

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0475 of 15 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Connector Hilti HCC-K with Injectionmortar Hilti HIT-HY 200-R V3, Hilti HIT-RE 500 V3 and Hilti HIT-RE 500 V4

Connector for Strengthening of existing concrete structures by concrete overlay

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

24 pages including 3 annexes which form an integral part of this assessment

EAD 332347-00-0601, Edition 12/2019

ETA-20/0475 issued on 24 July 2020

European Technical Assessment ETA-20/0475

Page 2 of 24 | 15 June 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0475

Page 3 of 24 | 15 June 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Connector Hilti HCC-K is a headed fastener made of steel anchored with Injectionmortar Hilti HIT-HY 200-R V3, Hilti HIT-RE 500 V3 or Hilti HIT-RE 500 V4 into a predrilled cylindrical drill hole in existing concrete. The Hilti HCC-K is connecting two layers of concrete cast at different times (existing concrete and concrete overlay). The side with the anchor head of Hilti HCC-K is finally embedded in the concrete overlay.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Existing concrete:	
- resistances	See Annex C 1 to C 5
- edge distance and spacing	See Annex B 3
Concrete overlay:	
- resistances	See Annex C 6
- edge distance and spacing	See Annex B 3
Shear interface parameter under static and quasi-static and fatigue cyclic loading	
- material and geometric parameters	See Annex C 6
- factor for fatigue cyclic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332347-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-20/0475

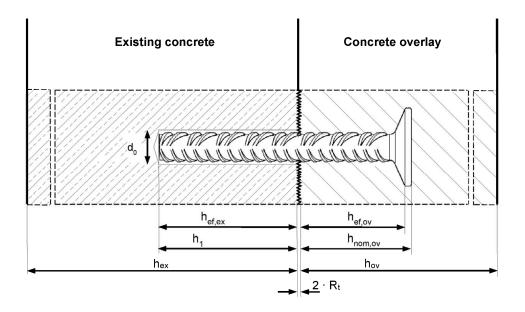
Page 4 of 24 | 15 June 2021

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 15 June 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Tempel

Installed condition

Figure A1:

Connector Hilti HCC-K

h_{ef,ex} Effective embedment depth in existing concrete

h₁ Drill hole depth

h_{ex} Thickness of existing concrete

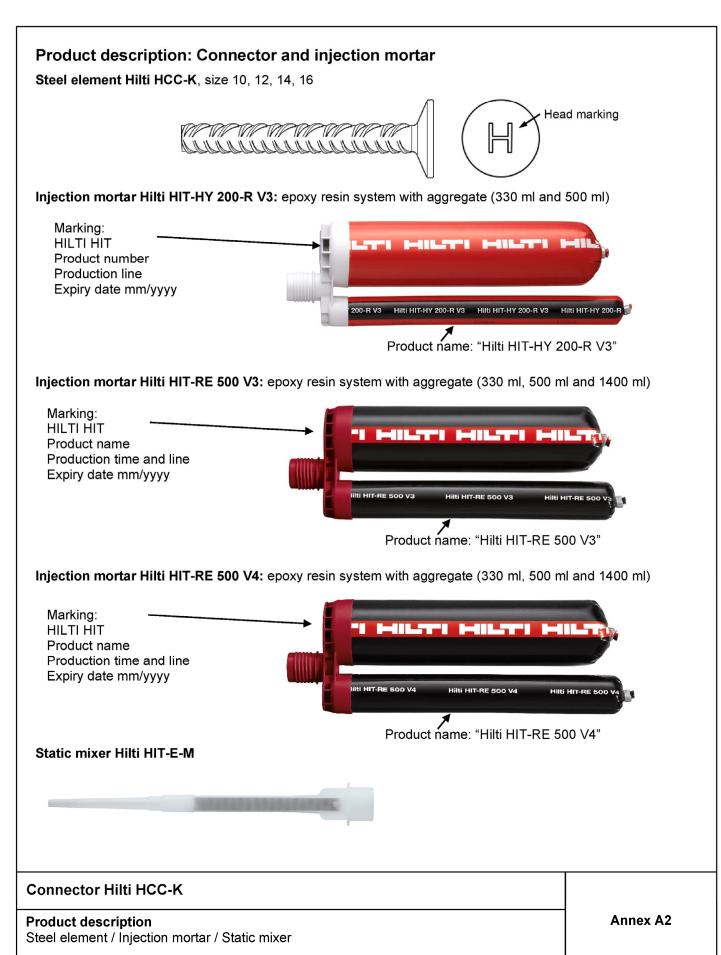
Rt Roughness according to EOTA Technical Report TR 066:2019-10

