

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-19/0850 vom 29. November 2021

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

B+BTec Injektionssystem BIS-PE GEN3 für Beton

Verbunddübel zur Verankerung im Beton

B+BTec Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

B+BTec, Plant 1

39 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601, Edition 04/2020

ETA-19/0850 vom 17. April 2020

Europäische Technische Bewertung ETA-19/0850

Seite 2 von 39 | 29. November 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Elektronische Kopie der ETA des DIBt: ETA-19/0850

Europäische Technische Bewertung ETA-19/0850

Seite 3 von 39 | 29. November 2021

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "B+BTec Injektionssystem BIS-PE GEN3 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel BIS-PE GEN3 und einem Stahlteil gemäß Anhang A3 und A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1 bis C 5, C 7 bis C 9, C 11 bis C 13
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 6, C 10, C 14
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 15 bis C 17
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 18 bis C 21

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-19/0850

Seite 4 von 39 | 29. November 2021

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

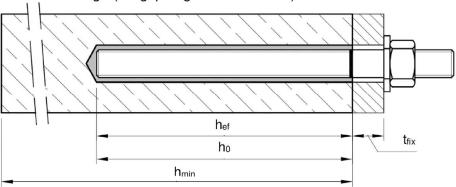
Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

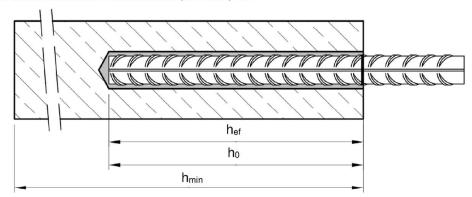
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

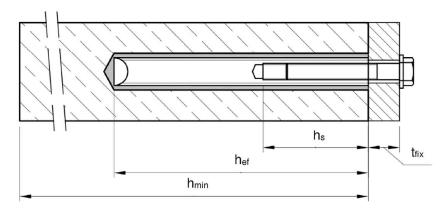
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 29. November 2021 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Einbauzustand Gewindestange M8 bis M30

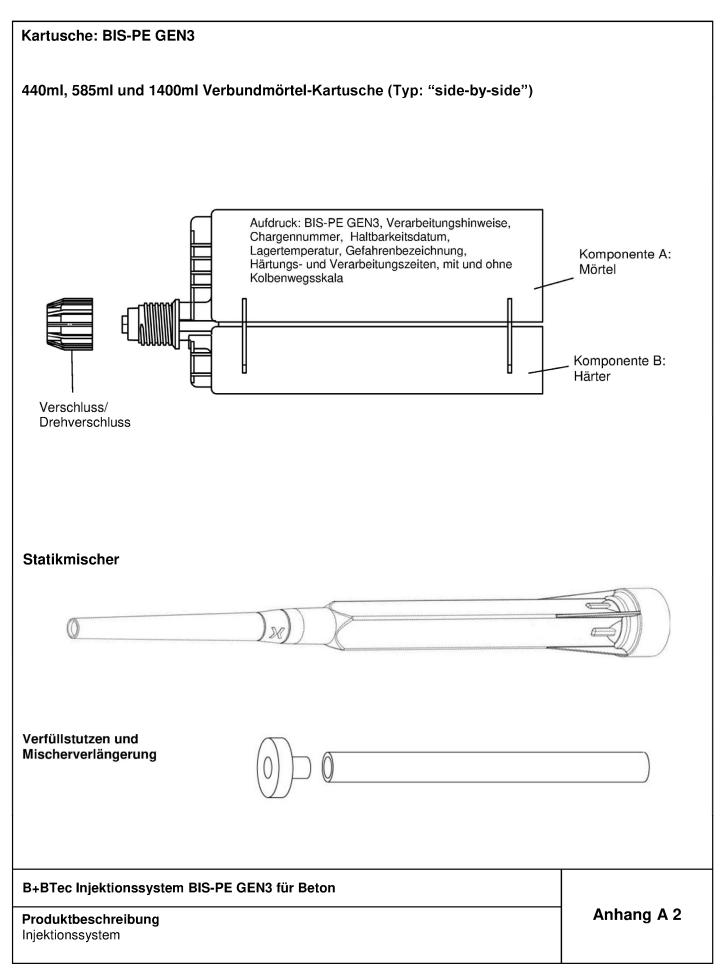
Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

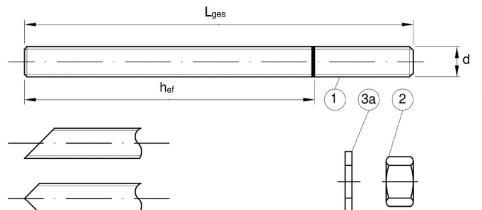
Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20

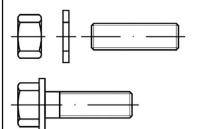
 t_{fix} = Dicke des Anbauteils

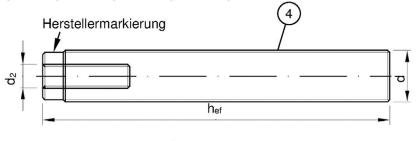

h_{ef} = Wirksame Verankerungstiefe

h₀ = Bohrlochtiefe


 h_{min} = Mindestbauteildicke


B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Produktbeschreibung Einbauzustand	Anhang A 1




Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Innengewindeankerstange IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Ankerstange oder Schraube

M8

Markierung: z.B.

Kennzeichnung Innengewinde
Werkszeichen

M8

Gewindegröße (Innengewinde)

A4 zusätzliche Kennung für nichtrostenden Stahl

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Verfüllscheibe und Mischerreduzierstück zum Verfüllen des Ringspalts zwischen Anker und Anbauteil

