

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0570 of 7 May 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

VJ Technology Injection system V420+ for concrete

Bonded anchor for use in concrete

VJ Technology Ltd.
Brunswick Road; Cobbs Wood Ind. Estate
ASHFORD KENT TN23 1EN .
GROSSBRITANNIEN

VJ Technology Plant 1

35 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-17/0570 issued on 25 February 2020

European Technical Assessment ETA-17/0570

Page 2 of 35 | 7 May 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0570

Page 3 of 35 | 7 May 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "VJ Technology Injection system V420+ for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar V420+, V420+ V3 and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1 to C 4, C 6 to C 7, C 9 to C 10
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 5, C 8, C 11
Displacements under short-term and long-term loading	See Annex C 12 to C 14
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 15 to C 18

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0570

Page 4 of 35 | 7 May 2021

English translation prepared by DIBt

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

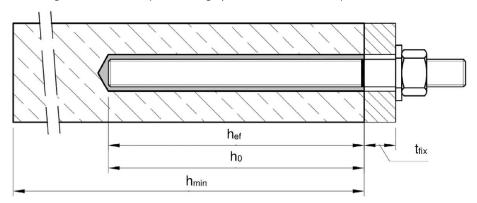
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

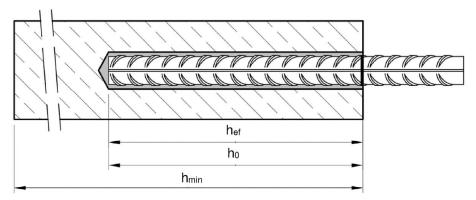
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

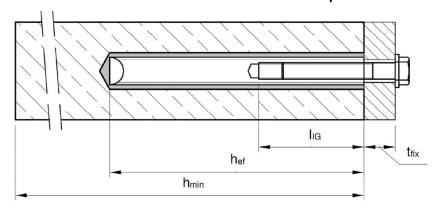
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 7 May 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider


Installation threaded rod M8 up to M30

prepositioned installation or


push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

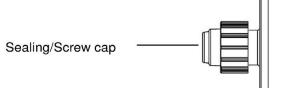
Installation internal threaded anchor rod IT-M6 up to IT-M20

 t_{fix} = thickness of fixture

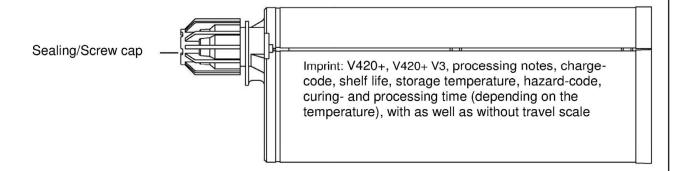
h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

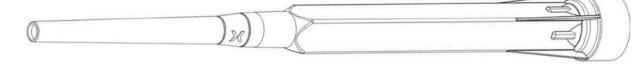
 h_{min} = minimum thickness of member


I_{IG} = Thread engagement length

VJ Technology Injection system V420+ for concrete	
Product description Installed condition	Annex A 1



150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: V420+, V420+ V3, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

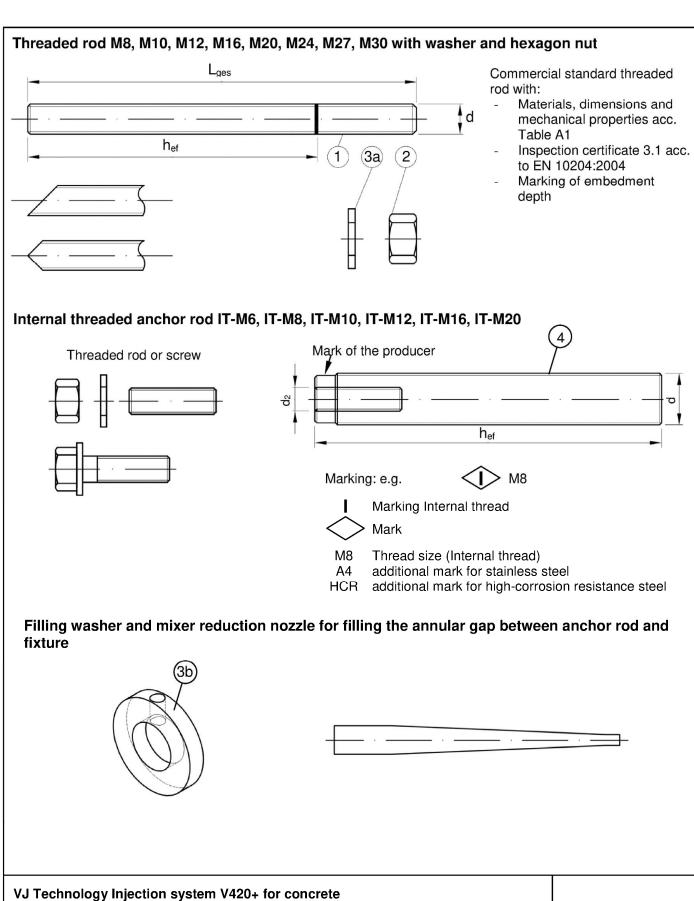
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

