II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-	drilling with standard	drill bit c	r hollow d	rill bit (v	vater fil	led hole) 1)		•	•	•	
Tem-	I: 50 °C / 80 °C			_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature range	II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Installatio	on factors		•									
Dry or we	t concrete		r 1	1,2								
Water fille	ed hole	γinst	[-]	_2)	-2) -2) -2) 1,4 ¹⁾							
Cracked	concrete											
Characte	ristic bond resistan	ce in cr	acked co	ncrete	C20/25							
Hammer-	drilling with standard	drill bit c	r hollow d	rill bit (d	dry or w	et conc	rete)					
Tem-	I: 50 °C / 80 °C		[N]/21	_2)	_2)	6,0	6,0	6,0	5,5	_2)	_2)	_2)
perature range	II: 72 °C / 120 °C	$ au_{ m Rk,cr}$	[N/mm ²]	_2)	_2)	5,0	6,0	6,0	5,0	_2)	_2)	_2)
Hammer-	drilling with standard	drill bit c	r hollow d	rill bit (v	water fil	led hole) 1)		•			
Tem-	I: 50 °C / 80 °C			_2)	_2)	_2)	5,0	5,0	4,5	_2)	_2)	_2)
perature range	II: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installation	on factors											
Dry or wet	concrete		[]					1,2				
Water filled	d hole	γinst	[-]	_2)	_2)	_2)			1,4	4 ¹⁾		

¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

fischer injection system Anchorstar Plus

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Annex C 4

²⁾ No Performance assessed

Table C5.1:	Characteristic values for combined pull-out and concrete failure for fischer
	internal threaded anchors RG MI in hammer drilled holes; uncracked
	concrete

Internal threaded anchor	RG MI		M8	M10	M12	M16	M20			
Combined pullout and co	oncrete con	e failure			-					
Calculation diameter	d	[mm]	12	16	18	22	28			
Uncracked concrete										
Characteristic bond resis	stance in un	cracked	concrete C2	0/25						
Hammer-drilling with stanc	lard drill bit c	r hollow d	Irill bit (dry or	wet concrete	<u> </u>					
Tem- I: 50 °C / 80 °		[N/mm ²]	10,5	10,0	9,5	9,0	8,5			
range II: 72 °C / 120	°C T _{Rk,ucr}		9,0	8,0	8,0	7,5	7,0			
Hammer-drilling with stand	lard drill bit c	r hollow d	Irill bit (water	filled hole)1)						
Tem- 1: 50 °C / 80 °		[N/mm ²]	10,0	9,0	9,0	8,5	8,0			
perature II: 72 °C / 120	°C T _{Rk,ucr}	[1 3 /11111-]	7,5	6,5	6,5	6,0	6,0			
Installation factors										
Dry or wet concrete	200	[-]			1,2	· ·				
Water filled hole	—— γinst	[-]		1,4 1)						

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

fischer injection system Anchorstar Plus	
Performances Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI	Annex C 5

English translation prepared by DIBt

Table C6.1: Displacements for anchor rods											
Anchor	rod	М6	М8	M10	M12	M16	M20	M24	M27	M30	
Displacement-Factors for tension load ¹⁾											
Uncrack	ed concrete; T	emperatu	ire range	I, II							
δ _{N0-Factor}	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
δ _{N∞-} Factor][[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Cracked	concrete; Ten	nperature	range I, I	Ī							
δ _{N0} -Factor	[mm//N1/mm2)]	_3)	_3)	0,12	0,12	0,13	0,13	_3)	_3)	_3)	
δ _{N0} -Factor	[mm/(N/mm²)]	_3)	_3)	0,27	0,30	0,30	0,30	_3)	_3)	_3)	
Displacement-Factors for shear load ²⁾											
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II						
δv0-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
δv∞-Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C6.2: Displacements for fischer internal threaded anchors RG MI

G MI	М8	M10	M12	M16	M20							
Displacement-Factors for tension load ¹⁾												
ed concrete; T	emperature rang	e I, II										
[mm//NI/mm2)1	0,10	0,11	0,12	0,13	0,14							
[[[]]]]	0,13	0,14	0,15	0,16	0,18							
ment-Factors	for shear load ²⁾				-							
Uncracked concrete; Temperature range I, II												
[::/ :N1]	0,12	0,12	0,12	0,12	0,12							
[IIIII/KIN]	0,14	0,14	0,14	0,14	0,14							
	ment-Factors d concrete; T [mm/(N/mm²)] ment-Factors	ment-Factors for tension load¹ cd concrete; Temperature rang [mm/(N/mm²)] 0,10 0,13 ment-Factors for shear load²) cd concrete; Temperature rang [mm/kN] 0,12	Concrete; Temperature range I, II	Temperature range	Temperature range ,							

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}^{\infty}} = \delta_{\text{N}^{\infty}\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system Anchorstar Plus

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 6

³⁾ No performance assessed

²⁾ Calculation of effective displacement: