

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0608 of 16 July 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Anchor channel DCR with channel bolts DCT

Anchor channels

PRUDENTIAL (Shanghai)
International Trading Company Ltd
No. 51, Nanheng Street, Jinshan District
SHANGHAI CITY (201802)
VOLKSREPUBLIK CHINA

PRUDENTIAL (Shanghai) International Trading Company Ltd No. 51, Nanheng Street, Jinshan District SHANGHAI CITY (201802) VOLKSREPUBLIK CHINA

22 pages including 3 annexes which form an integral part of this assessment

EAD 330008-03-0601 Edition 06/2021

European Technical Assessment ETA-20/0608 English translation prepared by DIBt

Page 2 of 22 | 16 July 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0608

Page 3 of 22 | 16 July 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The anchor channels DCR with channel bolts DCT are a system consisting of C-shaped channel profile of carbon steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts DCT with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static load)	
- Resistance to steel failure of anchors, connection and channel lips	See Annex C1
- Resistance to steel failure of channel bolt	See Annex C4
Resistance to steel failure by exceeding the bending strength of the channel	See Annex B3 and C1
- Max. installation torque	See Annex B4
- Resistance to pull-out failure of the anchor and to concrete cone failure	See Annex C2
- Min. edge distance, spacing and member thickness	See Annex B3
Characteristic edge distance and spacing to avoid splitting of concrete under load	See Annex C2
- Resistance to blow-out failure – bearing area of anchor head	See Annex A4

European Technical Assessment ETA-20/0608

English translation prepared by DIBt

Page 4 of 22 | 16 July 2021

Characteristic resistance under shear load (static and quasi-static load)	
- Resistance to steel failure of channel bolt	See Annex C4 and C5
Resistance to steel failure of channel lips, anchor and connection (shear load perpendicular to longitudinal axis of channel)	See Annex C3
Resistance to steel failure of channel lips, anchor and connection (shear load in direction of longitudinal axis of channel)	No performance assessed
- Resistance to concrete failure	See Annex C3
Characteristic resistance under combined tension and shear load (static and quasi-static load)	See Annex C4
Characteristic resistance under cyclic fatigue tension load	No performance assessed
Displacements (static and quasi-static load)	
- Displacement under tension load	See Annex C2
- Displacement under shear load perpendicular to longitudinal axis of channel	See Annex C3
Displacement under shear load in direction of longitudinal axis of channel	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durabilty

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

European Technical Assessment ETA-20/0608 English translation prepared by DIBt

Page 5 of 22 | 16 July 2021

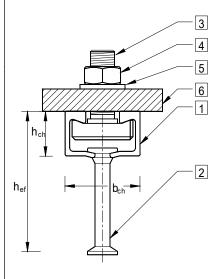
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 16 July 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:

Stiller



Z70650.21

Anchor channel types

Hot-rolled channel profiles with round anchor

1	Channel profile	
2	Anchor	
3	Channel bolt	
4	Hexagonal nut	
5	Washer	
6	Fixture	

Marking of the anchor channels:

e.g. Prudential 50/30 F

Prudential Identifying mark of the manufacturer

50/30 Anchor channel size

(50/30, 52/34)

F hot-dip-galvanized

printed on channel lips

Marking of the channel bolt:

Identifying mark of the manufacturer (for anchor channel size 50/30)

LQ Identifying mark of the manufacturer (for anchor channel size 52/34)

8.8 steel grade

G electroplated F hot-dip galvanized

Anchor channel DCR with channel bolts DCT

Product Description

Marking

Electronic copy of the ETA by DIBt: ETA-20/0608

Annex A2

Channel profiles

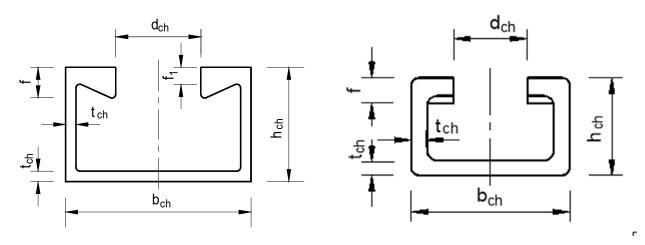


Figure 1: Anchor channel DCR-50/30

Figure 2: Anchor channel DCR-52/34 (serrated)

Table 1: Dimensions of hot-rolled channel profile

Channel profile	b ch	h _{ch}	t _{ch,nom}	d ch	f	f ₁	ly
Chamilei prome	[mm]					[mm ⁴]	
DCR-50/30	50	30	3,3	20	8,1	5	64875
DCR-52/34	52	34	4	22	11,5	-	97970