Static Mixer

Piston plug and mixer extension

VJ Technology Injection system V420+ for concrete

Product description


Injection system

Annex A 2

Electronic copy of the ETA by DIBt: ETA-17/0570

Product description

Threaded rod, internal threaded rod and filling washer

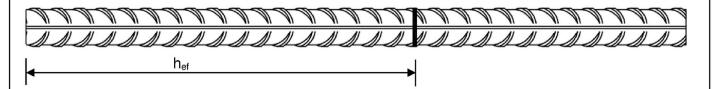
Z44106.21 8.06.01-42/21

Annex A 3

Та	ble A1: Mate	rials							
Part	Designation	Material							
Stee - zi - ho	l, zinc plated (Steel nc plated ≥ solution	acc. to EN 10087:1998 5 µm acc. to EN ISO	4042: 1461:	1999 or 2009 and EN ISO 10684:2	004+AC:2009 or				
		Property class	.,,	Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%			
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%			
'	Timeaded fod	acc. to		f _{uk} = 500 N/mm ²	f _{vk} = 300 N/mm ²	A ₅ > 8%			
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%			
				f _{uk} = 800 N/mm ²	$f_{vk} = 640 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾			
			4	for threaded rod class 4.6	,				
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod class 5.6					
		EN 150 090-2.2012	8	for threaded rod class 8.8					
За	Washer	(e.g.: EN ISO 887:200	6, EN	alvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 70	94:2000)			
3b	Filling washer	Steel, zinc plated, hot-	dip ga	alvanised or sherardized					
	Property class			Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
4	anchor rod	acc. to	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%			
		EN ISO 898-1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$ $f_{vk} = 640 \text{ N/mm}^2$		A ₅ > 8%			
Stai	nless steel A4 (Mate	erial 1.4401 / 1.4404 / 1.	4571	11 / 1.4567 or 1.4541, acc. to EN 10088-1:2014) 71 / 1.4362 or 1.4578, acc. to EN 10088-1:2014) or 1.4565, acc. to EN 10088-1: 2014)					
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
1	Threaded rod ¹⁾⁴⁾		50	f _{uk} = 500 N/mm ²	f _{vk} = 210 N/mm ²	A ₅ ≥ 8%			
•	Timodada rod	acc. to	70	f _{uk} = 700 N/mm ²	f _{vk} = 450 N/mm ²	$A_5 \ge 12\%^{3}$			
		EN ISO 3506-1:2009	80	f _{uk} = 800 N/mm ²	$f_{VK} = 600 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾			
		<u> </u>	50	for threaded rod class 50	1 7				
2	Hexagon nut 1)4)	acc. to EN ISO 3506-1:2009	70	for threaded rod class 70					
			80	for threaded rod class 80					
3а	Washer	A4: Material 1.4401 / 1 HCR: Material 1.4529	.4404 or 1.4	7 / 1.4311 / 1.4567 or 1.454 - / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7	8, acc. to EN 10088-1: 2014	2014			
3b	Filling washer	Stainless steel A4, Hig	h cor						
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
4	Internal threaded	acc. to	50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ > 8%			
	anchor rod ¹⁾²⁾	EN ISO 3506-1:2009	70	f _{uk} = 700 N/mm ²	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ > 8%			
4.5									

¹⁾ Property class 70 or 80 for threaded rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IT-M16

⁴⁾ Property class 80 only for stainless steel A4 and high corrosion resistance steel HCR


VJ Technology Injection system V420+ for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IT-M20 only property class 50

 $^{^{3)}}$ A₅ > 8% fracture elongation if \underline{no} use for seismic performance category C2

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material								
Reinf	orcing bars									
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$								

Electronic copy of the ETA by DIBt: ETA-17/0570

VJ Technology Injection system V420+ for concrete	
Product description Materials reinforcing bar	Annex A 5

	•	s of intended use						
Anchorages subject to static ar	nd quasi-static load	ls:						
	for a working I	fe of 50 years	for a working life of 100 years					
Base material	Non-cracked concrete	cracked concrete	Non-cracked concrete	cracked concrete				
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to Ø8 to IT-M6 to	Ø32,	Ø8 to	0 M30, 0 Ø32, 0 IT-M20				
Temperature Range:	II: - 40 °C III: - 40 °C	II: - 40 °C to +80 °C ²⁾ III: - 40 °C to +80 °C ³⁾ III: - 40 °C to +80						
Anchorages subject to seismic	action:							
	for Performanc	e Category C1	for Performand	ce Category C2				
Base material		Cracked and non	-cracked concrete					
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to Ø8 to		M12 t	o M24				
Temperature Range:	II: - 40 °C III: - 40 °C	to +40 °C¹) to +80 °C²) to +120 °C³) to +160 °C⁴)						

- 1) (max long-term temperature +24 °C and max short-term temperature +40 °C)
- ²⁾ (max long-term temperature +50 °C and max short-term temperature +80 °C) ³⁾ (max long-term temperature +72 °C and max short-term temperature +120 °C)
- 4) (max long-term temperature +100 °C and max short-term temperature +160 °C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

VJ Technology Injection system V420+ for concrete	
Intended Use	Annex B 1
Specifications	

Page 11 of European Technical Assessment ETA-17/0570 of 7 May 2021

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -5°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

VJ Technology Injection system V420+ for concrete	
Intended Use Specifications	Annex B 2

Institut für **Bautechnik**

Table B1: Ir	Table B1: Installation parameters for threaded rod										
Anchor size				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of elemen	t	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmer	Effective embedment depth		[mm]	60	60	70	80	90	96	108	120
Enective embedmer			[mm]	160	200	240	320	400	480	540	600
Diameter of	Topoditioned inc		[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ¹⁾	Push through installation d _f		[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	oment	max T _{inst} ≤	[Nm]	10	20	402)	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]		_f + 30 m : 100 mi		h _{ef} + 2d ₀				
Minimum spacing s _{min}		[mm]	40	50	60	75	95	115	125	140	
Minimum edge dista	ınce	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.

Table B2: Installation parameters for rebar

Rebar size				Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø	24 1)	Ø 2	25 ¹⁾	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	2	4	2	5	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	30	32	30	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	9	6	10	0	112	128
Effective embedment depth	h _{ef,max}	[mm]	160			00	560	640						
Minimum thickness of member	h _{min}	[mm]		$h_{ef} + 30 \text{ mm} \ge h_{ef} + 2d_0$										
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	12	20	12	20	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	7	0	70	0	75	85

¹⁾ both nominal drill hole diameter can be used

Installation parameters for Internal threaded rod Table B3:

Anchor size			IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20
Internal diameter of sleeve	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of sleeve1)	d = d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment denth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum torque moment	max T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]		30 mm 3 mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

VJ Technology Injection system V420+ for concrete

Intended Use

Installation parameters

Annex B 3

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B4	l: Paran	neter clea	ning and s	etting	g tool	s				
				The state of the s	mannik	Here III				
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CD		ь h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu	
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1
M8	8		10	PP10	11,5	10,5				
M10	8 / 10	IT-M6	12	PP12	13,5	12,5		No plua	required	
M12	10 / 12	IT-M8	14	PP14	15,5	14,5		No plug	required	
	12		16	PP16	17,5	16,5				
M16	14	IT-M10	18	PP18	20,0	18,5	BR18			
	16		20	PP20	22,0	20,5	BR20			
M20		IT-M12	22	PP22	24,0	22,5	BR22			
	20		25	PP25	27,0	25,5	BR25	h _{ef} >	h _{ef} >	
M24		IT-M16	28	PP28	30,0	28,5	BR28	_		all
M27	24 / 25		30	PP30	31,8	30,5	BR30	250 mm	250 mm	
	24 / 25		32	PP32	34,0	32,5	BR32			
M30	28	IT-M20	35	PP35	37,0	35,5	BR35			
	32		40	PP40	43,5	40,5	BR40			

MAC - Hand pump (volume 750 ml)Drill bit diameter (d₀): 10 mm to 20 mm

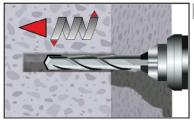
Drill hole depth (h_0) : < 10 d_s Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

HDB - Hollow drill bit system

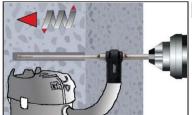
Drill bit diameter (d₀): all diameters


The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa and flow rate of minimum 150 m³/h (42 l/s).

VJ Technology Injection system	V420+ for concrete	
Intended Use Cleaning and setting tools		Annex B 4

Installation instructions

Drilling of the bore hole

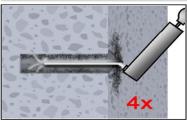


Hammer (HD) or compressed air drilling (CD)

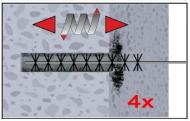
Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3).

Proceed with Step 2.

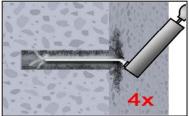
In case of aborted drill hole, the drill hole shall be filled with mortar.


Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.


MAC: Cleaning for dry and wet bore hole with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10 d_{nom}$ (uncracked concrete only!)

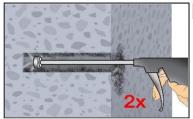
Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B 4) a minimum of four times until return air stream is free of noticeable dust.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

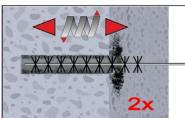
Finally blow the hole clean again with handpump (Annex B 4) a minimum of four times until return air stream is free of noticeable dust.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

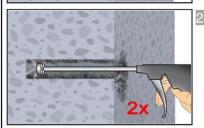
VJ Technology Injection system V420+ for concrete

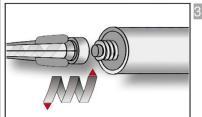

Intended Use
Installation instructions

Annex B 5

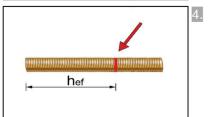


Installation instructions (continuation)

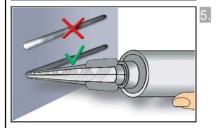

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete


2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B5) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).



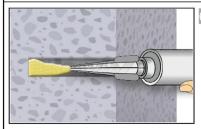
Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.



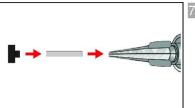
Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

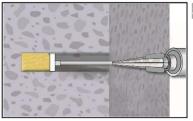
Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



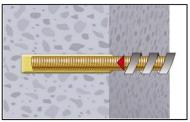
Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


VJ Technology Injection system V420+ for concrete	
Intended Use Installation instructions (continuation)	Annex B 6

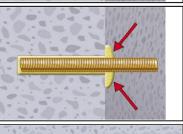
Installation instructions (continuation)



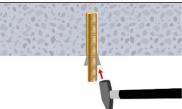
Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.


Piston plugs shall be used according to Table B4 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Overhead assembly (vertical upwards direction): Drill bit- \emptyset d₀ \ge 18 mm Assemble mixing nozzle, extension and piston plug before injecting mortar.


Insert piston plug to back of the hole and inject adhesive. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used.

During injection the piston plug is naturally pushed out of the borehole by the back pressure of the mortar. Observe the gel-/ working times given in Table B5.

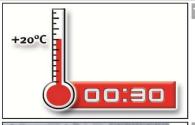


Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment mark has reached the surface level.

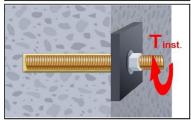
The anchor shall be free of dirt, grease, oil or other foreign material.

After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed.

11. For overhead application the anchor rod shall be fixed (e.g. wedges) until the mortar has started to harden.


VJ Technology Injection system V420+ for concrete

Intended Use
Installation instructions (continuation)


Annex B 7

Installation instructions (continuation)

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Table B5: Maximum working time and minimum curing time

Concrete	temp	perature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete		
- 5 °C	to	- 1 °C	50 min	5 h	10 h		
0 ℃	to	+ 4 °C	25 min	3,5 h	7 h		
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h		
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h		
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min		
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min		
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min		
Cartridge	e temp	emperature +5°C to +40°C					

VJ Technology Injection system V420+ for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 8

Т	able C1: Characteristic values resistance of threaded		el ter	nsion r	esistaı	nce ai	nd ste	el sh	ear		
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cr	naracteristic tension resistance, Steel failu	re 1)	•	•	•				•		
Ste	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Sto	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Sta	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	$\gamma_{Ms,N}$	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γMs,N	[-]				1,5	5			
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6			
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87							
	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6							
Cł	naracteristic shear resistance, Steel failure	, 1)	,						•		
E	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	М ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
lever a	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
h e	Stainless steel A2, A4 and HCR, class 50	$M^0_{Rk,s}$ $M^0_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
Wit	Stainless steel A2, A4 and HCR, class 70		[Nm]	26	52	92	232	454	784	_3)	_3)
Stainless steel A4 and HCR, class 80			[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	naracteristic shear resistance, Partial facto	M ⁰ _{Rk,s}									
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	57			
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	25			
Sta	ainless steel A2, A4 and HCR, class 50	$\gamma_{Ms,V}$	[-]				2,3	8			
	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			

¹⁾ Values are only valid for the given stress area As. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

3) Anchor type not part of the ETA

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: Characteristic values for Concrete cone failure and Splitting with all kind of action

Anchor size				All Anchor types and sizes			
Concrete cone f	ailure		•				
Non-cracked con	crete	k _{ucr,N}	[-]	11,0			
Cracked concrete	9	k _{cr,N}	[-]	7,7			
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}			
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}			
Splitting		•					
	h/h _{ef} ≥ 2,0			1,0 h _{ef}			
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$			
	h/h _{ef} ≤ 1,3			2,4 h _{ef}			
Axial distance	<u> </u>	s _{cr,sp}	[mm]	2 c _{cr,sp}			

VJ Technology Injection system V420+ for concrete

Annex C 2

PerformancesCharacteristic values for Concrete cone failure and Splitting with all kind of action

	r size threaded ro	<u>a</u>			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa					<u> </u>		Α					
	cteristic tension resi	istance	N _{Rk,s}	[kN]	A _s ⋅ f _{uk} (or see Table C1)							
1110311						see Ta	ble C1					
	ined pull-out and on eteristic bond resist		rad caparata	C20/25								
		ance in non-craci				l						T
Temperature range	I: 40°C/24°C	Dry, wet	^τ Rk,ucr	[N/mm²]	17	17	16	15	14	13	13	13
ature	II: 80°C/50°C	concrete and flooded bore	^τ Rk,ucr	[N/mm²]	17	17	16	15	14	13	13	13
mper	III: 120°C/72°C	hole	^τ Rk,ucr	[N/mm ²]	15	14	14	13	12	12	11	11
•	IV: 160°C/100°C		^τ Rk,ucr	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0
	cteristic bond resist	ance in cracked (_	l _
rang	I: 40°C/24°C	Dry, wet	^T Rk,cr	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	II: 80°C/50°C	concrete and flooded bore hole	^τ Rk,cr	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
npera	III: 120°C/72°C		^τ Rk,cr	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Ten	IV: 160°C/100°C		^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Redukt	tion factor $\psi^0_{ extsf{Sus}}$ in	cracked and nor	n-cracked con	crete C20/25								
ınge	I: 40°C/24°C							0,	90			
ıre ra	II: 80°C/50°C	Dry, wet concrete and						0,	87			
Temperature range	III: 120°C/72°C	flooded bore hole	Ψ^0 sus	[-]	0,75							
Гетр	IV: 160°C/100°C	_ 110.0			0,66							
<u>'</u>		1	C25/30		1,0				02			
			C30/37						04			
	sing factors for cond	crete	C35/45						07			
Ψc			C40/50						80			
			C45/55 C50/60						09 10			
Concre	ete cone failure		1030/00					1,	10			
		Relevant paramet	er					see Ta	ble C2			
Splittir	ng											
		Relevant paramet	er					see Ta	ble C2			
nstalla	ation factor	1								No Per	formar	100
	and wat assessed	MAC					1,2				essed	<u>e</u>
		CAC	γ_{inst}	[-]				1				
		HDB			1,2							
or floo	ded bore hole	CAC						1	,4			
T-	ochnology Injectic	on system V420	n± for concr	ete								

CAC

for flooded bore hole

English translation prepared by DIBt

1,4

	e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure	e											
Characteris	stic tension resi	istance	N _{Rk,s}	[kN]			$A_s \cdot f$	_{uk} (or s	ee Tab	le C1)		
Partial facto	or		γ _{Ms,N}	[-]				see Ta	able C1			
Combined	pull-out and o	concrete failure	,									
Characteris	stic bond resista	ance in non-crac	ked concrete (C20/25								
Temperature range ::	40°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13
Tempe rar ≔	80°C/50°C	flooded bore hole	^τ Rk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13
Characteris	stic bond resista	ance in cracked	concrete C20/2	25								
Temperature range ::	40°C/24°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5
Temp∉ rar ≔	80°C/50°C	flooded bore hole	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5
			C25/30					1,	02			
			C30/37						04			
Increasing	factors for cond	crete	C35/45		1,07							
ψC			C40/50		1,08							
			C45/55		1,09							
			C50/60					1,	10			
Concrete of	cone failure											
Contitation or	R	elevant paramet	er					see Ta	able C2	:		
Splitting		lalayant navan	Or.					200 T	able C2	,		
Installation		lelevant paramet	er					see 18	able C2			
motanatiOi	i iactor									No Pai	rformar	
for dry and	wet concrete	MAC					1,2				sessed	ICE
ioi ury ariu	wet concrete	CAC	γinst	[-]					,0			
		HDB	HDB		1,2							

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

Table C5: Characteristic va	lues of	shear	load	s und	er stat	ic and	quas	i-statio	action		
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm					•						
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)		
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 •	A _s • f _{uk}	(or see	Table C	1)		
Partial factor	$\gamma_{Ms,V}$	[-]	see Table C1								
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • ١	W _{el} • f _{ul}	(or see	Table C	;1)		
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874	
Partial factor	$\gamma_{Ms,V}$	[-]				see	Table C	:1			
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ_{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300m								
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γinst	[-]					1,0				

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

		eaded anchor rod	S		IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20	
Steel fai	ilure ¹⁾										
Characte	eristic tension resi	stance, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, str	rength class	8.8	$N_{Rk,s}$	[kN]	16	16 27 46 67 121					
Partial fa	actor, strength cla	ss 5.8 and 8.8	γ _{Ms,N}	[-]	1,5						
	eristic tension resi and HCR, Streng		N _{Rk,s}	[kN]	14 26 41 59 110 1						
Partial fa	actor		γ _{Ms,N}	[-]			1,87			2,86	
		concrete cone fai									
	eristic bond resista	ance in non-cracke	ed concrete	C20/25			T	ı	1	T	
nre -	I: 40°C/24°C		^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13	
perati range '	II: 80°C/50°C	Dry, wet concrete	τ _{Rk,ucr}	[N/mm ²]	17	16	15	14	13	13	
Temperature range	III: 120°C/72°C	and flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	14	14	13	12	12	11	
Ter _	IV: 160°C/100°C		τ _{Rk,ucr}	[N/mm ²]	11	11	10	9,5	9,0	9,0	
Characte	eristic bond resista	ance in cracked co	ncrete C20)/25		•		•		•	
ē	I: 40°C/24°C		τ _{Rk,cr}	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0	
Temperature range	II: 80°C/50°C	Dry, wet concrete	τ _{Rk,cr}	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0	
npe ran	III: 120°C/72°C	and —	_	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0	
IV: 160°C/100°C		Thooded bote flok	τ _{Rk,cr}	[N/mm ²]	5,5	6,0	6,5	6,0	5,5	5,5	
Reduktio	n factor ψ ⁰ sus in	cracked and non-		ncrete C20	/25		1				
	I: 40°C/24°C						0.	90			
atu e	II: 80°C/50°C	Dry, wet concrete	,		0,87						
nperat range '	III: 120°C/72°C	and	Ψ ⁰ sus	[-]	0,75 0,66						
<u>-</u> -	IV: 160°C/100°C	flooded bore hole	,								
	10. 100 0/100 0		C	 25/30							
				30/37	1,02 1,04						
Increasir	ng factors for cond	crete	C3	35/45				07			
$\Psi_{\mathbf{C}}$			C ²	10/50			1,	08			
				<u> 45/55</u>				09			
0			C5	50/60			1,	10			
	t parameter						soo Ta	able C2			
Splitting	<u> </u>						366 12	IDIE UZ			
	t parameter						see Ta	able C2			
	ion factor										
					1,2		No Perf	ormance a	assessed		
for dry a	nd wet concrete	CAC	ν: 1	[-]				1,0			
	HDB		γinst	[-]	1,2						
for floode	ed bore hole	CAC					1	,4			