 $\begin{array}{ll} h_{\text{ef,ov}} & \text{Effective embedment depth in concrete overlay} \\ h_{\text{nom,ov}} & \text{Overall embedment depth in the concrete} \end{array}$

overlay

hov Thickness of concrete overlay

Connector Hilti HCC-K	
Product description Installed condition	Annex A1



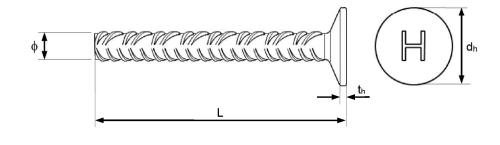


Table A1: Materials

Designation	Material
нсс-к	Reinforcing bar B500B according EN 1992-1-1:2004 and AC:2010, Annex C Strength: $f_{uk} \ge 550$ N/mm ² , $f_{yk} \ge 500$ N/mm ² Strain at maximum force $\epsilon_{uk} \ge 5\%$

Table A2: Specification

Connector Hilti HCC-K			10	12	14	16
Rebar diameter	ф	[mm]	10	12	14	16
Overall length	L	[mm]	100 to 650	140 to 650	200 to 650	230 to 650
Diameter of the head	dh	[mm]	30	36	42	48
Thickness of the head	t _h	[mm]	2	2	2	2

Connector Hilti HCC-K	
Product description	Annex A3
Materials / Specification	

Specifications of intended use

Anchorages subject to:

- · static and quasi static actions
 - surface roughness "very smooth" to "very rough" of the shear interface according to EOTA Technical Report TR 066:2019-10.

Base material (existing concrete and concrete overlay):

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- · Cracked and uncracked concrete.

Temperature in the base material (existing concrete):

For use with HIT-HY 200-R V3

at installation:

-10 °C to +40 °C for the standard variation of temperatures after installation

· in-service:

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

For use with HIT-RE 500 V3

· at installation:

-5 °C to +40 °C for the standard variation of temperatures after installation

· in-service:

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +70 °C

(max. long term temperature +43 °C and max. short term temperature +70 °C)

For use with HIT-RE 500 V4

· at installation:

-5 °C to +40 °C for the standard variation of temperatures after installation

· in-service:

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +55 °C

(max. long term temperature +43 °C and max. short term temperature +55 °C)

Temperature range III: -40 °C to +75 °C

(max. long term temperature +55 °C and max. short term temperature +75 °C)

Connector Hilti HCC-K	
Intended use Specifications	Annex B1

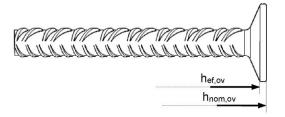
Design:

- The design of an anchorage and the specification of the fastener is under the control of an engineer experienced in anchorages and concrete work.
- · Post-installed shear connections are designed in accordance with EOTA Technical Report TR 066:2019-10.
- For the concrete overlay following requirements on the mixture apply:
 - Concrete compressive strength of the new concrete shall be higher than the concrete compressive strength of the existing concrete.
 - Use of concrete with low shrinkage is recommended.
 - Slump of fresh concrete f ≥ 380 mm, a slump value f ≥ 450 mm is recommended, if applicable.

Installation:

- Use category (existing concrete):
 - · dry or wet concrete condition: all injection mortars.
 - water-filled drill holes: HIT-RE 500 V3 and HIT-RE 500 V4 only, for hammer drilling only, for uncracked concrete only.
- Installation direction in existing concrete is downward and horizontal and upwards (e.g. overhead) installation (D3).
- The fastener installation is executed by trained personnel, ensuring that the Installation instruction and the specifications by the engineer are observed.
- The requirements for construction works given in EOTA Technical Report TR 066:2019-10 have to be considered.

Connector Hilti HCC-K	
Intended use Specifications	Annex B2


Table B1: Installation parameters of connector Hilti HCC-K in existing concrete

Connector Hilti HCC-K			10	12	14	16
Effective embedment depth	h _{ef,ex}	[mm]	60	70	75	80
and drill hole depth	= h ₁ [mm]		200	240	280	320
Nominal diameter of drill bit	d ₀ [m	[mama]	12 ¹⁾	14 ¹⁾	18	20
		[mm]	14 ¹⁾	16 ¹⁾		
Minimum thickness of existing concrete	h _{min,ex}	[mm]	max (100; h _{ef} + 30, h _{ef} + 2 · d ₀)			d ₀)
Minimum spacing	S _{min,ex}	[mm]	50	60	70	80
Minimum edge distance	C _{min,ex}	[mm]	45	45	50	50

¹⁾ Each of the two given values can be used.

Table B2: Installation parameters of connector Hilti HCC-K in concrete overlay

Connector Hilti HCC-K			10	12	14	16
Effective embedment depth	min. h _{ef,ov}		min. h _{ef,ov}			
Ellective embedifient depth	max. h _{ef,ov}	– [mm]	L - h _{nom,ex} - t _h - 2 · R _t ¹⁾			
Overall embedment depth	$h_{nom,ov}$	[mm]	h _{ef,ov} + t _h			
Minimum thickness of concrete overlay	$h_{\text{min,ov}}$	[mm]	h _{nom,ov} + c _{nom²⁾}			
Minimum spacing	S _{min,ov}	[mm]	60	75	85	100
Minimum edge distance	C _{min,ov}	[mm]	15 + c _{nom²⁾}	20 + c _{nom²⁾}	25 + c _{nom²⁾}	25 + c _{nom²}

- Rt: Roughness according to EOTA Technical Report TR 066:2019-10.
- ²⁾ c_{nom}: Minimum concrete cover according EN 1992-1-1:2004+AC:2010.

Annex B3

Table B3: Working time and curing time for Hilti HIT-HY 200-R V3 1)

Temperature in the	base material T	Maximum working time t _{work}		Minimum curing time t _{cure}
-10 °C to	-5 °C	3	hours	20 hours
> -5 °C to	0 °C	1,5	hours	8 hours
> 0 °C to	5 °C	45	min	4 hours
> 5 °C to	10 °C	30	min	2,5 hours
> 10 °C to	20 °C	15	min	1,5 hours
> 20 °C to	30 °C	9	min	1 hour
> 30 °C to	40 °C	6	min	1 hour

The minimum temperature of the foil pack is 0° C.

Table B4: Working time and curing time for Hilti HIT-RE 500 V3 and Hilti HIT-RE 500 V4 1)2)

Temperature in the base material T		Maximum working time t _{work}		Minimum curing time t _{cure}		
-5 °C	to	-1 °C	2	hours	168	hours
0 °C	to	4 °C	2	hours	48	hours
5 °C	to	9 °C	2	hours	24	hours
10 °C	to	14 °C	1,5	hours	16	hours
15 °C	to	19 °C	1	hour	16	hours
20 °C	to	24 °C	30	min	7	hours
25 °C	to	29 °C	20	min	6	hours
30 °C	to	34 °C	15	min	5	hours
35 °C	to	39 °C	12	min	4,5	hours
	40	°C	10	min	4	hours

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Connector Hilti HCC-K	
Intended use Working time and curing time	Annex B4

²⁾ The minimum temperature of the foil pack is +5° C.

Table B5: Overview of installation options

				HCC-K with		
Concrete condition	Drilling		Cleaning	HIT-HY 200-R V3	HIT-RE 500 V3	HIT-RE 500 V4
	Hammer drilling with hollow drill bit TE-CD or TE-YD		Automatic	✓	✓	✓
	Hammer drilling		Manual cleaning	✓		-
Dry / wet		Compressed air cleaning	✓	✓	✓	
Diy / wet	Diamond coring with roughening tool TE-YRT		Cleaning of diamond cored holes with roughening	✓	✓	✓
	Diamond coring	€ ⊕ →	Cleaning of diamond cored holes	1	√.	✓
Water-filled drill hole	Hammer drilling	CCCCC	Cleaning for water-filled drill holes	•	✓	✓

Table B6: Parameters of cleaning and setting tools

Elements	Drill and clean				Installation	
	Hammer drilling		Diamond coring			
HCC-K		Hollow drill bit TE-CD, TE-YD ¹⁾		Roughening tool TE-YRT	Brush	Piston plug
		€				
size	d₀ [mm]	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
10	12	12	12	-	12	12
10	14	14	14	-	14	14
10	14	14	14	-	14	14
12	16	16	16	-	16	16
14	18	18	18	18	18	18
16	20	20	20	20	20	20

With vacuum cleaner Hilti VC 20/40/60 (automatic filter cleaning activated) or vacuum cleaner with activated automatic filter cleaning as well as volumetric flow rate at turbine ≥ 57 l/s, volumetric flow rate at end of hose ≥ 106 m³/h and partial vacuum ≥ 16 kPa.

Connector Hilti HCC-K	
Intended use Overview of installation options / Parameters of cleaning and setting tools	Annex B5

Table B7: Cleaning alternatives


Manual Cleaning (MC)

for use with HIT-HY 200-R V3 only:

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

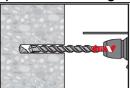
Table B8: Parameters for use of the Hilti Roughening tool TE-YRT

Associated components					
Diamon	d coring	Roughening tool TE-YRT	Wear gauge RTG		
£	>				
d ₀ [mm]	d₀ [mm]	size		
nominal	nominal measured		SIZE		
18	17,9 to 18,2	18	18		
20	19,9 to 20,2	20	20		

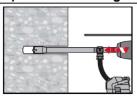
Table B9: Installation parameters for use of the Hilti Roughening tool TE-YRT

	Roughening time t _{roughen}	Minimum blowing time t _{blowing}
h _{ef,ex} [mm]	$t_{roughen}$ [sec] = $h_{ef,ex}$ [mm] / 10	$t_{blowing}$ [sec] = $t_{roughen}$ [sec] + 20
0 to 100	10	30
101 to 200	20	40
201 to 300	30	50
301 to 400	40	60

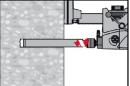
Table B10: Hilti Roughening tool TE-YRT and wear gauge RTG


Connector Hilti HCC-K	
Intended use Cleaning alternatives / Parameters for use of roughening tool	Annex B6

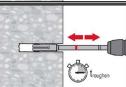
Installation instruction


Hole drilling

a) Hammer drilling


Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

b) Hammer drilling with Hilti hollow drill bit


Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit attached to Hilti vacuum cleaner VC 20/40/60 or a vacuum cleaner acc. to Table B6 with automatic filter cleaning activated. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

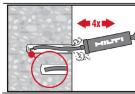
c) Diamond coring with roughening with Hilti roughening tool TE-YRT:


Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

For the use in combination with Hilti roughening tool TE-YRT see parameters in Table B8 and Table B9.

Before roughening water needs to be removed from the drill hole. Check usability of the roughening tool with the wear gauge RTG. Roughen the drill hole over the whole length to the required hef.ex.