Anchor channel DCR with channel bolts DCT	
Product Description Profile dimensions	Annex A3

Anchors

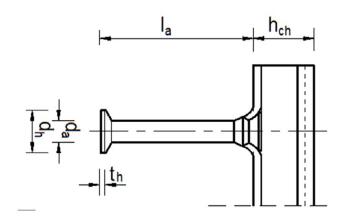
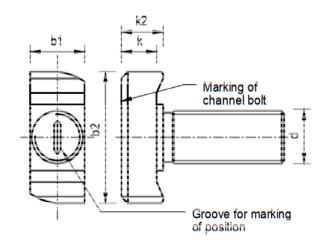


Figure 3: Round anchor for DCR

Table 2: Dimensions of anchor

Anchor channel	min la	da	d _h	t _h	Ah
DCR		[mm²]			
50/30	65	10	20	2,0	235,6
52/34	123	11	24	2,2	357,4


Anchor channel DCR with channel bolts DCT

Product Description
Anchor dimensions

Annex A4

Channel bolts

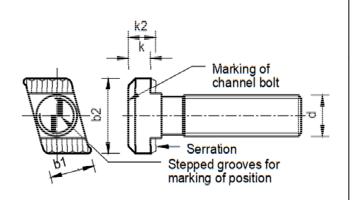


Figure 4: Channel bolt DTC-50/30

Figure 5: Channel bolt DTC-52/34

Table 3: Dimensions of channel bolts

Anchor channel Channel bolt	d	b ₁	b ₂	k	k ₂	
Anchor channel	Channel boil	[mm]				
DCR-50/30	DTC-50/30	16	20	40	10	12
DCR-52/34	DTC-52/34	20	20,4	38	9,5	12

Table 4: Steel grade

Channel bolt	Steel 1)
Steel grade	8.8
f _{uk} [N/mm²]	800
f _{yk} [N/mm²]	640

Material properties acc. to Annex A6

Anchor channel DCR with channel bolts DCT	
Product Description Dimension and material of channel bolt	Annex A5

Materials

Table 5: Materials and properties

Commonant	Steel					
Component	Mechanical properties	Coating	Coating			
1	2a	2b	2c			
Channel profile	1.0045 according to EN 10025:2019	Hot dip galvanized ≥ 70 µm acc. to				
Anchor	1.5535 according to EN 10263-4:2017	EN ISO 10684:2004 + AC:2009	Hot dip galvanized ≥ 70 μm acc. to EN ISO 10684:2004 +			
Channel bolt	Steel grade 8.8 acc. to EN ISO 898-1:2013					
Washer	Hardness class ≥ 200 HV acc. to EN ISO 7089:2000 and EN ISO 7093-1:2000	Electroplated acc. to EN ISO 4042:2018	AC:2009			
Hexagonal nut	Steel grade 8.8 acc. to EN ISO 898-2:2012					

Anchor channel DCR with channel bolts DCT	
Product Description Materials	Annex A6

Electronic copy of the ETA by DIBt: ETA-20/0608

Specifications of intended use

Anchor channels and channel bolts subject to:

• Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1+A1+A2:2000.
- Strength classes C12/15 to C60/75 according to EN 206-1+A1+A2:2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (anchor channels and channel bolts according to Annex A6, Table 5, column 2b)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundries in residential buildings, exceptional permanent damp conditions and application under water)
 (anchor channels and channel bolts according to Annex A6, Table 5, column 2c)

Design:

Electronic copy of the ETA by DIBt: ETA-20/0608

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading the anchor channels are designed in accordance with EOTA TR 047
 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Anchor channel DCR with channel bolts DCT	
Intended Use Specifications	Annex B1

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervisions of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 6 are generated including end spacing x and minimum channel length I_{min} and only to be used in dry internal conditions.
- Installation in accordance with the installation instruction given in B5 and B6.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6, Table 5 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex A5) rectangular to the channel axis.
- The required installation torques given in Annex B4, Table 8 shall not be exceeded.

Anchor channel DCR with channel bolts DCT	
Intended Use Specifications	Annex B2

Z70650.21 8.06.01-14/20

Electronic copy of the ETA by DIBt: ETA-20/0608

Table 6: Installation parameters

Anchor channel DCR-			50/30	52/34
Minimum effective embedment depth	h _{ef,min}		95	154,8
Minimum spacing	S _{min}		150	150
Maximum spacing	Smax		150	150
End spacing	х	[mm]	25	25
Minimum channel length	I _{min}		350	350
Minimum edge distance	C _{min}		75	100
Minimum thickness of concrete member	h _{min} 1)		160	210

 $h_{min} = h_{ef} + t_h + c_{nom}$; c_{nom} according to EN 1992-1-1:2004 + AC: 2010

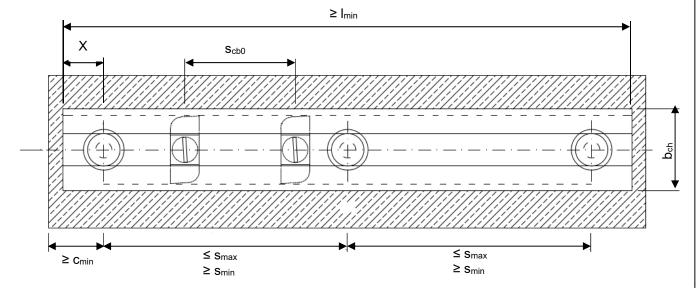


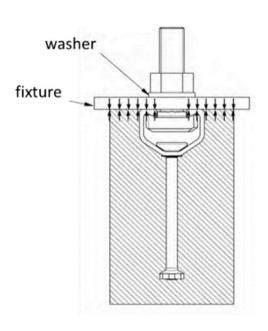
Table 7: Minimum spacing for channel bolts

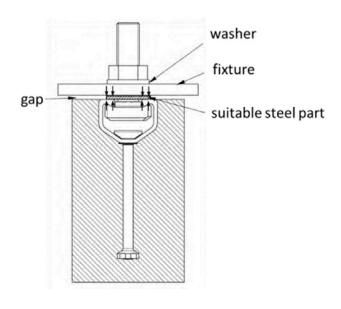
Channel bolt DCT			50/30	52/34
Minimum spacing between channels bolts	Scbo,min	[mm]	80	100

Anchor channel DCR with channel bolts DCT	
Intended Use Installation parameters	Annex B3

Table 8: Required installation torque moment T_{inst}

Anchor channel DCR	Channel Bo DCT	lt	General T _{inst,g} 1)	Steel - steel contact T _{inst,s} 1)
			[Nm]	[Nm]
50/30	50/30	M16	60	180
52/34	52/34	M20	120	360

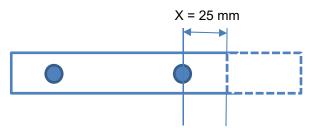

Tinst shall not be exceeded


General:

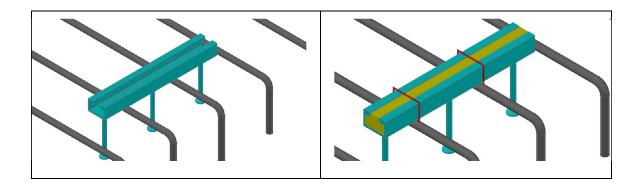
The fixture is in contact with the channel profile and the concrete surface by tightening with T_{inst,g}.

Steel-steel contact:

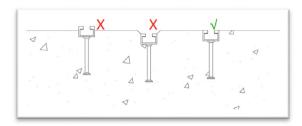
The fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel part (e.g. washer) by tightening with $T_{\text{inst,s}} \ge T_{\text{inst,g}}$



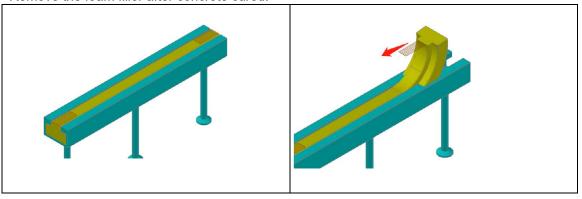
Anchor channel DCR with channel bolts DCT	
Intended Use Installation parameters	Annex B4

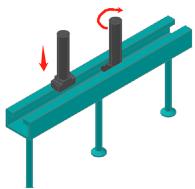


Installation instructions


- 1. Correct selection of anchor channel in accordance with the design specification.
- 2. The end distance x shall be observed when cutting the anchor channel on the job site.

3. Position the anchor channel such that the channel lips will be flush with the surface of the concrete. The anchor channels are to be attached to the formwork, reinforcement or auxiliary structures in such a way that they do not move during the concreting process. Anchor channels shall not be installed on fresh concrete, bent or otherwise deformed.


4. Installed anchor channels shall be flush with the


Anchor channel DCR with channel bolts DCT	
Intended Use Installation instruction	Annex B5

5. Remove the foam filler after concrete cured.

- 6. Select Prudential channel bolt type in accordance with the design specification.
- 7. Place the channel bolt in the channel and lock the channel bolt in the channel by turning it 90°.

- 8. Verify alignment of the channel bolt with the groove. The groove on the shank end of the channel bolt shall be perpendicular to the longitudinal axis of the channel.
- 9. Verify that the channel bolt is not located outside the part of the channel bounded by the outermost anchors.
- 10. Do not cut channel bolts.

Electronic copy of the ETA by DIBt: ETA-20/0608

11. Apply the installation torque Tinst to the channel bolt with a calibrated torque wrench. Do not exceed the value Tinst, see Annex B4, Table 8.

Anchor channel DCR with channel bolts DCT

Intended Use
Installation instruction

Annex B6

Table 9: Characteristic resistances under tension load - steel failure of anchor channel

Anchor channel DCR-			50/30	52/34	
Steel failure: Anchor					
Characteristic resistance	$N_{Rk,s,a}$	[kN]	47	57	
Partial factor	γ _{Ms} ¹⁾	[-]	1,5		
Steel failure: Connection between anchor and channel					
Characteristic resistance	$N_{Rk,s,c}$	[kN]	30	33	
Partial factor	γMs,ca ¹⁾	[-]	1,8		
Steel failure: Local flexure of channel lips					
Characteristic spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	100	104	
Characteristic resistance	N ⁰ _{Rk,s,l}	[kN]	30	33	
Partial factor	γ _{Ms,I} 1)	[-]	1	,8	

In absence of other national regulations

Table 10: Characteristic flexure resistance of channel

Anchor channel DCR-			50/30	52/34
Steel failure: Flexure of channel				
Characteristic flexural resistance of channel	M _{Rk,s,flex}	[Nm]	2513	3729
Partial factor	γMs,flex ¹⁾	[-]	1,	15

In absence of other national regulations

Anchor channel DCR with channel bolts DCT	
Performance Characteristic resistances of anchor channels under tension load	Annex C1

Electronic copy of the ETA by DIBt: ETA-20/0608

Table 11: Characteristic resistances under tension load – concrete failure

Anchor Channel DCR-					50/30	52/34
Concrete failure: Pull-out						
Characteristic resistance in cracked con	ncrete C1	2/15	N _{Rk,p}	[kN]	21,2	32,2
Characteristic resistance in uncracked	concrete (C12/15	$N_{Rk,p}$	[kN]	29,7	45
C16		C16/20			1,	33
					1,	67
		C25/30			2,	08
		C30/37			2,	50
Increasing factor for $N_{Rk,p} = N_{Rk,p} (C12/15) \cdot \psi_c$	IE)	C35/45		r 1	2,92	
	ι ວ) ·ψ c	C40/50	Ψς	[-]	3,33	
		C45/55			3,75	
		C50/60			4,17	
		C55/67			4,58	
		C60/75			5,00	
Partial factor			γ _{Mp} =γ _{Mc} 1)	[-]	1	,5
Concrete failure: Concrete cone						
Product factor k1	Cracke	d concrete	k _{cr,N}	r 1	8,07	8,72
Product factor k i	Uncrack	ed concrete	k _{ucr,N}	[-]	= 1,42	.7*k _{cr,N}
Partial factor	1		γ Mc ¹⁾	[-]	1,5	
Concrete failure: Splitting						
Characteristic edge distance		C _{cr,sp}	[mm]	= 3*h	ef,min ²⁾	
Characteristic spacing		S _{cr,sp}	[mm]	= 6*h	ef,min ²⁾	
Partial factor			γ _{Msp} 1)	[-]	1	,5

In absence of other national regulations

Table 12: Displacements under tension load

Anchor channel DCR-			50/30	52/34
Tension load	N	[kN]	11,9	13,1
Short-term displacement	δηο	[mm]	2,2	0,9
Long-term displacement	δn∞	[mm]	4,4	1,8

Anchor channel DCR with channel bolts DCT	
Performance Characteristic resistances of anchor channels and displacements under tension load	Annex C2

h_{ef,min} according to Annex B3, Table 6

Electronic copy of the ETA by DIBt: ETA-20/0608

Table 13: Characteristic resistances under shear load - steel failure of anchor channel

Anchor channel DCR-			50/30	52/34
Steel failure: Anchor				
Characteristic resistance	$V_{Rk,s,a,y}$	[kN]	55	57
Partial factor	ΥΜs,a ¹⁾ [-]			,8
Steel failure: Connection between anchor and channel				
Characteristic resistance	$V_{Rk,s,c,y}$	[kN]	55	57
Partial factor	γMs,c ¹⁾	[-]	1,8	
Steel failure: Local flexure of channel lips				
Characteristic spacing of channel bolts for V _{Rk,s,l}	S _{I,V}	[mm]	100	104
Characteristic resistance	$V^0_{Rk,s,l,y}$	[kN]	55	57
Partial factor	γ _{Ms,l} 1)	[-]	1,8	

¹⁾ In absence of other national regulations

Table 14: Characteristic resistances under shear load - concrete failure

Anchor channel DCR-					52/34			
Concrete Failure: Pry-out								
Product factor		k ₈	[-]	2.	,0			
Partial safety factor		γ Mc ¹⁾	[-]	1,5				
Concrete failure: Concrete edge								
Cracked concrete		k _{cr,V}	[-]	7	,5			
Product factor k ₁₂ Uncracked concrete		k _{ucr,V}	[-]	10),5			
Partial safety factor		γ Mc ¹⁾	[-]	1	,5			

In absence of other national regulations

Table 15: Displacements under shear load

Anchor channel DCR-			50/30	52/34
Shear load	V_y	[kN]	23,8	34,5
Short-term displacement	$\delta_{\text{V},\text{y},\text{0}}$	[mm]	1,9	2,8
Long-term displacement	δν,,,∞	[mm]	2,9	4,2

Anchor channel DCR with channel bolts DCT	
Performance Characteristic resistances of anchor channel and displacement under shear load	Annex C3

Table 16: Characteristic resistances under combined tension and shear load

Anchor channel DCR-	50/30	52/34				
Steel failure: Local failure by flexure of channel lips and failure by flexure of channel						
Product factor	k ₁₃ [-] according EN 1992-4:2018					
Steel failure: Failure of anchor and connection between anchor and channel						
Product factor	k ₁₄	[-]	accord EN 1992-4:2	ding to 2018, 7.4.3.1		

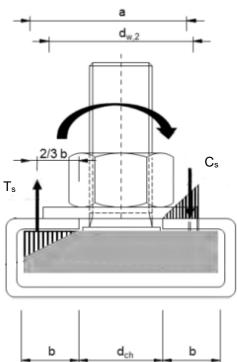
Table 17: Characteristic resistances under tension and shear load – steel failure of channel bolts

Channel bolt DCT-			50/30	52/34
Channel bolt Ø			M16	M20
Steel failure: Channel bolt				
Characteristic tension resistance	$N_{Rk,s}$	[kN]	125	184
Partial factor	γ _{Ms} 1)	[-]	1,5	
Steel failure: Channel bolt				
Characteristic shear resistance	$V_{Rk,s}$	[kN]	62,8	98
Partial factor	γ _{Ms} ¹⁾	[-]	1,25	

¹⁾ In absence of other national regulations

Anchor channel DCR with channel bolts DCT	
Performance Characteristic resistances of anchor channels under combined tension and shear load Characteristic resistance of channel bolts under tension and shear load	Annex C4

Table 18: Characteristic resistance under shear load with lever arm – steel failure of channel bolts


Channel bolt ²⁾	M16	M20		
Steel failure: Channel bolt				
Characteristic bending resistance	M ⁰ Rk,s ³⁾	[Nm]	266	519
Partial factor	γ Ms ¹⁾	[-]	1,2	25
Internal lever arm	а	[mm]	30,5	33,7

- 1) In absence of other national regulations
- Materials according to Table 5, annex A6
- The characteristic bending resistance according to Table 18 is limited as follows:

 $M^{0}_{Rk,s} \le 0.5 * N^{0}_{Rk,s,l} * a (N^{0}_{Rk,s,l} according to Annex C1, Table 9)$

 $M^{0}_{Rk,s} \le 0.5 * N_{Rk,s} * a$ (N_{Rk,s} according to Annex C4, Table 17)

a = internal lever arm according to Table 18

 $b_{cbo,2}$

T_s = Tension force acting on the channel lips

 C_s = Compression force acting on the channel lips

Anchor channel DCR with channel bolts DCT	
Performance Characteristic resistances of channel bolts under shear load with lever arm	Annex C5

8.06.01-14/20 Z70650.21