The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For IT-M20 strength class 50 is valid

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 6

1,4

Anchor size internal thi	eaded ancho	r rods	3		IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20	
Steel failure ¹⁾				'			•		•		
Characteristic tension res	sistance,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	-	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength cla	ass 5.8 and 8.	8	γ _{Ms,N}	[-]			1	,5			
Characteristic tension res Steel A4 and HCR, Strer			N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor			γ _{Ms,N}	[-]			1,87		•	2,86	
Combined pull-out and	concrete cor	ne fail	ure							ı	
Characteristic bond resis	tance in non-c	cracke	d concrete	C20/25							
range range li 40°C/24°C	Dry, wet cor	ncrete	^τ Rk,ucr,100	[N/mm²]	17	16	15	14	13	13	
range range II: 40°C/24°C	flooded bore	e hole	^T Rk,ucr,100	[N/mm²]	17	16	15	14	13	13	
Characteristic bond resis	tance in crack	ed cor	crete C20/	25							
Temperature range II: 40°C/24°C	Dry, wet cor	ncrete	^τ Rk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5	
II: 80°C/50°C	flooded bore	e hole	^T Rk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5	
			C25/		1,02						
			C30					,04			
Increasing factors for cor	icrete		C35					,07			
Ψ_{C}			C40,					,08 ,09			
			C50,					,10			
Concrete cone failure			1 030/				١,	,			
Relevant parameter							see Ta	able C2			
Splitting failure											
Relevant parameter	<u> </u>		<u> </u>				see Ta	able C2			
Installation factor											
	MAC					1,2			ormance a	assessed	
for dry and wet concrete	CAC		γ _{inst}	[-]				,0			
	HDB			'			1	,2			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For IT-M20 strength class 50 is valid

CAC

for flooded bore hole

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

Table C8: Characteris			Siledi		1	1			1
Anchor size for internal threade	ed anch	or rods		IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20
Steel failure without lever arm ¹⁾									
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	М ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]			•	1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		М ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure		•							
Effective length of fastener I_f $[mm]$ $min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 3 \cdot d_{nom})$								min(h _{ef} ; 300mm	
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]				1,0		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IT-M20 strength class 50 is valid

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Ancho	r size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 3		
Steel fa																
Charac	teristic tension resi	stance	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)						
Cross s	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804		
Partial [•]			γ _{Ms,N}	[-]					1,	4 ²⁾						
	ned pull-out and o															
	teristic bond resista				ı	4.4	44	4.4	10	10	10	10	10	1.0		
ture.	I: 40°C/24°C	Dry, wet concrete	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13		
Temperature range	II: 80°C/50°C	and	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13		
emp	III: 120°C/72°C	flooded	^τ Rk,ucr	[N/mm²]	13	12	12	12	12	11	11	11	11	11		
•	IV: 160°C/100°C	bore hole	^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5		
	teristic bond resista				E	FF	6.0	6.5	6.5	C 5	6.5	7.0	7.0	7.		
iture	I: 40°C/24°C	Dry, wet concrete	^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0		
nperat range	II: 80°C/50°C	and	^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0		
Temperature range	III: 120°C/72°C	flooded	^τ Rk,cr	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0		
	IV: 160°C/100°C	bore hole	^τ Rk,cr	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0		
Redukt	ion factor $\psi^0_{ extsf{sus}}$ in	d concrete	C20/2	5												
ange	I: 40°C/24°C	Dry, wet			0,90											
ı atrı	II: 80°C/50°C	concrete	Ψ^0 sus	[-]					0,	87						
	III: 120°C/72°C	flooded bore hole							0,	75						
Ten	IV: 160°C/100°C				0,66											
			C25													
Increas	sing factors for cond	crete	C30		1,04											
Ψ _с			C40		1,08											
			C45	/55					1,	09						
			C50	/60	1,10											
	ete cone failure															
Releva Splittin	nt parameter							;	see Ta	able C2	<u> </u>					
	nt parameter								see Ta	able C2						
	ation factor							•	500 16	02	_					
		MAC					1,2			No	Perfor	mance	asses	sed		
for dry	and wet concrete	CAC] _{v:} .	Γ_1						,0						
		HDB	^γ inst	[-]						,2						
	ded bore hole	CAC							1	,4						
	hall be taken from th osence of national re		ns of reinforci	ing bars												
V.I Te	chnology Injection	on system V	/420+ for co	oncrete												