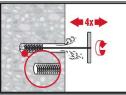
d) Diamond coring: For dry and wet concrete only, for use with HIT-RE 500 V3 and HIT-RE 500 V4


Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

Manual Cleaning (MC), for use with HIT-HY 200-R V3 only

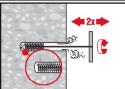

Uncracked concrete only. For drill hole diameters d₀ ≤ 20 mm and drill hole depths h₀ ≤ 10 d.

The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

Connector Hilti HCC-K	
Intended use	Annex B7
Installation instructions	

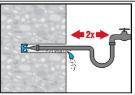
Brush 4 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.



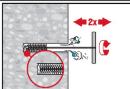
Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

Compressed air cleaning (CAC) for all drill hole diameters do and all drill hole depths ho

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.



Brush 2 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.



Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Cleaning of diamond cored holes with roughening with Hilti roughening tool TE-YRT.

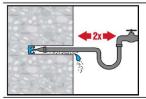
Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Electronic copy of the ETA by DIBt: ETA-20/0475

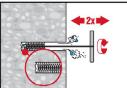
Brush 2 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.

Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water. Remove all water from the drill hole until drill hole is completely dried before mortar injection.

Connector Hilti HCC-K

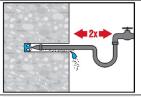

Intended use Installation instructions

Annex B8



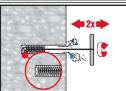
Cleaning of hammer drilled water-filled drill holes and diamond cored holes,

for use with HIT-RE 500 V3 and HIT-RE 500 V4. For all drill hole diameters d₀ and all drill hole depths h₀.



Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Brush 2 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.


The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

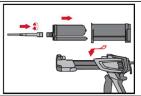
Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water.

Brush 2 times with the specified brush size (brush $\emptyset \ge$ drill hole \emptyset , see Table B7 by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole – if not the brush is too small and must be replaced with the proper brush diameter.

Electronic copy of the ETA by DIBt: ETA-20/0475

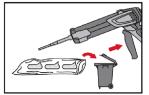
Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.


Connector Hilti HCC-K

Intended use
Installation instructions

Annex B9

Injection preparation



Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

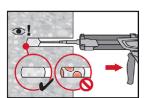
Observe the instruction for use of the dispenser.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack, an initial amount of adhesive has to be discarded. Discarded quantities are:

- for use with HIT-HY 200-R V3: 2 strokes for 330 ml foil pack,

> 3 strokes for 500 ml foil pack. for 500 ml foil pack ≤ 5 °C. 4 strokes

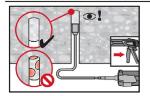

The minimum foil pack temperature is 0° C.

- for use with HIT-RE 500 V3 and HIT-RE 500 V4:

3 strokes for 330 ml foil pack, for 500 ml foil pack, 4 strokes 65 ml for 1400 ml foil pack

The minimum foil pack temperature is +5° C.

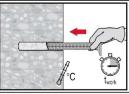
Inject adhesive from the back of the drill hole without forming air voids.


Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

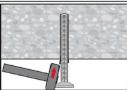
Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment

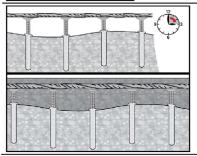
In water saturated concrete it is required to set the fastener immediately after cleaning the drill hole.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.


Overhead installation and/or installation with embedment depth hef.ex > 250mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B6). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive

Connector Hilti HCC-K Annex B10 Intended use Installation instructions


739989 21 8.06.01-730/20


Setting the element

Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth before working time t_{work} has elapsed. The working time t_{work} is given in Table B3 and Table B4.

For overhead installation use piston plugs and fix embedded parts with e.g. wedges (Hilti HIT-OHW).

Observe the curing time t_{cure} , which varies according to temperature of base material (see Table 3 and Table B4). After t_{cure} has elapsed the concrete overlay can be concreted.

Observe the required condition of the surface before concreting and the use of the correct concrete composition.

For requirements on concrete composition see EOTA TR 066:2019-10.