B+BTec Injektionssystem BIS-PE GEN3 für Beton

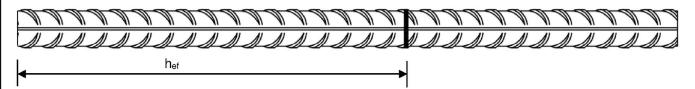
Produktbeschreibung

Gewindestangen und Innengewindeankerstangen

Anhang A 3

	belle A1: Werkstoffe	_				
	Benennung	Werkstoff				
	nlteile aus verzinktem Stahl (Stah alvanisch verzinkt ≥5 µm gem	l gemäß EN ISO 683-4 äß EN ISO 4042:2018		oder EN 10263:20	001)	
- fe	euerverzinkt ≥ 40 µm gem	äß EN ISO 4042.2016 äß EN ISO 1461:2009 äß EN ISO 17668:2016	und E	N ISO 10684:2004	I+AC:2009 oder	
<u>- u</u>	IIIusionsverzinkt 2 40 μm gem	Festigkeitsklasse	J	Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/mm ²	A ₅ > 8%
1	Gewindestange			f _{uk} = 400 N/mm ²	$f_{yk} = 320 \text{ N/mm}^2$	A ₅ > 8%
•	Gewindestange	gemäß EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%
		EN 130 696-1.2013			f _{vk} = 400 N/mm ²	A ₅ > 8%
					f _{vk} = 640 N/mm ²	
		".0	4		en der Klasse 4.6 c	
2	Sechskantmutter	gemäß EN ISO 898-2:2012	5	für Gewindestang	en der Klasse 5.6 c	oder 5.8
			8	für Gewindestang		
3a	Unterlegscheibe	Stahl, galvanisch verz (z.B.: EN ISO 887:200 EN ISO 7094:2000)				oder
3b	Verfüllscheibe	Stahl, galvanisch verz	zinkt, 1	feuerverzinkt oder	diffusionsverzinkt	
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung
4	Innengewindeankerstange			f FOO NI/mains?	f 400 NI/ 0	
_		gemäß	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
		gemäß EN ISO 898-1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%
lich	ntrostender Stahl A2 (Werkstoff 1. ntrostender Stahl A4 (Werkstoff 1. hkorrosionsbeständiger Stahl (W	ĔN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571	8.8 / 1.45 / 1.43	f _{uk} = 800 N/mm² 667 oder 1.4541, g 662 oder 1.4578, g gemäß EN 10088	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: -1: 2014)	A ₅ > 8% 2014)
licl	ntrostender Stahl A4 (Werkstoff 1.	ĔN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571	8.8 / 1.45 / 1.43 .4565	f _{uk} = 800 N/mm² 667 oder 1.4541, gd 662 oder 1.4578, gd , gemäß EN 10088 Charakteristische Zugfestigkeit	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1:	A ₅ > 8% 2014)
licl	ntrostender Stahl A4 (Werkstoff 1.	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse	8.8 / 1.45 / 1.43 .4565	f _{uk} = 800 N/mm ² 67 oder 1.4541, go 62 oder 1.4578, go , gemäß EN 10088 Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ²	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: 3-1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ²	A ₅ > 8% 2014) 2014)
licl licl	ntrostender Stahl A4 (Werkstoff 1. hkorrosionsbeständiger Stahl (W	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß	8.8 / 1.45 / 1.43 .4565 50	f _{uk} = 800 N/mm² 667 oder 1.4541, gd 662 oder 1.4578, gd , gemäß EN 10088 Charakteristische Zugfestigkeit	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: 3-1: 2014) Charakteristische Streckgrenze	A ₅ > 8% 2014) 2014) Bruchdehnung
licl licl	ntrostender Stahl A4 (Werkstoff 1. hkorrosionsbeständiger Stahl (W	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse	8.8 / 1.45 / 1.43 .4565 50	f _{uk} = 800 N/mm ² 667 oder 1.4541, go 662 oder 1.4578, go , gemäß EN 10088 Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: 3-1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ²	$A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$
lich lich loc	ntrostender Stahl A4 (Werkstoff 1.hkorrosionsbeständiger Stahl (Werkstoff 1.hkorrosionsbeständiger 1.hkorr	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2020	8.8 / 1.45 / 1.43 .4565 50 70	$f_{uk} = 800 \text{ N/mm}^2$ $667 \text{ oder } 1.4541, \text{ grade } 1.4578, \text$	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: 3-1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² en der Klasse 50	$A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ 3)
licl licl	ntrostender Stahl A4 (Werkstoff 1. hkorrosionsbeständiger Stahl (W	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß	8.8 / 1.45 / 1.43 .4565 50 70 80 50 70	$f_{uk} = 800 \text{ N/mm}^2$ $667 \text{ oder } 1.4541, \text{ grade}$ $662 \text{ oder } 1.4578, \text{ grade}$ $662 \text{ oder } 1.4578, \text{ grade}$ $620 \text{ oder } 1.4578, \text{ grade}$ $620 \text{ oder } 1.4578, \text{ grade}$ $6200 \text{ Charakteristische}$ $6200 \text{ Charakteristische}$ $6200 \text{ Charakteristische}$ $6200 \text{ Charakteristische}$ 6200 N/mm^2 6200 N/mm^2 6200 N/mm^2 $6200 \text{ Charakteristische}$	$\begin{aligned} &f_{yk} = 640 \text{ N/mm}^2 \\ &\text{emäß EN 10088-1:} \\ &\text{emäß EN 10088-1:} \\ &\text{s-1: 2014)} \\ &\text{Charakteristische} \\ &\text{Streckgrenze} \\ &f_{yk} = 210 \text{ N/mm}^2 \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &f_{yk} = 600 \text{ N/mm}^2 \\ &\text{en der Klasse 50} \\ &\text{en der Klasse 70} \end{aligned}$	$A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ 3)
Nich Nich Hoc	ntrostender Stahl A4 (Werkstoff 1.hkorrosionsbeständiger Stahl (Werkstoff 1.hkorrosionsbeständiger 1.hkorr	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020	8.8 / 1.45 / 1.43 .4565 50 70 80 50 70 80	f _{uk} = 800 N/mm ² 67 oder 1.4541, gr 62 oder 1.4578, gr , gemäß EN 10088 Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestang für Gewindestang für Gewindestang	$\begin{aligned} &f_{yk} = 640 \text{ N/mm}^2 \\ &emäß \text{ EN } 10088\text{-}1\text{:} \\ &f_{yk} = 210 \text{ N/mm}^2 \\ &em \text{ Gen } 10088\text{-}1\text{:} \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &em \text{ Gen } 10088\text{-}1\text{:} \\ &em \text{ Gen } 10088\text{-}1\text{:} \\ &emäß \text{ EN } 10088\text{-}1\text{:} \\ &emäß EN$	$A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$
lich lich loc	ntrostender Stahl A4 (Werkstoff 1.hkorrosionsbeständiger Stahl (Werkstoff 1.hkorrosionsbeständiger 1.hkorr	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2020 gemäß	8.8 / 1.45 / 1.43 .4565 50 70 80 / 1.43 / 1.44 29 ode	f_{uk} = 800 N/mm ² 67 oder 1.4541, go 62 oder 1.4578, go , gemäß EN 10088 Charakteristische Zugfestigkeit f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² für Gewindestang für Gewindestang für Gewindestang 607 / 1.4311 / 1.456 604 / 1.4571 / 1.436 er 1.4565, EN 1008	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: emäß EN 10088-1: d-1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² en der Klasse 50 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014	$A_5 > 8\%$ 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 10088-1:2014 10088-1:2014
lich lich loc	htrostender Stahl A4 (Werkstoff 1. hkorrosionsbeständiger Stahl (Werkstoff 1. hkorrosionsbeständiger 1. hkorros	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200	8.8 / 1.45 / 1.43 .4565 50 70 80 / 1.43 / 1.44 29 ode 06, EN	f_{uk} = 800 N/mm ² 667 oder 1.4541, go 662 oder 1.4578, go 9 gemäß EN 10088 Charakteristische Zugfestigkeit f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² für Gewindestang für Gewindestang für Gewindestang 607 / 1.4311 / 1.456 604 / 1.4571 / 1.436 er 1.4565, EN 1008 N ISO 7089:2000, I	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: emäß EN 10088-1: d-1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014 EN ISO 7093:2000	$A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 10088-1:2014 10088-1:2014
lici lici loc 1	htrostender Stahl A4 (Werkstoff 1. hkorrosionsbeständiger Stahl (Werkstoff 1. Gewindestange 1)4) Sechskantmutter 1)4) Unterlegscheibe Verfüllscheibe	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 EN ISO 7094:2000)	8.8 / 1.45 / 1.43 .4565 50 70 80 	f_{uk} = 800 N/mm ² 667 oder 1.4541, go 662 oder 1.4578, go gemäß EN 10088 Charakteristische Zugfestigkeit f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² für Gewindestang für Gewindestang für Gewindestang 607/1.4311/1.456 604/1.4571/1.436 er 1.4565, EN 1008 N ISO 7089:2000, I	f _{yk} = 640 N/mm ² emäß EN 10088-1: emäß EN 10088-1: emäß EN 10088-1: d-1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014 EN ISO 7093:2000	$A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 10088-1:2014 10088-1:2014 oder
lich lich loc	htrostender Stahl A4 (Werkstoff 1. hkorrosionsbeständiger Stahl (Werkstoff 1. hkorrosionsbeständiger 1. hkorrosionsbeständiger 1. hkorrosionsbeständiger (Werkstoff 1. hkorrosionsbeständiger 1. hkorrosionsbeständiger (Werkstoff 1. hkorrosionsbeständiger 1. hkorrosionsbeständiger 1. hkorrosio	EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 /erkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 EN ISO 7094:2000) Nichtrostender Stahl	8.8 / 1.45 / 1.43 .4565 50 70 80 	f_{uk} = 800 N/mm ² 667 oder 1.4541, go 662 oder 1.4578, go gemäß EN 10088 Charakteristische Zugfestigkeit f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² für Gewindestang für Gewindestang für Gewindestang 607 / 1.4311 / 1.456 604 / 1.4571 / 1.436 er 1.4565, EN 1008 N ISO 7089:2000, I	f _{yk} = 640 N/mm ² emäß EN 10088-1: enäß EN 10088-1: enäß EN 10088-1: f _{yk} = 210 N/mm ² f _{yk} = 210 N/mm ² en der Klasse 50 en der Klasse 50 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014 EN ISO 7093:2000 ändiger Stahl Charakteristische	$A_5 > 8\%$ 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ 10088-1:2014 10088-1:2014

²⁾ für IG-M20 nur Festigkeitsklasse 50


⁴⁾ Festigkeitsklasse 80 nur für nichtrostenden Stahl A4 und hochkorrosionsbeständigen Stahl HCR

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Produktbeschreibung Werkstoffe Gewindestange, Innengewindeankerstange und Verfüllscheibe	Anhang A 4

 $^{^{3)}}$ A₅ > 8% Bruchdehnung wenn <u>keine</u> Verwendung für seismische Leistungskategorie C2

Betonstahl \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe

Teil	Benennung	Werkstoff
Beto	onstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C fyk und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA fuk = ftk = k•fyk

B+BTec Injektionssystem BIS-PE GEN3 für Beton

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 5

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankeru	ing (Statische und d	ղuasi-statische Las	ten):				
	für eine Nutzungsd	auer von 50 Jahren	für eine Nutzungsdauer von 100 Jahren				
Verankerungsgrund	ungerissener Beton	gerissener Beton	ungerissener Beton	gerissener Beton			
Hammerbohren (HD), Hammerbohren mit Hohlbohrer (HDB), oder Pressluftbohren (CD)	M8 bis Ø8 bis IG-M6 bis	ø32,	M8 bis M30, Ø8 bis Ø32, IG-M6 bis IG-M20				
Diamantbohren (DD)	M8 bis M30, Ø8 bis Ø32, IG-M6 bis IG-M20	Keine Leistung bewertet	M8 bis M30, Ø8 bis Ø32, IG-M6 bis IG-M20	Keine Leistung bewertet			
Temperaturbereich:		to +40 °C¹) to +72 °C²)		to +40 °C¹) to +72 °C²)			
Beanspruchung der Verankeru	ıng (Seismische Eir	ıwirkung):					
	für Leistungs	kategorie C1	für Leistungs	kategorie C2			
Verankerungsgrund		ungerissener und	gerissener Beton				
Hammerbohren (HD), Hammerbohren mit Hohlbohrer (HDB), oder Pressluftbohren (CD)		s M30, s Ø32	M12 bis M24				
Diamantbohren (DD)	Keine Leistu	ing bewertet	Keine Leistung bewertet				
Temperaturbereich:		to +40 °C¹) to +72 °C²)		to +40 °C¹) to +72 °C²)			

^{1) (}max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A1:2016.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Verwendungszweck Spezifikationen	Anhang B 1

^{2) (}max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +72 °C)

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB), Pressluft- (CD) oder Diamantbohren (DD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Verwendungszweck Spezifikationen (Fortsetzung)	Anhang B 2

Tabelle B1:Montagekennwerte für Gewindestangen											
Dübelgröße Gewind		M8	M10	M12	M16	M20	M24	M27	M30		
Durchmesser Gewind	destange	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	sser	d ₀	[mm]	10	12	14	18	22	28	30	35
Effektive Verankerun	acticfo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellektive veralikerun	gstiele	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im anzuschließenden	Vorstec	kmontage d _f ≤	[mm]	9	12	14	18	22	26	30	33
Bauteil	Durchste	eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmomen	Maximales max T _{inst} ≤		[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Mindestbauteildicke		h _{min}	[mm]	h _{ef} + 30	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$						
Minimaler Achsabstand s _{min}		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimaler Randabsta	ınd	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Maximales Drehmoment für M12 mit Festigkeitsklasse 4.6 ist 35 Nm

Tabelle B2: Montagekennwerte für Betonstahl

Größe Betonstahl		Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32	
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Bohrernenndurchmesser	d_0	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effektive	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Mindestbauteildicke	h _{min}	[mm]	1 -	30 mm 00 mm	≥			he	f + 2d ₀			
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimaler Randabstand	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ beide Bohrernenndurchmesser können verwendet werden

Tabelle B3:Montagekennwerte für Innengewindeankerstangen

Größe Innengewindeankerstang	е		IG-M6	IG-M8	IG-M10 IG-M12 IG-M16 IG-M20				
Innendurchmesser der Hülse	d_2	[mm]	6	8	10	12	16	20	
Außendurchmesser der Hülse 1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30	
Bohrernenndurchmesser	d_0	[mm]	12	14	18	22	28	35	
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120	
Ellektive veralikerungstiele	h _{ef,max}	[mm]	200	240	320	400	480	600	
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22	
Maximales Montagedrehmoment	max T _{inst} ≤	[Nm]	10	10	20	40	60	100	
Einschraublänge min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40	
Mindestbauteildicke	h _{min}	[mm]		0 mm mm	h _{ef} + 2d ₀				
Minimaler Achsabstand	s _{min}	[mm]	50 60 75 95 115				140		
Minimaler Randabstand	c _{min}	[mm]	40	45	50	60	65	80	

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Verwendungszweck	Anhang B 3
Montagekennwerte	

Tabelle B4:Parameter für Reinigungs- und Setzzubehör Innen-Installationsrichtung und $d_{b,min}$ Verfüll-Gewinde d_b min. Anwendung von Betonstahl gewinde-Bohrer - Ø stangen Bürsten - Ø stutzen Bürsten - Ø Verfüllstutzen hülse HD, HDB, CD [mm] [mm] [mm] [mm] [mm] [mm] M8 8 10 RB10 11,5 10,5 8/10 IG-M6 RB12 12,5 M10 12 13,5 Kein Verfüllstutzen notwendig 10 / 12 IG-M8 M12 14 RB14 14,5 15,5 12 16 RB16 17,5 16,5 IG-M10 VS18 M16 14 18 RB18 20,0 18,5 16 20 RB20 20,5 VS20 22,0 M20 22 VS22 IG-M12 RB22 24,0 22,5 20 25 RB25 27,0 25,5 VS25 $h_{ef} >$ $h_{ef} >$ M24 IG-M16 28 RB28 30.0 28,5 **VS28** all 250 mm 250 mm 24 / 25 RB30 30,5 VS30 M27 30 31,8 32 24 / 25 RB32 34,0 32,5 VS32 M30 28 IG-M20 35 RB35 37,0 35,5 VS35 32 40 RB40 43,5 40,5 VS40

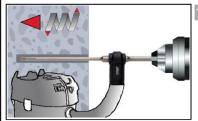
CAC - Empfohlene Druckluftpistole (min 6 bar)

Bohrerdurchmesser (do): alle Durchmesser

HDB - Hohlbohrersystem

Bohrerdurchmesser (d₀): alle Durchmesser Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer Durchflussmenge von Minimum 150 m³/h (42 l/s).

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Verwendungszweck Reinigungs- und Installationszubehör	Anhang B 4



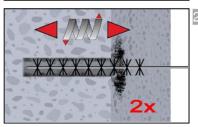
Bohrloch erstellen (HD, HDB, CD)

Hammer (HD) oder Druckluftbohren (CD)

Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter mit Schritt 2. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

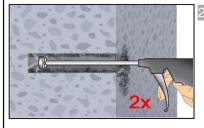


Hohlbohrersystem (HDB) (siehe Anhang B 3)


Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch während des Bohrens (Alle Konditionen). Weiter mit Schritt 3. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

CAC: Reinigung in trockenen, feuchten und wassergefüllten Bohrlöchern für alle Durchmesser in gerissenem und ungerissenem Beton

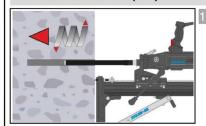


Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B4) minimum 2x mit Drehbewegungen auszubürsten.

Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.

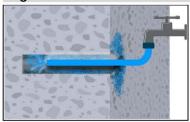
Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.


Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

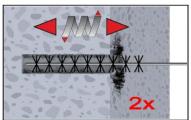
B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Verwendungszweck Setzanweisung	Anhang B 5

Setzanweisung (Fortsetzung)

Bohrloch erstellen (DD)



Diamantbohren (DD)

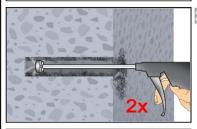

Bohrloch mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter mit Schritt 2. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

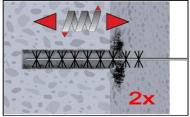
SPCAC: Reinigung in trockenen, feuchten und wassergefüllten Bohrlöchern für alle Durchmesser in ungerissenem Beton



Mit Wasser spülen bis klares Wasser herauskommt.



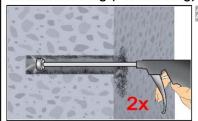
Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B4) minimum 2x mit Drehbewegungen auszubürsten.


Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.

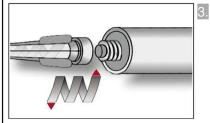
Erneut mit Wasser spülen bis klares Wasser herauskommt.

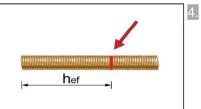
Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

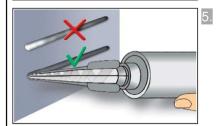
Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B4) minimum 2x mit Drehbewegungen auszubürsten.

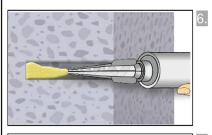

Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.

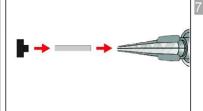
B+BTec Injektionssystem BIS-PE GEN3 für Beton


Verwendungszweck Setzanweisung Anhang B 6


Setzanweisung (Fortsetzung)


Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.


Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die maximale Verarbeitungszeit (Tabelle B5) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.


Vor dem Einstecken der Ankerstange in das gefüllte Bohrloch die geforderte Setztiefe auf der Ankerstange markieren.

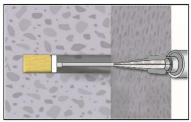
Vor dem Injizieren in das Bohrloch, den Vorlauf solange verwerfen, bis sich eine gleichmäßig graue oder rote Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.

Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B5) sind zu beachten.

Verfüllstutzen und Mischerverlängerung sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:

- Horizontalmontage (horizontal Richtung) und Bodenmontage (vertikal Richtung nach unten): Bohrer-Ø d₀ ≥ 18 mm und Setztiefe hef > 250mm
- Überkopfmontage (vertikale Richtung nach oben): Bohrer-Ø d₀ ≥ 18 mm Den Mischer, die Mischerverlängerung und den Verfüllstutzen vor dem Injizieren zusammenstecken

B+BTec Injektionssystem BIS-PE GEN3 für Beton

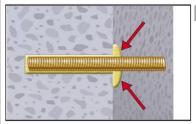

Verwendungszweck

Setzanweisung (Fortsetzung)

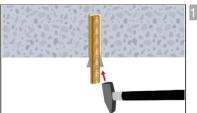
Anhang B 7

Setzanweisung (Fortsetzung)

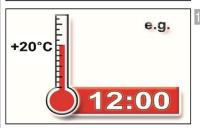
Den Verfüllstutzen bis zum Bohrlochgrund einführen und den Mörtel injizieren. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden.

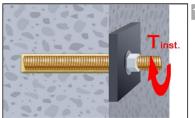

Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels auf natürliche Weise aus dem Bohrloch gedrückt.

Die temperaturrelevanten Verarbeitungszeiten (Tabelle B5) sind zu beachten.



Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.


Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.


Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Beton, bei Durchsteckmontage zusätzlich auch Anbauteil, komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden.

Bei Überkopfmontage ist die Ankerstange bis zum Start der Aushärtung zu fixieren (z.B. Holzkeile).

Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B5).

Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Drehmoment (Tabelle B1 oder B3) montiert werden. Die Mutter muss mit einem kalibriertem Drehmomentschlüssel festgezogen werden.

Bei der Vorsteckmontage kann optional der Ringspalt zwischen Ankerstange und Anbauteil nachträglich mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Mischer stecken. Der Ringspalt ist verfüllt, wenn Mörtel austritt.

B+BTec Injektionssystem BIS-PE GEN3 für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 8

Tabelle B5: Maximale Verarbeitungszeiten und minimale Aushärtezeiten

Beton Tem	peratur	Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton
0 °C to	+ 4 °C	90 min	144 h	288 h
+5°C bis	s + 9 °C	80 min	48 h	96 h
+ 10 °C bis	s + 14 °C	60 min	28 h	56 h
+ 15 °C bis	s + 19 °C	40 min	18 h	36 h
+ 20 °C bis	s + 24 °C	30 min	12 h	24 h
+ 25 °C bis	s + 34 °C	12 min	9 h	18 h
+ 35 °C bis	s + 39 °C	8 min	6 h	12 h
+ 40 °C	0	8 min	4 h	8 h
Kartuschente	emperatur		+5°C bis +40°C	

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Verwendungszweck	Anhang B 9
Aushärtezeit	

1,33

	Stahlquertragfähigkeit vo					B440	8440	B400	N40 4	840-	N#OC
	röße Gewindestangen	ΙΔ	[mm2]	M8	M10	M12		M20 245	M24 353	M27	M30 561
	pannungsquerschnitt	A _s	[mm²]	36,6	58	84,3	157 245 353 459				
	narakteristische Zugtragfähigkeit, Stahlversage		F. 5.13	1.5 (10)	l oo (o.t)					101	004
	ahl, Festigkeitsklasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
_	ahl, Festigkeitsklasse 5.6 und 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
_	ahl, Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
	chtrostender Stahl A2, A4 und HCR, Klasse 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
	chtrostender Stahl A2, A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
	chtrostender Stahl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
-	narakteristische Zugtragfähigkeit, Teilsicherheit	sbeiwe		ı							
_	ahl, Festigkeitsklasse 4.6 und 5.6	γMs,N	[-]				2,0				
_	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γMs,N	[-]				1,5				
	chtrostender Stahl A2, A4 und HCR, Klasse 50	γMs,N	[-]	2,86							
<u> </u>	chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,N}	[-]	1,87							
_	chtrostender Stahl A4 und HCR, Klasse 80	γ _{Ms,N}	[-]	1,6							
Cr	narakteristische Quertragfähigkeit, Stahlversage			ı							1
╒	Stahl, Festigkeitsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
eları	Stahl, Festigkeitsklasse 5.6 und 5.8	V ⁰ Rk,s	[kN]	11 (10)	<u> </u>	25	47	74	106	138	168
Hebelarm	Stahl, Festigkeitsklasse 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
lω	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	V ^⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
녱	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
	Nichtrostender Stahl A4 und HCR, Klasse 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Stahl, Festigkeitsklasse 4.6 und 4.8	M⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Stahl, Festigkeitsklasse 5.6 und 5.8	M⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebek	Stahl, Festigkeitsklasse 8.8	M⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	M⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Mit	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Nichtrostender Stahl A4 und HCR, Klasse 80	M⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
-	narakteristische Quertragfähigkeit, Teilsicherhe	itsbeiw	ert ²⁾								
-	ahl, Festigkeitsklasse 4.6 und 5.6	γMs,V	[-]				1,67				
Sta	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γ _{Ms,V}	[-]				1,25	5			
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 50	$\gamma_{Ms,V}$	[-]				2,38	3			
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 70	γMs,V	[-]				1,56	3			
K I	LI I OLITAA IIIODIKI OO	L					4 00				

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

γ_{Ms,V}

Nichtrostender Stahl A4 und HCR, Klasse 80

³⁾ Dübelvariante nicht in ETA enthalten

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquertragfähigkeit von Gewindestangen	Anhang C 1

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2: Charakteristische Werte für Betonausbruch und Spalten für alle Belastungsarten										
Dübelgröße				Alle Dübelarten und -größen						
Betonausbruch										
ungerissener Beto	on	k _{ucr,N}	[-]	11,0						
gerissener Beton		k _{cr,N}	[-]	7,7						
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}						
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}						
Spalten										
	h/h _{ef} ≥ 2,0			1,0 h _{ef}						
Randabstand	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$						
	h/h _{ef} ≤ 1,3	-		2,4 h _{ef}						
Achsabstand	•	s _{cr,sp}	[mm]	2 c _{cr,sp}						

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte für Betonausbruch und Spalten für alle Belastungsarten	Anhang C 2

Dübelgröße Gewind	estangen			М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen		N	FL-N 17			Λ . f	(odor ci	oho Toh	valla C1)		
Charakteristische Zug		N _{Rk,s}	[kN]						elle C1)		
Teilsicherheitsbeiwert Kombiniertes Versag		γMs,N	[-]	obruok			siene ia	abelle C	1		
Charakteristische Ver	•					mmerge	bohrten	Löcherr	ı (HD) ii	nd in	
druckluftgebohrten Lö		iiii angone	ochen bete	11 020/2	-0 III IIai	mnorgo	DOTTICOT	LOOHOH	1 (11D) u	110 111	
emperatur Dereich H: 40°C/24°C H: 72°C/50°C	trockener und feuchter Beton, sowie	^τ Rk,ucr	[N/mm²]	20	20	19	19	18	17	16	16
<u> </u>	wassergefülltes Bohrloch			15	15	15	14	13	13	12	12
Charakteristische Ver	bundtragfähigkeit	im ungeris	senen Beto							hlbohrei	г` —
를 <u>I: 40°C/24°C</u>	trockener und			17	16	16	16	15	14	14	13
II: 72°C/50°C II: 72°C/50°C II: 72°C/50°C	feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	14	14	14	13	13	12	12	11
를 <mark>할 점 I: 40°C/24°C</mark>	wassergefülltes	i iii,aoi		16	16	16	15	15	14	14	13
11. 72 0/30 0	Bohrloch			14	14	14	13	13	12	12	11
Charakteristische Ver druckluftgebohrten Lö	bundtragfähigkeit	im gerisse	nen Beton (ver (HDR)	C20/25	in hamn	nergebo	hrten Lö	chern (F	HD), in		
मूहा: 40°C/24°C feed	trockener und feuchter Beton,			7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
II: 72°C/50°C	sowie wassergefülltes Bohrloch	[⊤] Rk,cr	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
Reduktionsfaktor $\psi^0_{$ si			ssenen Beto	n C20/2	25 in ha	mmerge	bohrten	Löcherr	ո (HD), i	n	
druckluftgebohrten Lö	ocnern (GD) und r	nit Hohlboh	rer (HDB)								
ate 는 한 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년	trockener und feuchter Beton,						0,	80			
<u>L</u>	trockener und	Ψ ⁰ sus	rer (HDB)					80 68			
1	trockener und feuchter Beton, sowie wassergefülltes	Ψ^0 sus					0,	68 02			
I: 40°C/24°C Generative H: 72°C/50°C	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37					0, 1,	68 02 04			
II: 72°C/50°C Erhöhungsfaktor für E	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45					0, 1, 1,	68 02 04 07			
II: 72°C/50°C Erhöhungsfaktor für E	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50					0, 1, 1, 1,	68 02 04 07 08			
II: 72°C/50°C Erhöhungsfaktor für E	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45					0, 1, 1, 1,	68 02 04 07 08 09			
II: 72°C/50°C Erhöhungsfaktor für E	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50 C45/55					0, 1, 1, 1,	68 02 04 07 08			
II: 72°C/50°C Erhöhungsfaktor für E	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50 C45/55					0, 1, 1, 1, 1,	68 02 04 07 08 09			
Erhöhungsfaktor für E	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50 C45/55					0, 1, 1, 1, 1,	68 02 04 07 08 09			
Erhöhungsfaktor für E Getonausbruch Relevante Parameter Spalten	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50 C45/55					0, 1, 1, 1, 1, 1,	68 02 04 07 08 09	2		
1	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50 C45/55					0, 1, 1, 1, 1, 1,	68 02 04 07 08 09 10	2		
Erhöhungsfaktor für E Wc Betonausbruch Relevante Parameter Relevante Parameter	trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]				0, 1, 1, 1, 1, siehe Ta	68 02 04 07 08 09 10	2		
Erhöhungsfaktor für E Betonausbruch Relevante Parameter Spalten Relevante Parameter Montagebeiwert für trockenen und feur	trockener und feuchter Beton, sowie wassergefülltes Bohrloch Beton	Ψ ⁰ sus C25/30 C30/37 C35/45 C40/50 C45/55					0, 1, 1, 1, 1, 1, siehe Ta	68 02 04 07 08 09 10 abelle Ca	2		

	größe Gewinde	estangen			М8	M10	M12	M16	M20	M24	M27	M30				
	ersagen		T	 												
Charal	kteristische Zug	tragfähigkeit	N _{Rk,s}	[kN]			A _s • f _{uk}	(oder si	ehe Tab	elle C1))					
Teilsic	herheitsbeiwert		$\gamma_{Ms,N}$	[-]			:	siehe Ta	abelle C	1						
		gen durch Herau														
drucklı	kteristische Verl uftgebohrten Lö	bundtragfähigkeit chern (CD)	im ungeriss	senen Beto	n C20/2	25 in haı	mmergel	oohrten	Löcherr	ı (HD) u	nd in					
emperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton, sowie	TD:	[N/mm²]	20	20	19	19	18	17	16	16				
	II: 72°C/50°C	wassergefülltes Bohrloch	[₹] Rk,ucr,100		15	15	15	14	13	13	12	12				
Charal	kteristische Ver	bundtragfähigkeit	im ungeriss	senen Beto	n C20/2	25 in hai	nmergel	oohrten	Löcherr	mit Ho	hlbohrei	r (HDE				
eich	I: 40°C/24°C	trockener und			17	16	16	16	15	14	14	13				
Temperatur-bereich	II: 72°C/50°C	feuchter Beton	τ _{Rk,ucr,100}	[N/mm²] -	14	14	14	13	13	12	12	11				
mperai	I: 40°C/24°C	wassergefülltes	11K,uCl,100	[[[]	16	16	16	15	15	14	14	13				
	II: 72°C/50°C	Bohrloch							14	14	14	13	13	12	12	11
		bundtragfähigkeit			C20/25	in hamn	nergebol	hrten Lö	chern (F	HD), in						
	uftgebohrten Lo	chern (CD) und n	nit Honibohr I	er (HDB)								I				
emperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton, sowie	τ _{Rk,cr,100}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5				
Temp be	II: 72°C/50°C	wassergefülltes Bohrloch	, ,		5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5				
			C25/30						02							
Erböbi	ungafaktar für D	loton	C30/37		1,04											
⊏пюпі Ѱс	ungsfaktor für B	eton	C35/45 C40/50		1,07											
ΨС			C45/55		1,08											
			C50/60		1,10											
Beton	ausbruch		1 223,00					٠,	- -							
	ante Parameter						•	siehe Ta	abelle C	2						
Spalte																
	ante Parameter						•	siehe Ta	abelle C	2						
	gebeiwert								<u> </u>							
für tro	ckenen und feud IDB, CD)	chten Beton	24.	[]	1,0											
für wa	ssergefülltes Bo IDB, CD)	phrloch	γinst	[-]				1	,2							
					_											

2 0 2	estangen			М8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen		l NI				Λ . f	(adar ai	oho Toh	ollo C1)			
Charakteristische Zug		N _{Rk,s}	[kN]					ehe Tab				
Teilsicherheitsbeiwert		γMs,N	[-]	-1	f"			abelle C				
Kombiniertes Versag Charakteristische Ver	_									ren		
	trockener und	im ungenss	senen Belo	11 020/2	o in dia	maniger	onrien	Lochem				
II: 72°C/50°C	feuchter Beton, sowie	τ _{Rk,ucr}	[N/mm²] -	15	14	14	13	12	12	11	11	
	wassergefülltes Bohrloch			12	12	11	10	9,5	9,5	9,0	9,0	
Reduktionsfaktor ${\psi^0}_{ extsf{s}_l}$	_{us} im ungerissene	n Beton C2	0/25 in diar	nantgel	ohrten	Löchern	(DD)					
Temperatur- pereich II: 40°C/24°C	trockener und feuchter Beton, sowie	Ψ ⁰ sus	r.1				0,	77				
II: 72°C/50°C	wassergefülltes Bohrloch	Ψ sus	[-]				0,	72				
•		C25/30					1,	04				
Erhöhungsfaktor für Beton [∤] c		C30/37						08				
		C35/45	1,12									
		C40/50		1,15								
		C45/55 C50/60		1,17 1,19								
Kombiniertes Versa	nen durch Herai	l	d Retonal	ishriich	für ein	A Nutzi			100 Jal	ren		
Charakteristische Ver	-									11011		
	trockener und	Tim ungenssehen be				_						
I: 40°C/24°C	feuchter Beton, sowie	TDI 100	[N]/mm2]	15	14	14	13	12	12	11	11	
Temperatur Pereich II: 72°C/50°C	wassergefülltes Bohrloch	^τ Rk,ucr,100	[N/mm²]	11	11	10	10	9,5	9,0	8,5	8,5	
		C25/30					1,	04				
		C30/37		1,08								
Erhöhungsfaktor für E	Beton	C35/45		1,12								
Ψc		C40/50		1,15								
		C45/55 C50/60		1,17 1,19								
		000/00					Ι,	ıIJ				
Relevante Parameter							siehe Ta	abelle C	2			
Spalten						•	Siche Te	abelie Oz	_			
Relevante Parameter						9	siehe Ta	abelle C	 2			
Montagebeiwert												
ür trockenen und feu DD)	chten Beton						1	,0				
ür wassergefülltes Bo DD)	ohrloch	γinst	[-]	1,2 1,4								

Tabelle C6: Charakteristisch statischer Belas		e der	Quert	ragfäl	nigkeit	unter	statis	cher	und qua	asi-			
Dübelgröße Gewindestangen			М8	M10	M12	M16	M20	M24	M27	M30			
Stahlversagen ohne Hebelarm													
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und V ⁰ _{Rk,s} [5.8							Tabelle	C1)				
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	e 8.8 2, A4 und HCR, $V^0_{\text{Rk,s}}$ [kN] $0.5 \cdot A_s \cdot f_{\text{uk}}$ (oder siehe Tabelle C1)												
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe T	abelle C	1					
Duktilitätsfaktor	k ₇	[-]	1,0										
Stahlversagen mit Hebelarm													
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	2 · W _{el}	• f _{uk} (od	er siehe	Tabelle C1)					
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874			
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe T	abelle C	1					
Betonausbruch auf der lastabgewandt	en Seite												
Faktor	k ₈	[-]				;	2,0						
Montagebeiwert	γinst	[-]					1,0						
Betonkantenbruch													
Effektive Dübellänge	If	[mm]		n	nin(h _{ef} ;	12 • d _{nor}	n)		min(h _{ef} ;	300mm)			
Außendurchmesser des Dübels	[mm]	8	10	12	16	20	24	27	30				
Montagebeiwert	non												

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 6

	windeankerstangen			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Stahlversagen ¹⁾	traofähiokeit 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
Charakteristische Zug Stahl, Festigkeitsklass	tragranigkeit, 5.0	N ₋		16	27	46	67	121	
Teilsicherheitsbeiwert		N _{Rk,s}	[kN]	16	21			121	196
Charakteristische Zug		γ _{Ms,N}	[-]			<u>'</u>	,5 I		
Nichtrostender Stahl A	A4 und HCR, Klasse 70 ²⁾	N _{Rk,s}	[kN]	14	26	59	110	124	
Teilsicherheitsbeiwert		γMs,N	[-]			1,87			2,86
	gen durch Herausziehen							<u> </u>	
Charakteristische Verb druckluftgebohrten Löd	bundtragfähigkeit im unge chern (CD)	rissene	n Beton Cz	20/25 in ha	ammergel	oonrten Lo	cnern (HL	ر) und in	
	trockener und feuchter		[N]/mama 2]	20	19	19	18	17	16
	Beton, sowie wassergefülltes Bohrloch	^τ Rk,ucr	[N/mm²]	15	15	14	13	13	12
Charakteristische Verk	bundtragfähigkeit im unge	rissene	n Beton C2	20/25 in ha	ammergel	ohrten Lö	chern mit	Hohlbohr	er (HDE
<u>I: 40°C/24°C</u>	trockener und feuchter			16	16	16	15	14	13
<u>후</u> 을 II: 72°C/50°C	Beton	τ _{Rk,ucr}	[N/mm²]	14	14	13	13	12	11 13
F m	is 40°C/24°C wassergefülltes Bohrlo		[]	16 16 15 15 14					
II: 72°C/50°C		<u> </u>		14	14	13	13	12	11
	bundtragfähigkeit im geris chern (CD) und mit Hohlb			25 in ham	imergebol	nrten Löch	iern (HD),	in	
	trockener und feuchter	_	[N / 2]	7,0	8,5	8,5	8,5	8,5	8,5
트	Beton, sowie wassergefülltes Bohrloch	^τ Rk,cr	[N/mm²]	6,0	7,0	7,0	7,0	7,0	7,0
	_{us} im gerissenen und unge	erissene			· ·	· ·		·	- ,-
druckluftgebohrten Löd		erissene ohrer (F	IDB)		· ·	bohrten Lö	öchern (HI	·	
druckluftgebohrten Löd	_{us} im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter	erissene ohrer (H Ψ ⁰ sus	1DB) [-]		· ·	oohrten Lö	öchern (HI 80 68	·	
druckluftgebohrten Löd	_{us} im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie	erissene ohrer (F Ψ ⁰ sus	IDB) [-] 25/30		· ·	ohrten Lö	öchern (HI 80 68 02	·	
druckluftgebohrten Löd d 5 5 1: 40°C/24°C E 9 H: 72°C/50°C	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37		· ·	0, 0, 1,	68 02 04	·	
druckluftgebohrten Löc 호 등 I: 40°C/24°C II: 72°C/50°C	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45		· ·	0, 0, 1,	80 68 02 04 07	·	
druckluftgebohrten Löd d 5 5 1: 40°C/24°C E 9 H: 72°C/50°C	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45 40/50		· ·	0, 0, 1, 1,	68 02 04 07	·	
druckluftgebohrten Löc 호 등 I: 40°C/24°C II: 72°C/50°C	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45		· ·	0, 0, 1, 1, 1,	80 68 02 04 07	·	
druckluftgebohrten Löc 立 등 I: 40°C/24°C II: 72°C/50°C Erhöhungsfaktor für Be Ψc Betonausbruch	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45 40/50 45/55		· ·	0, 0, 1, 1, 1,	80 68 02 04 07 08 09	·	
druckluftgebohrten Löd druckl	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45 40/50 45/55		· ·	0, 0, 1, 1, 1,	68 02 04 07 08	·	
druckluftgebohrten Löd druckluftgebohrten Löd druckluftgebohrten Löd druckluftgebohrten Löd druckluftgebohrten Löd druckluftgebohrten Löd li: 40°C/24°C li: 72°C/50°C which is a second of the second of th	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45 40/50 45/55		· ·	0, 0, 1, 1, 1, 1, siehe Ta	68 02 04 07 08 09 10	·	
druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc E: 40°C/24°C II: 72°C/50°C Frhöhungsfaktor für Belevante Parameter Betonausbruch Relevante Parameter Spalten Relevante Parameter	us im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45 40/50 45/55		· ·	0, 0, 1, 1, 1, 1, siehe Ta	80 68 02 04 07 08 09	·	
druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc H: 40°C/24°C II: 72°C/50°C II: 72°C/50°C Betonausbruch Relevante Parameter Spalten Relevante Parameter Montagebeiwert	im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch eton	erissene ohrer (F Ψ ⁰ sus	[-] 25/30 30/37 35/45 40/50 45/55		· ·	oohrten Lö 0, 0, 1, 1, 1, siehe Ta	68 02 04 07 08 09 10 abelle C2	·	
druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc li: 40°C/24°C li: 72°C/50°C Erhöhungsfaktor für Be Wo Betonausbruch Relevante Parameter Spalten Relevante Parameter Montagebeiwert für trockenen und feuc (HD; HDB, CD)	im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch eton	erissene ohrer (H Ψ ⁰ sus	[-] 25/30 30/37 35/45 40/50 45/55 50/60		· ·	oohrten Lö 0, 0, 1, 1, 1, siehe Ta	68 02 04 07 08 09 10	·	
druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc druckluftgebohrten Löc li: 40°C/24°C li: 72°C/50°C Erhöhungsfaktor für Be ψc Betonausbruch Relevante Parameter Spalten Relevante Parameter Montagebeiwert für trockenen und feuc (HD; HDB, CD) für wassergefülltes Bo (HD; HDB, CD)	im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch eton	Prissene ohrer (F	[-] 25/30 30/37 35/45 40/50 45/55 50/60	20/25 in h	ammerge	0, 0, 1, 1, 1, 1, siehe Ta	68 02 04 07 08 09 10 abelle C2 ,0	D), in	
Betonausbruch Relevante Parameter Spalten Relevante Parameter Wontagebeiwert für trockenen und feuc (HD; HDB, CD) Til Befestigungsschrauk der Innengewindean	im gerissenen und unge chern (CD) und mit Hohlb trockener und feuchter Beton, sowie wassergefülltes Bohrloch eton chten Beton ohrloch ben oder Gewindestangen elkerstangen entsprechen. Elten für die Innengewindea	Prissene ohrer (Fundamental Prissene ohrer	[-] 25/30 30/37 35/45 40/50 45/55 50/60	Mutter) mü	ssen mind	bohrten Lö 0, 0, 1, 1, 1, siehe Ta siehe Ta 1 lestens der ir Stahlvers	sichern (HI 80 68 02 04 07 08 09 10 abelle C2 de gewählter sagen der sagen der sagen der segen d	n Festigkei	tsklasse

	harakteristische W tatischer Belastung			_				und qua	asi-
	ewindeankerstangen			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Stahlversagen ¹⁾		l N I		1 40	4-	00	40	70	400
Charakteristische Zug		N _{Rk,s}	[kN]	10	17	29	42	76	123
Stahl, Festigkeitsklas	0.0	N _{Rk,s}	[kN]	16	27	46	67	121	196
Teilsicherheitsbeiwer		γ _{Ms,N}	[-]				1,5		
	A4 und HCR, Klasse 70 ²⁾	N _{Rk,s}	[kN]	14	26	41	59	110	124
Teilsicherheitsbeiwer		γ _{Ms,N}	[-]			1,87			2,86
	gen durch Herausziehen								
druckluftgebohrten Lö	rbundtragfähigkeit im unge öchern (CD)	erissenen B	eton C20/	25 in har 	nmerge	bohrten L	öchern (H	D) und in	
Temperatur- Bereich II: 40°C/20°C	trockener und feuchter Beton, sowie	τ _{Rk,ucr,100}	[N/mm²]	20	19	19	18	17	16
H B II: 72°C/50°C	wassergefülltes Bohrloch	T IIX, doi, 100	,	15	15	14	13	13	12
Charakteristische Ver	rbundtragfähigkeit im unge	erissenen B	eton C20/	25 in har	nmerge	bohrten L	öchern mi	t Hohlboh	rer (HDB)
. I: 40°C/24°C	trockener und feuchter			16	16	16	15	14	13
Temperatur. 1: 40°C/24°C 1: 40°C/24°C 1: 72°C/50°C 1: 72°	Beton	τ	[NI/mm2]	14	14	13	13	12	11
E		^τ Rk,ucr,100	[N /mm²]	16	16	15	15	14	13
п	wassergefülltes Bohrloch			14	14	13	13	12	11
	rbundtragfähigkeit im geris öchern (CD) und mit Hohlb			in hamn	nergebo	hrten Löcl	nern (HD)	, in	
Temperatur-Bereich II: 40°C/24°C	trockener und feuchter Beton, sowie	^T Rk,cr,100	[N/mm²]	6,5	7,5	7,5	7,5	7,5	7,5
Ⅱ: 72°C/50°C	wassergefülltes Bohrloch	, , , , , ,		5,5	6,5	6,5	6,5	6,5	6,5
		C25					1,02		
		C30		1,04					
Erhöhungsfaktor für E	Beton	C35	0/45 0/50				1,07 1,08		
Ψ¢		C45					1,08		
			0/60				1,10		
Betonausbruch									
Relevante Parameter						siehe	Tabelle Ca	2	
Spalten				1			-	•	
Relevante Parameter Montagebeiwert	•					siehe	Tabelle Ca	2	
für trockenen und feu	chten Beton						1,0		
(HD; HDB, CD) für wassergefülltes B	ohrloch	γ _{inst}	[-]				1,2		
der Innengewindea	iben oder Gewindestangen nkerstangen entsprechen. E elten für die Innengewindea eitsklasse 50 gültig	Die charakte	ristischen	Tragfähig	jkeiten fü	ir Stahlver	r gewählte sagen der		
B+BTec Injektions	ssystem BIS-PE GEN3 f	ür Beton							
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung Anhang C 8									

Dübelgröße Innengewindeankerstangen			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Stahlversagen ¹⁾											
Charakteristische Zugtragfähigkeit, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123			
Stahl, Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196			
Teilsicherheitsbeiwert 5.8 und 8.8				1,5							
	γ _{Ms,N}	[-]			1	1,5					
Charakteristische Zugtragfähigkeit, Nichtrostender Stahl A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	14	26	41	59	110	124			
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]			1,87			2,86			
Kombiniertes Versagen durch Herausziehe											
Charakteristische Verbundtragfähigkeit im un	gerissenen E	Beton C20/	25 in dia	mantgebo	hrten Lö	chern (DD))				
trockener und feuchter Beton, sowie wassergefülltes Robrloch	τ _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11			
ษ็ ธั๊ II: 72°C/50°C wassergefülltes Bohrloch	-nk,uci	[14/11]	12	11	10	9,5	9,5	9,0			
Reduktionsfaktor ψ^0_{sus} im ungerissenen Beto	n C20/25 in	diamantge	bohrten I	₋öchern (DD)						
់ 5 I: 40°C/24°C trockener und feuchter Beton, sowie					0	,77					
II: 72°C/50°C Trockener und feuchter Beton, sowie wassergefülltes Bohrloch	Ψ^0 sus	[-]			0	,72					
'	C25	5/30	1,04								
	C30)/37	1,08								
Erhöhungsfaktor für Beton	C35	5/45	1,12								
Ψc	C40)/50	1,15								
	C45	5/55	1,17								
	C50		1,19								
Kombiniertes Versagen durch Herausziehe	en und Beto	nausbruc	h für ein	e Nutzur	ngsdauer	von 100	Jahren				
Charakteristische Verbundtragfähigkeit im un	gerissenen E	Beton C20/	25 in diai	mantgebo	hrten Lö	chern (DD)				
trockener und feuchter Beton, sowie wassergefülltes Bohrloch	^τ Rk,ucr,100	[N/mm²]	14	14 10	13 10	12 9,5	9,0	11 8,5			
Bollilocii	005	100					,				
	C25					,04					
Eule # have en folden fün Detere	C30					,08					
Erhöhungsfaktor für Beton	C40					,12 ,15					
Ψс	C40					,13 ,17					
	C50					,17 ,19					
Betonausbruch	1 000	<i>,,</i> 00				,10					
Relevante Parameter					siehe T	abelle C2					
Spalten											
Relevante Parameter					siehe T	abelle C2					
Montagebeiwert											
für trockenen und feuchten Beton (DD)	26	r 3			-	1,0					
für wassergefülltes Bohrloch (DD)	γinst	[-]	1	,2			,4				
 Befestigungsschrauben oder Gewindestange der Innengewindeankerstangen entsprechen Festigkeitsklasse gelten für die Innengewinde für IG-M20 Festigkeitsklasse 50 gültig 	. Die charakte	eristischen i	Tragfähig	keiten für	Stahlvers	agen der a					
B+BTec Injektionssystem BIS-PE GEN3	tiin Datan										

Tabelle C10: Charakt statisch				ler Quer	tragfähi	igkeit ur	nter stat	ischer u	ınd quasi-
Dübelgröße Innengewindea	nkers	tangen		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Stahlversagen ohne Hebela	rm ¹⁾								
Charakteristische	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Quertragfähigkeit, Stahl, Festigkeitsklasse	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Teilsicherheitsbeiwert 5.8 und	l 8.8	γ _{Ms,V}	[-]				1,25		
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 und l Festigkeitsklasse 70 ²⁾	HCR,	V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Teilsicherheitsbeiwert		γMs,V	[-]			1,56			2,38
Duktilitätsfaktor		k ₇	[-]				1,0		
Stahlversagen mit Hebelarn	1 ¹⁾								
Charakteristisches Biegemoment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Stahl, Festigkeitsklasse	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Teilsicherheitsbeiwert 5.8 und	18.8	γ _{Ms,V}	[-]				1,25		
Charakteristisches Biegemom nicht-rostender Stahl A4 und I Festigkeitsklasse 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]			1,56			2,38
Betonausbruch auf der lasta	abgew	andten S	Seite						
Faktor		k ₈	[-]				2,0		
Montagebeiwert		γ _{inst}	[-]				1,0		
Betonkantenbruch									
Effektive Dübellänge		I _f	[mm]	min(h _{ef} ; 12 • d _{nom})					min(h _{ef} ; 300mm)
Außendurchmesser des Dübe	els	d _{nom}	[mm]	10	12	16	20	24	30
Montagebeiwert		γ _{inst}	[-]				1,0		

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 10

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Dübelgröße Betons	stahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristische Z	ugtragfähigkeit	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Stahlspannungsque		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwe		γ _{Ms,N}	[-]		, -				4 ²⁾				
	agen durch Herauszie			ehruc	h			','	<u> </u>				
	erbundtragfähigkeit im					namme	eraebo	hrten	löche	rn (HD) und i	in	
druckluftgebohrten L	Löchern (CD)	ı	1								, and		
	trockener und feuchter Beton, sowie	τ _{Rk,ucr}	[N/mm²]	16	16	16	16	16	16	15	15	15	15
-				12	12	12	12	12	12	12	12	11	11
	erbundtragfähigkeit im ı	ungerisse	enen Beto										
اع الله الله الله الله الله الله الله ال				14	14	13	13	13	13	13	13	13	13
© € II: 72°C/50°C	feuchter Beton	τ _{Rk,ucr}	[N/mm²]	12	12	12	11	11	11	11	11	11	11
	wassergefülltes	i ik,uci		13	13	13	13	13	13	13	13	13	13
⊢ II. /2 G/30 G	Bohrloch		n Doton (11	11	11	11	11	11	(UD)	11	11	11
Charakteristische vo druckluftgebohrten I	erbundtragfähigkeit im (Löchern (CD) und mit H	gerissene Iohlbohre	en Belon (er (HDR)	J2U/25	ın nar	nmerg	ebonn	en Lo	cnem	(HD), I	III		
ر ت	trockener und		1 (1100)										
eral	feuchter Beton, sowie wassergefülltes	τ _{Rk,cr}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
트 호 II: 72°C/50°C	Bohrloch			6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Reduktionsfaktor ψ ⁰) _{sus} im gerissenen und	ungeriss	enen Beto	n C20	/25 in	hamm	ergebo	hrten	Löche	rn (HC)), in		
	Löchern (CD) und mit H						J			,	,,		
म् है ।: 40°C/24°C	trockener und feuchter Beton, sowie							0,8	80				
اا: 72°C/50°C	wassergefülltes Bohrloch	Ψ^0 sus	[-]					0,0	68				
		C2	:5/30					1.0	02				
			0/37						04				
Erhöhungsfaktor für	Beton	C3	5/45					1,0	07				
Ψ¢		C4	0/50					1,0	08				
		C4	5/55					1,0	09				
		C5	0/60					1,	10				
Betonausbruch													
Relevante Paramete	er						sie	ehe Ta	belle (C2			
Spalten													
Relevante Paramete	er						Sie	ehe Ta	belle (32			
Montagebeiwert	l.t D.t	1											
für trockenen und fe (HD; HDB, CD)		γ _{inst}	[-]					1,	,0				
für wassergefülltes I (HD; HDB, CD)	Bonriocn							1,	,2				
	ationen des Betonstahls tionalen Regelungen fehl		hmen										
B+BTec Injektion	nssystem BIS-PE GE	N3 für B	eton										

Tabelle C12:	Charakteristisch statischer Belas			-		_					nd q	uasi [.]	.
Dübelgröße Betor	nstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristische Z	Zugtragfähigkeit	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Stahlspannungsqu	erschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiw	rert	γ _{Ms,N}	[-]	1,42)									
Kombiniertes Vers	sagen durch Herausz	,		sbruc	h								
Charakteristische \ druckluftgebohrten	/erbundtragfähigkeit in Löchern (CD)					namme	ergebo	hrten	Löche	rn (HC) und	in	ı
emperaturing I: 40°C/24°C	trockener und feuchter Beton, sowie	^T Rk,ucr,100	[N]/mm21	16	16	16	16	16	16	15	15	15	15
la li: 72°C/50°C	wassergefülltes Bohrloch	rRK,ucr,100	[1 4 /11111-] 	12	12	12	12	12	12	12	12	11	11
Charakteristische \	/erbundtragfähigkeit in	n ungerisse	nen Betor	n C20/	25 in h	namme	ergebo	hrten	Löche	rn mit	Hohlbe	ohrer (HDB)
፱ _ I: 40°C/24°C	trockener und			14	14	13	13	13	13	13	13	13	13
등 등 II: 72°C/50°C	feuchter Beton	τ	[N/mm2]	12	12	12	11	11	11	11	11	11	11
I: 40°C/24°C II: 72°C/50°C II: 72°C/50°C II: 72°C/50°C	wassergefülltes	^T Rk,ucr,100	[IN/MM²]	13	13	13	13	13	13	13	13	13	13
				11	11	11	11	11	11	11	11	11	11
	/erbundtragfähigkeit in Löchern (CD) und mit			20/25	in har	nmerg	ebohr	ten Lö	chern	(HD),	in		
Decicle II: 40°C/24°C	trockener und feuchter Beton, sowie	TD: 100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
โลก	wassergefülltes Bohrloch	^τ Rk,cr,100	[[14///////////////////////////////////	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
		C25.	/30			•		1,	02	•	•	•	
		C30	/37					1,	04				
Erhöhungsfaktor fü	r Beton	C35	/45					1,	07				
Ψ¢		C40							80				
		C45							09				
		C50	/60					1,	10				
Betonausbruch													
Relevante Paramet	ter						Sie	ene la	abelle	U2			
Spalten	· · · · · · · · · · · · · · · · · · ·		1					obe T	المطا	00			
Relevante Paramet Montagebeiwert	lei			siehe Tabelle C2									
für trockenen und f	euchten Reton												
(HD; HDB, CD)	edenien belon	l	.,					1	,0				
für wassergefülltes (HD; HDB, CD)	Bohrloch	^γ inst	[-]	1,2									_
1) fur ist den Spezifi	kationen des Betonstah	ls zu entneh	men										

 $^{^{\}rm 1)}$ $\rm f_{uk}$ ist den Spezifikationen des Betonstahls zu entnehmen $^{\rm 2)}$ Sofern andere nationalen Regelungen fehlen

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 12

	Charakteristisch statischer Belas				-	_					nd q	uasi-	
Dübelgröße Beton	nstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen					100000								
Charakteristische Z	Zugtragfähigkeit	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Stahlspannungsque	erschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiw		γ _{Ms,N}	[-]						4 ²⁾				
	sagen durch Herausz			sbruc	h für d	eine N	utzun			50 .la	ahren		
	erbundtragfähigkeit ir												
				020/	20 111 (ligebo			11 (00			
emperatur- pereich II: 40°C/24°C	feuchter Beton,			14	13	13	13	12	12	11	11	11	11
je j	sowie	^τ Rk,ucr	[N/mm ²]										
Temperature bereich 1: 40°C/24°C II: 72°C/50°C	wassergefülltes Bohrloch			11	11	10	10	10	9,5	9,5	9,5	9,0	9,0
Reduktionsfaktor ψ	0 _{sus} im ungerissenen	Beton C20/	25 in dian	nantge	bohrte	en Löc	hern (I	DD)					
ration 1: 40°C/24°C	trockener und feuchter Beton,		[-]					0,	77				
Temperatury 11: 40°C/24°C	II: 72°C/50°C Indicate the fund feuchter Beton, sowie wassergefülltes Bohrloch							0,	72				
		C25	/30					1,	04				
	C30	1,04 1,08											
	rhöhungsfaktor für Beton ^{(c}		C35/45		1,12								
Ψс			C40/50		1,15								
		C45/55		1,17									
		C50		1,19									
		C25	1,04 usbruch für eine Nutzungsdauer von 100 Jahren										
												1	
	erbundtragfähigkeit in trockener und	n ungerisse T	enen Betol	n G20/	25 In (diamar	ntgebo	nrten i	Locner	טט) n)		
틸로I: 40°C/24°C	feuchter Beton,			14	13	13	13	12	12	11	11	11	11
reic ————————————————————————————————————	sowie	τ _{Rk,ucr,100}	[N/mm²]										
Temperatur- pereich II: 72°C/20°C	wassergefülltes Bohrloch	T IR, dCI, TOO		11	10	10	10	9,5	9,0	9,0	9,0	8,5	8,5
		C25	/30			•		1,	04				
		C30	/37					1,	80				
Erhöhungsfaktor fü	r Beton	C35	/45					1,	12				
Ψ¢		C40	/50						15				
		C45		1,17									
		C50	/60					1,	19				
Betonausbruch										20			
Relevante Paramet	er						sie	ene l'a	abelle (<i>J</i> 2			
Spalten Relevante Paramet	tor							obe T-	abelle (20			
Montagebeiwert	l C I						SI	ene 18	inelle (ےد			
	euchten Beton (DD)							1	,0				
für wassergefülltes		γ _{inst}	[-]		1	,2			,,,	1	,4		
1) f _{uk} ist den Spezifil	kationen des Betonstah ationalen Regelungen fe		nmen			<u>, </u>				<u> </u>	, -		
B+BTec Injektion	nssystem BIS-PE G	EN3 für B	eton								_		_
Leistungen Charakteristische V	Tec Injektionssystem BIS-PE GEN3 für Beton tungen akteristische Werte der Zugtragfähigkeit unter statischer u					cher B	elastur	ng		An	hang	J C 1	3

	Tabelle C14: Charakteristische Werte der Quertragfähigkeit unter statischer und quasi- statischer Belastung											
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	V ⁰ Rk,s	[kN]	$0.50 \cdot A_s \cdot f_{uk}^{2}$									
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]					1,	5 ²⁾				
Duktilitätsfaktor	k ₇	[-]					1	,0				
Stahlversagen mit Hebelarm												
Charakteristische Biegemoment	M ⁰ Rk,s	[Nm]					1.2 • W	el • f _{uk}	1)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,	5 ²⁾				
Betonausbruch auf der lastabge	ewandten Seit	te										
Faktor	k ₈	[-]					2	,0				
Montagebeiwert	γinst	[-]					1	,0				
Betonkantenbruch												
Effektive Dübellänge	If	[mm]	min(h _{ef} ; $12 \cdot d_{nom}$) min(h _{ef} ; 300 mm)									
Außendurchmesser des Dübels	d _{nom}	[mm]] 8 10 12 14 16 20 24 25 28 32									32
Montagebeiwert	γinst	[-]					1	,0				

 $^{^{\}rm 1)}$ $\rm f_{uk}$ ist den Spezifikationen des Betonstahls zu entnehmen $^{\rm 2)}$ Sofern andere nationalen Regelungen fehlen

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 14

Tabelle C15:	Verschiebung unter Zugbea (HD), in druckluftgebohrten	 			1

				11-11						
Dübelgröße Gewindes	tange		M8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton u für eine Nutzungsdaue			cher Be	lastung						
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Gerissener Beton unte	er statischer und	l quasi-statisch	er Belas	tung fü	r eine Nu	utzungs	dauer vo	on 50 un	id 100 J	ahren
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C/24°C δ _{N∞} -Faktor		[mm/(N/mm²)]	0,100	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperaturbereich II: δ_{N0} -Faktor [mm/(N/m		[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
72°C/50°C	[mm/(N/mm²)]	0,134	0,154	0,163	0,172	0,181	0,189	0,207	0,229	

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor · τ ;

Tabelle C17: Verschiebung unter Zugbeanspruchung¹⁾ in diamantgebohrten Löchern (DD)

Dübelgröße Gewindes	übelgröße Gewindestange			M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton u	nter statischer u	ınd quasi-statis	cher Be	lastung	für eine	Nutzun	gsdauer	von 50	Jahren	
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,018	0,019	0,019	0,020	0,022	0,023	0,024	0,025
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,052	0,053	0,055	0,058	0,062	0,065	0,068	0,070
Ungerissener Beton u		ınd quasi-statis	cher Be	lastung	für eine	Nutzun	gsdauer	von 10	0 Jahrei	า
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,020	0,021	0,021	0,023	0,024	0,025	0,026	0,027
Temperaturbereich II:	$δ_{N0}$ -Faktor $δ_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
72°C/50°C	[mm/(N/mm ²)]	0,038	0,039	0,040	0,043	0,045	0,047	0,049	0,051	

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}\text{-Faktor} \cdot \tau;$ $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$ τ: einwirkende Verbundspannung unter Zugbelastung

•

Tabelle C16: Verschiebung unter Querbeanspruchung¹⁾ für alle Bohrmethoden

Dübelgröße Gewinde	estange	M8	M10	M12	M16	M20	M24	M27	M30			
Gerissener und ungerissener Beton unter statischer und quasi-statischer Belastung												
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	80,0	0,08	0,06	0,06	0,05	0,05	0,05		

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V; V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V;$

B+BTec Injektionssystem BIS-PE GEN3 für Beton

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)

Anhang C 15

	Tabelle C18: Verschiebung unter Zugbeanspruchung ¹⁾ in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und mit Hohlbohrer (HDB)											
Dübelgröße Innengew	indeankerstange)	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Ungerissener Beton un für eine Nutzungsdaue			her Belast	ung			•					
Temperaturbereich I:												
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041				
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,039	0,040	0,044	0,047	0,051	0,055				
72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,049	0,051	0,055	0,059	0,064	0,070				
Gerissener Beton unte	er statischer und	quasi-statische	r Belastun	g für eine	Nutzungs	dauer von	50 und 100) Jahren				
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,071	0,072	0,074	0,076	0,079	0,082				
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,171				
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,095	0,096	0,099	0,102	0,106	0,110				
72°C/50°C $\delta_{\text{N}_{\text{CO}}}$ -Faktor [mm/(N/mm²)] 0.154 0.163 0.172 0.181 0.189 0.229												

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C19: Verschiebung unter Zugbeanspruchung¹⁾ in diamantgebohrten Löchern (DD)

Dübelgröße Innengewi	übelgröße Innengewindeankerstange				IG-M10	IG-M12	IG-M16	IG-M20
Ungerissener Beton ur	nter statischer u	nd quasi-statisc	her Belast	ung für eir	ne Nutzunç	gsdauer vo	n 50 Jahre	en
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,012	0,012	0,013	0,014	0,014	0,015
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,019	0,019	0,020	0,022	0,023	0,025
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,014	0,014	0,015	0,016	0,016	0,018
72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,053	0,055	0,058	0,062	0,065	0,070
Ungerissener Beton ur	nter statischer ur	nd quasi-statisc	her Belast	ung für eir	ne Nutzunç	gsdauer vo	n 100 Jah	ren
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,012	0,012	0,013	0,014	0,014	0,015
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,021	0,021	0,023	0,024	0,025	0,027
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,014	0,014	0,015	0,016	0,016	0,018
72°C/50°C	[mm/(N/mm ²)]	0,039	0,040	0,043	0,045	0,047	0,051	

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau;$ τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C20: Verschiebung unter Querbeanspruchung¹⁾ für alle Bohrmethoden

Dübelgröße Innenge	windeankersta	ange	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Gerissener und ungerissener Beton unter statischer und quasi-statischer Belastung											
Alle	δ _{V0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
Temperaturbereiche	$\delta_{V\infty}$ -Faktor	[mm/kN]	0.10	0.09	0.08	0.08	0.06	0.06			

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V; V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor· V;

B+BTec Injektionssystem BIS-PE GEN3 für Beton

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung (Innengewindeankerstange)

Anhang C 16

Tabelle C21: Verschiebung unter Zugbeanspruchung¹⁾ in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und mit Hohlbohrer (HDB)

Dübelgröße Betons	tahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Ungerissener Betor	Jngerissener Beton unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren													
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043		
I: 40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058		
II: 72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072		
Gerissener Beton u	nter statiscl	ner und quasi-	statisch	er Bela	astung	für eine	Nutzu	ngsdau	er von	50 Jah	ren			
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084		
I: 40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113		
II: 72°C/50°C $\delta_{N\infty}$ -Faktor [mm/(N/mm²)]		0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260			

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau; \tau$: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C22: Verschiebung unter Zugbeanspruchung¹⁾ in diamantgebohrten Löchern (DD)

Dübelgröße Betons	Pübelgröße Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Ungerissener Betor	n unter statis	scher und quas	si-statis	scher B	elastur	ıg für e	ine Nut	zungsd	lauer vo	on 50 J	ahren	
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,008	0,009	0,009	0,01	0,011	0,012	0,013	0,013	0,014	0,015
I: 40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,018	0,018	0,019	0,020	0,021	0,024	0,027	0,027	0,028	0,031
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
II: 72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,048	0,051	0,054	0,058	0,061	0,068	0,076	0,076	0,081	0,088
Ungerissener Betor	n unter statis	scher und quas	si-statis	scher B	elastur	ıg für e	ine Nut	zungsd	lauer vo	on 100	Jahren	
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,008	0,009	0,009	0,010	0,011	0,012	0,013	0,013	0,014	0,015
I: 40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,018	0,020	0,021	0,022	0,024	0,026	0,029	0,029	0,031	0,034
	δ_{N0} -Faktor	[mm/(N/mm²)]	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
II: 72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,035	0,037	0,040	0,042	0,045	0,049	0,055	0,055	0,059	0,064

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C23: Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Betonst	tahl	i	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Gerissener und ungerissener Beton unter statischer und quasi-statischer Belastung												
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V; V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor· V;

B+BTec Injektionssystem BIS-PE GEN3 für Beton

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)

Anhang C 17

Tabelle C24: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren

Dübe	Igröße Gewinde	stange			M8	M10	M12	M16	M20	M24	M27	M30
Stahl	versagen											
Chara	akteristische Zugt	ragfähigkeit	N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}			
Teilsio	cherheitsbeiwert		γMs,N	[-]			5	siehe Ta	belle C	1		
Komk	oiniertes Versag	en durch Heraus	sziehen und	Betonausl	oruch							
	akteristische Verb ckluftgebohrten L				rissene	n Beton	C20/25	in ham	mergeb	ohrten	Löcherr	(HD),
emperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton,	^τ Rk,eq,C1	[N/mm²]	7,0 7,0 8,5 8,5 8,5 8,5 8,5							8,5
Temperatur bereich	II: 72°C/50°C	sowie wassergefülltes Bohrloch	^τ Rk,eq,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
Erhöh	nungsfaktor für Be	eton ψ _c	C25/30 bis C	50/60				1	,0			
Monta	agebeiwert											
	ockenen und feuc HDB, CD)	hten Beton	26	r 1				1	,0			
	assergefülltes Boh HDB, CD)	nrloch	γinst	[-]				1	,2			

Tabelle C25: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Dübelgröße Gewindestange	М8	M10	M12	M16	M20	M24	M27	M30		
Stahlversagen										
Charakteristische Quertragfähigkeit	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}							
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	siehe Tabelle C1							
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)							

Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren (Gewindestange)	Anhang C 18

Tabelle C26: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren

Dübelgröße Betonstahl					Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen					378							0000	
Charakteristische Zugt	ragfähigkeit	N _{Rk,s,eq,C1}	[kN]					1,0 • A	s • fuk	1)			
Stahlspannungsquerso	chnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]					1,	4 ²⁾				
Kombiniertes Versag	en durch Heraus	sziehen und	Betonau	sbruc	h								
Charakteristische Verbin druckluftgebohrten L					enen B	eton C	20/25	in har	nmerg	ebohrt	ten Lö	chern ((HD),
I: 40°C/24°C	trockener und feuchter Beton, sowie	^T Rk,eq,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
II: 72°C/50°C	wassergefülltes Bohrloch	[₹] Rk,eq,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Erhöhungsfaktor für Be	eton ψc	C25/30 bis	C50/60	1,0									
Montagebeiwert													
für trockenen und feuc (HD; HDB, CD)	ockenen und feuchten Beton HDB, CD)			1,0									
für wassergefülltes Bo (HD; HDB, CD)	hrloch	^γ inst	[-]					1	,2				

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C27: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Dübelgröße Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen												
Charakteristische Quertragfähigkeit	V _{Rk,s,eq,C1}	[kN]				(0,35 • A	A _s •f _{uk}	1)			
Stahlspannungsquerschnitt A _s [mm²]				79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5 ²⁾									
Faktor für Ringspalt α_{gap} [-] 0,5 (1,0) ³⁾												

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen	Anhang C 19
Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren (Betonstahl)	

²⁾ Sofern andere nationalen Regelungen fehlen

²⁾ Sofern andere nationalen Regelungen fehlen

³⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen dem Betonstahl und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wir empfohlen.

Tabelle C28: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2) für eine Nutzungsdauer von 50 und 100 Jahren

Dübelgröße Gewin	destange			M12 M16 M20 N				
Stahlversagen								
Charakteristische Zu Stahl, Festigkeitskla Nichtrostender Stahl Festigkeitsklasse ≥7	sse 8.8 A4 und HCR,	N _{Rk,s,eq,C2}	[kN]	1,0 • N _{Rk,s}				
Teilsicherheitsbeiwe	rt	γ _{Ms,N}	[-]		siehe Ta	abelle C1		
Kombiniertes Vers	agen durch Heraus	sziehen und	Betonausb	ruch				
Charakteristische Ve in druckluftgebohrte				issenen Betor	n C20/25 in ham	mergebohrten	Löchern (HD),	
1: 40°C/24°C	trockener und feuchter Beton,	^τ Rk,eq,C2	[N/mm²]	5,8 4,8 5,0 5,1				
Temperaturing II: 40°C/24°C	wassergefülltes Bohrloch	^τ Rk,eq,C2	[N/mm²]	5,0 4,1 4,3 4,4				
Erhöhungsfaktor für	Beton ψc	C50/60	1,0					
Montagebeiwert		•						
für trockenen und fe (HD; HDB, CD)	uchten Beton	24.	[-]	1,0				
für wassergefülltes E	Bohrloch	γinst			1	,2		

Tabelle C29: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2)

Dübelgröße Gewindestange	übelgröße Gewindestange				M12 M16 M20 M24				
Stahlversagen			,						
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70	V _{Rk,s,eq,C2}	[kN]		0,70 •	$V^0_{Rk,s}$				
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]		siehe Ta	abelle C1				
Faktor für Ringspalt	$\alpha_{\sf gap}$			0,5 (1,0)1)				

Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2) für eine Nutzungsdauer von 50 und 100 Jahren (Gewindestange)	Anhang C 20

Tabelle C30: Verschiebung unter Zugbeanspruchung (Gewindestange)									
Dübelgröße Gewindestange M12 M16 M20 M24									
Gerissener und unge	Gerissener und ungerissener Beton unter seismischer Einwirkung (Leistungskategorie C2)								
Alle	δ _{N,eq,C2(DLS)}	[mm]	0,21	0,24	0,27	0,36			
Temperaturbereiche	$\delta_{\text{N,eq,C2(ULS)}}$	[mm]	0,54	0,51	0,54	0,63			

Tabelle C31: Verschiebung unter Querbeanspruchung (Gewindestange)

Dübelgröße Gewindestange			M12	M16	M20	M24
Gerissener und ungerissener Beton unter seismischer Einwirkung (Leistungskategorie C2)						
Alle	δ _{V,eq,C2(DLS)}	[mm]	3,1	3,4	3,5	4,2
Temperaturbereiche	δ _{V,eq,C2(ULS)}	[mm]	6,0	7,6	7,3	10,9

B+BTec Injektionssystem BIS-PE GEN3 für Beton	
Leistungen Verschiebungen unter seismischer Einwirkung (Leistungskategorie C2) (Gewindestange)	Anhang C 21