1,4

Table	C10: Charac	teristic va			oads	und	er st	atic a	and c	ļuasi	-stat	ic ac	tion	
Anchor	size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fai	ilure					•	•	•	•	•		•	•	
Characte	eristic tension res	istance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{1}$									
Cross se	ection area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial fa	actor		γ _{Ms,N}	[-]					1,	4 ²⁾				
Combin	ed pull-out and o	concrete fail	ure											
Characte	eristic bond resista	rete C20/2	25											
Temperature range	I: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Temperar	II: 80°C/50°C	flooded bore hole	^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Characte	eristic bond resista	ance in crack	ed concrete	C20/25										
1 - 0	I: 40°C/24°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
Tempera	II: 80°C/50°C	flooded bore hole	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
			C25	/30	1,02									
			C30,		1,04									
1	ng factors for con	crete	C35							07				
ψС			C40							08				
			C45							09				
Comorat	te cone failure		C50	/60					1,	10				
					I				000 T	shla C	<u> </u>			
Splitting	t parameter								see Ta	ine C				
•									see Ta	blo C				
Relevant parameter Installation factor									SEE 18	inie C				
installat	uon iactor	1	l		1,2			No	Dorfor	manea	asses	read		
for dry a	and wet concrete	MAC CAC	+				1,2		1	,0 ,0	i enoi	шансе	asses	seu
l or dry a	and wor contorole	HDB	γ _{inst}	[-]						,0 ,2				

 $^{^{1)}\} f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

CAC

for flooded bore hole

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 10

Table C11: Characteristic	values of	shear l	oads	und	ler st	atic	and	quas	si-sta	itic ac	tion	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm				•			•				•	
Characteristic shear resistance	V ⁰ Rk,s	[kN]	0,50 • A _s • f _{uk} ¹⁾									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]		•		•	•	1,5 ²⁾			•	•
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm		•	•									
Characteristic bending moment	М ⁰ Rk,s	[Nm]					1.2	w _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•		•	•	1,5 ²⁾			•	
Concrete pry-out failure	·	•	•									
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure		•										
Effective length of fastener	If	[mm]			min(h _e	_{ef} ; 12 •	d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]						1,0				

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 11

Table C12: Displ	acements	under tensio	n load¹) (threa	aded r	od)				
Anchor size threaded r	od		М8	M10	M12	M16	M20	M24	M27	М30
Non-cracked concrete C20/25 under static and quasi-static action for a working life of 50 and 100 years										
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete unde	er static and o	quasi-static actio	n for a w	orking l	ife of 50	and 100) years			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C13: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Non-cracked and c	der static and q	uasi-sta	tic actio	on						
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges $\delta_{V_{\infty}}$ -factor [mm/kN]				0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor $\cdot V$;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$

VJ Technology Injection system V420+ for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C 12

Table C14: Displa	acements u	nder tension	load ¹⁾ (Ir	nternal t	hreaded	rod)		
Anchor size Internal thr	eaded rod		IT-M6	ІТ-М8	IT-M10	IT-M12	IT-M16	IT-M20
Non-cracked concrete u	ınder static and	d quasi-static ac	tion for a v	vorking life	e of 50 and	100 years	;	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete under	r static and qua	asi-static action	for a work	ing life of	50 and 100	years		
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \cdot \tau;$ $\tau\textsc{:}$ action bond stress for tension

Table C15: Displacements under shear load²⁾ (Internal threaded rod)

Anchor size Inter	IT-M6	IT-M8	IT-M10	IT-M12	IT-M16	IT-M20		
Non-cracked and	cracked concr	ete under static	and quasi-s	static action	1			
All temperature	δ _{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

²⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \ V; \end{split}$$

V: action shear load

VJ Technology Injection system V420+ for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 13

8.06.01-42/21 Z44106.21

Table C16: D	Displacem	ents under t	ensio	n loac	I ¹⁾ (rek	oar)						
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked cond	rete under s	static and quasi	-static a	action f	or a wo	rking l	ife of 50	and 10	00 year	s		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	under statio	and quasi-stat	ic actio	n for a	workin	g life of	50 and	l 100 ye	ears			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \tau;$

Table C17: Displacements under shear load²⁾ (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked and	ncrete under s	tatic an	d quas	i-static	action							
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \quad V; \qquad \qquad V: \text{action shear load}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

....