Connector Hilti HCC-K

Intended use
Installation instructions

Annex B11

Table C1: Essential characteristics of connector Hilti HCC-K in existing concrete

Connector Hilti HCC-K			10	12	14	1	6
Steel failure			•				
Characteristic resistance	$N_{Rk,s,ex}$	[kN]	43	62	85	1	11
Partial safety factor	γMs,N,ex	[-]		1,	4	·	
Concrete cone failure							
Factor for cracked concrete	k _{cr,N,ex}	[-]		7,	7		
Factor for uncracked concrete k _{ucr,N,ex}		[-]	11,0				
Edge distance C _{cr,N,ex} [mr		[mm]	1,5 · h _{ef,ex}				
Spacing	S _{cr,N,ex}	[mm]		3,0 ·	h _{ef,ex}		
Splitting failure							
	h / ł	n _{ef,ex} ≥ 2,0	1,0 ⋅ h _{ef,ex}	h/h _{ef}			
Edge distance c _{cr,sp,ex} [mm] for	2,0 > h / h	n _{ef,ex} > 1,3	1,6 · h _{ef,ex} - 1,8			\ 	
	h / h	n _{ef,ex} ≤ 1,3	2,26 · h _{ef,ex}	` `	1,0 h _{ef}	2,26 h _{ef}	C _{cr,sp}
Spacing	S _{cr,sp,ex}	[mm]		2,0 · c	cr,sp,ex		

Annex C1

Table C	:1 contii	nued (1)
---------	-----------	----------

Connector Hilti HCC-K			10	12	14	16
Installation factor for HCC-K with HIT-I	HY 20	0-R V3		•	•	•
Hammer drilling	γinst	[-]		1	,0	
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]				
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	1) 1,0			,0
Combined pullout and concrete cone f	failure	for HCC-K wit	h HIT-HY 2	00-R V3		
Characteristic bond resistance in cracked	d conc	rete C20/25				
Temperature range I: 40 °C / 24 °C	$ au_{Rk,c}$	_{cr} [N/mm²]	5,0		7,0	
Temperature range II: 80 °C / 50 °C	TRk,c	cr [N/mm²]	4,0 5,5			
Temperature range III: 120 °C / 72 °C	$ au_{Rk,c}$	er [N/mm²]	3,5 5,0			
Characteristic bond resistance in uncrack	ed co	ncrete C20/25		1		
Temperature range I: 40 °C / 24 °C	$ au_{Rk, \iota}$	_{ucr} [N/mm²]		1	12	
Temperature range II: 80 °C / 50 °C	τ _{Rk,ι}	ucr [N/mm²]		1	10	
Temperature range III: 120 °C / 72 °C	TRk,ι	ucr [N/mm²]	8,5			
Influence factors ψ on bond resistance	ŧτ _{Rk}					
Factor for concrete strength				·	·	
	_	C30/37			,04	
Cracked and uncracked concrete ψ	∫c,ex	C40/50	0/50 1,07		·	
		C50/60		1,	,10	
Sustained load factor						
	_	40 °C / 24 °C			,74	
Cracked and uncracked concrete ψ	√ ⁰ sus _	80 °C / 50 °C			,89	
		120 °C / 72 °C		0,	,72	

Connector Hilti HCC-K	
Performance Essential characteristics under tension load in existing concrete	Annex C2