VJ Technology Injection system V420+ for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 14

Table C18: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years

Ancho	r size threaded rod	M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure												
Charac	teristic tension resist	ance	N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}			
Partial	factor		γ _{Ms,N}	[-]				see Ta	able C1			
Combi	ned pull-out and co	ncrete failure										
Charac	teristic bond resistar	d concrete (C20/25									
<u>e</u>	I: 40°C/24°C	Dr. wot	^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
nperatu range	II: 80°C/50°C	Dry, wet concrete and	^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C	flooded bore hole	^τ Rk,eq,C1	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Te	IV: 160°C/100°C	Tiole	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Increas	ing factors for concre	ete ψ _C	C25/30 to	C50/60				1	,0			
Installa	ation factor											
for dry	or dry and wet concrete							1	,0			
lor dry	and wel concrete	HDB	γ_{inst}	[-]				1	,2			
for floo	ded bore hole	CAC						1	,4			

Table C19: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod		М8	M10	M12	M16	M20	M24	M27	М30	
Steel failure										
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}							
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Factor for annular gap	[-]	0,5 (1,0)1)								

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (threaded rod)	Annex C 15

Tabl	Table C20: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years													
Ancho	r size reinforcing		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Steel fa	ailure							•	•	•				
Charac	teristic tension resi	stance	N _{Rk,s,eq,C1}	[kN]					1,0 • A	s • f _{uk}	1)			
Cross	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial	factor		γ _{Ms,N}	[-]			•		1,	4 ²⁾	•	•		
Combined pull-out and concrete failure														
Charac	teristic bond resista	ance in crack	ed and non-c	cracked co	ncrete	C20/2	25							
ange	I: 40°C/24°C	Dry, wet	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
ure ra	II: 80°C/50°C	concrete and	^τ Rk,eq,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Femperature range	III: 120°C/72°C	flooded	^τ Rk,eq,C1	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Tem	IV: 160°C/100°C	bore hole	τ _{Rk,eq,C1}	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Increas	Increasing factors for concrete ψ _C C25/30 to C50/60					1,0								
Installa	ation factor		1											
for dry and wet concrete									1	,0				
loi dry	and wel concrete	HDB	γ_{inst}	[-]					1	,2				
for floo	ded bore hole	CAC							1	,4				

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C21: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic shear resistance	V _{Rk,s,eq}	[kN]		0,35 • A _s • f _{uk} ¹⁾								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)3)									

¹⁾ fuk shall be taken from the specifications of reinforcing bars

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (rebar)	Annex C 16

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Table C22: Characteristic values of tension loads under seismic action (performance category C2) for a working life of 50 and 100 years

Ancho	r size threaded rod		M12	M16	M20	M24			
Steel fa	ailure			•					
Characteristic tension resistance, Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70			N _{Rk,s,eq,C2}	[kN]	1,0 • N _{Rk,s}				
Partial	factor		$\gamma_{Ms,N}$	[-]		see Ta	ble C1		
Combi	Combined pull-out and concrete failure								
Characteristic bond resistance in cracked and non-cracked concrete C20/25									
<u> </u>	I: 40°C/24°C	Dry, wet	^τ Rk,eq,C2	[N/mm ²]	3,6	3,5	3,3	2,3	
nperatu range	II: 80°C/50°C	concrete and	^τ Rk,eq,C2	[N/mm ²]	3,6	3,5	3,3	2,3	
Temperature range	III: 120°C/72°C	flooded bore	^τ Rk,eq,C2	[N/mm ²]	3,1	3,0	2,8	2,0	
Te	IV: 160°C/100°C	hole	^τ Rk,eq,C2	[N/mm ²]	2,5	2,7	2,5	1,8	
Increasing factors for concrete ψ _C			C25/30 to	C50/60	1,0				
Installa	ation factor		•						
for dry and wet concrete CAC		γ _{inst}	[-]			,0			
for floo	ded bore hole	CAC]		1,4				

Table C23: Characteristic values of shear loads under seismic action (performance category C2)

Anchor size threaded rod			M12 M16 M20 M24						
Steel failure									
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	0,70 • V ⁰ _{Rk,s}						
Partial factor	γ _{Ms,V}	[-]	see Table C1						
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)						

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

VJ Technology Injection system V420+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod)	Annex C 17

Table C24: Displacements under tension load ¹⁾ (threaded rod)									
Anchor size thread	led rod		M12	M16	M20	M24			
Cracked concrete under seismic action (performance category C2)									
All temperature	δ N,eq,C2(DLS)	[mm]	0,24	0,27	0,29	0,27			
ranges	δ N,eq,C2(ULS)	[mm]	0,55	0,51	0,50	0,58			

Table C25: Displacements under shear load (threaded rod)

Anchor size threaded rod			M12	M16	M20	M24		
Cracked concrete under seismic action (performance category C2)								
All temperature	$\delta_{V,eq,C2(DLS)}$	[mm]	3,6	3,0	3,1	3,5		
ranges	$\delta_{V,eq,C2(ULS)}$	[mm]	7,0	6,6	7,0	9,3		

VJ Technology Injection system V420+ for concrete	
Performances Displacements under seismic action (performance category C2) (threaded rods)	Annex C18