Connector	Hilti HCC-K			10	12	14	16
Installation	factor for HCC-K with HI	T-RE 500	V3		•	•	
Hammer dri	lling	γinst	[-]		1	,0	
Hammer dri Hilti hollow	lling with drill bit TE-CD or TE-YD	γinst	[-]	1)		1,0	
Diamond co	pring	γinst	[-]		1,2		1,4
	oring with roughening with ning tool TE-YRT	γinst	[-]		1)	1	,0
Hammer dri	lling in water-filled drill hole	es γ _{inst}	[-]		1	,4	
Combined	pullout and concrete con	e failure fo	or HCC-K with	HIT-RE 5	00 V3		
in hammer d	tic bond resistance in crack rilled holes and hammer dri d cored holes with rougheni	lled holes v	vith Hilti hollow		-CD or TE-YD)	
Temperatur	e range I: 40 °C / 24 °C	τRk,cr	[N/mm²]	8,5	9,5	9,5	10
Temperatur	e range II: 70 °C / 43 °C	τRk,cr	[N/mm²]	7,0	7,5	7,5	7,5
Temperatur		ng with Hill TRk,ucr	[N/mm ²]	ool TE-YRT		15	
Temperatur	e range II: 70 °C / 43 °C	τRk,ucr	[N/mm²]	11			
Characteris	tic bond resistance in uncra	acked cond	crete C20/25				
Temperatur	range I: 40 °C / 24 °C τ _{Rk,ucr} [N/mm²] 9,0						
Temperatur	e range II: 70 °C / 43 °C	τ _{Rk,ucr}	[N/mm²]	6,5			
	tic bond resistance in uncra rilled holes and installation						
Temperatur	e range I: 40 °C / 24 °C	τRk,ucr	[N/mm²]		1	12	
Temperatur	e range II: 70 °C / 43 °C	τRk,ucr	[N/mm²]	9,5			
Influence fa	actors ψ on bond resistar	ice τ _{Rk}	·				
Influence of	concrete strength						
	in hammer drilled holes and	I	C30/37		1,	04	· ·
Cracked	hammer drilled holes with F hollow drill bit TE-CD or TE-	117	C40/50		1,	07	
and	and diamond cored holes	, 0	C50/60		1,	10	
uncracked	in diamond cored holes with	า	C30/37	,			
concrete	roughening with Hilti	Ψc,ex	C40/50		1	,0	
	roughening tool TE-YRT		C50/60				
Influence of	sustained load						
Cracked and	in hammer drilled holes, hammer drilled holes with H hollow drill bit TE-CD or TE	VD	40°C / 24°C		0,	88	
uncracked	and in diamond cored holes with roughening with Hilti	ψ^0_{sus}	70°C / 43°C	0,70			

Connector Hilti HCC-K	
Performance Essential characteristics under tension load in existing concrete	Annex C3

Connector Hilti HCC-K			10	12	14	16	
Installation factor for HCC-K with HIT-I	RE 500 V	1					
Hammer drilling	γinst	[-]		1	,0		
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]	1)		1,0		
Diamond coring	γinst	[-]		1,2		1,4	
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	,	1)	1,	1,0	
Hammer drilling in water-filled drill holes	γinst	[-]		1	,4		
Combined pullout and concrete cone f	failure HC	C-K with HIT	-RE 500 \	/4			
Characteristic bond resistance in cracked in hammer drilled holes and hammer drilled and diamond cored holes with roughening	d holes wit	h Hilti hollow		-CD or TE-YD			
Temperature range I: 40 °C / 24 °C	τ _{Rk,cr}	[N/mm ²]	10	12	12	12	
Temperature range II: 55 °C / 43 °C	τ _{Rk,cr}	[N/mm ²]	8,5	10	10	10	
Temperature range III: 75 °C / 55 °C	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	5,0	5,0	
Characteristic bond resistance in uncrack in hammer drilled holes and hammer drilled and diamond cored holes with roughening	d holes wit	h Hilti hollow		-CD or TE-YD	ı		
Temperature range I: 40 °C / 24 °C	τ _{Rk,ucr}	[N/mm ²]	15	15	15	15	
Temperature range II: 55 °C / 43 °C	τ _{Rk,ucr}	[N/mm²]	13	12	12	12	
Temperature range III: 75 °C / 55 °C	τ _{Rk,ucr}	[N/mm ²]	5,0	5,0	5,0	4,5	
Characteristic bond resistance in uncrack in diamond cored holes	ced concre	ete C20/25					
Temperature range I: 40 °C / 24 °C	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,5	9,5	
Temperature range II: 55 °C / 43 °C	τ _{Rk,ucr}	[N/mm ²]	7,5	7,5	8,0	8,0	
Temperature range III: 75 °C / 55 °C	τ _{Rk,ucr}	[N/mm ²]	4,5	4,5	4,5	5,0	
Temperature range in. To OT 00 O	red concre	ete C20/25					
Characteristic bond resistance in uncrack							
Characteristic bond resistance in uncrack in hammer drilled holes and installation in			13	13	13	12	
Characteristic bond resistance in uncrack in hammer drilled holes and installation in	water-fille	d drill holes	13 11	13 11	13 10	12 10	

Annex C4

Connector Hi	10	12	14	16				
Influence fac	tors ψ on bond resistance 1	[Rk				•		
Influence of co	oncrete strength							
in hammer drilled holes and			C30/37		1,	04		
0 1 1 1	hammer drilled holes with Hilti hollow drill bit TE-CD or TE-	ψ с,ех	C40/50		1,	07		
Cracked and uncracked	YD and diamond cored holes		C50/60		1,	10		
concrete			C30/37					
			C40/50		1	,0		
	roughening tool TE-YRT		C50/60					
Influence of su	ustained load							
	in hammer drilled holes, hammer drilled holes with Hilti		40°C / 24°C		0,	88		
Cracked and	hollow drill bit TE-CD or TE- YD and in diamond cored	11/U	55°C / 43°C		0,72			
holes with roughening with	holes with roughening with Hilti Roughening tool TE-YRT		75°C / 55°C		0,	69		
			40°C / 24°C		0,89			
	in diamond cored holes	ψ^0 sus_	55°C / 43°C		0,70			
			75°C / 55°C		0,	62		

Connector Hilti HCC-K	
Performance Essential characteristics under tension load in existing concrete	Annex C5

Table C2: Essential characteristics of connector Hilti HCC-K under tension load in concrete overlay

Connector Hilti HCC-K			10	12	14	16	
Steel failure							
Characteristic resistance	$N_{Rk,s,ov}$	[kN]	43	62	85	111	
Partial safety factor	γ Ms,N,ov	[-]		1	,4		
Pullout failure for anchor heads							
Projected area of the head	Ah	[mm ²]	628	905	1232	1608	
Thickness of the head	th	[mm]	2				
Concrete cone failure							
Effective ambadmant danth	min. h _{ef,ov} [mm]		40				
Effective embedment depth			L - $h_{nom,ex}$ - t_h - 2 · R_t 1)				
Factor for cracked concrete	k _{cr,N,ov}	[-]	8,9				
Factor for uncracked concrete	k _{ucr,N,ov}	[-]	12,7				
Edge distance	C _{cr,N,ov}	[mm]	1,5 · h _{ef,ov}				
Spacing	Scr,N,ov	[mm]	3,0 ⋅ h _{ef,ov}				
Splitting failure							
Edge distance	C _{cr,sp,ov}	[mm]		3,0 -	$h_{\text{ef,ov}}$		
Spacing	Scr,sp,ov	[mm]	6,0 · h _{ef,ov}				
Blow-out failure		·					
Projected area of the head	Ah	[mm²]	628	905	1232	1608	
Factor for cracked concrete	k _{5,cr}	[-]		8	,7		
Factor for uncracked concrete	k _{5,ucr}	[-]		12	2,2		

Rt: Roughness according to EOTA Technical Report TR 066:2019-10.

Table C3: Essential characteristics of connector Hilti HCC-K for the shear interface

Connector Hilti HCC-K			10	12	14	16
Characteristic yield strength	f_{yk}	[N/mm ²]	500			
Product specific factor for ductility	αk1	[-]		1	,0	
Relevant cross section in area of the interface	As	[mm²]	78,5	113	154	201
Product specific factor for geometry	αk2	[-]	1,0			

Connector Hilti HCC-K	
Performance Essential characteristics under tension load in concrete overlay Essential characteristics for the shear interface	Annex C6