

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

No 305/2011, on the basis of

ETA-20/1038 of 2 February 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Würth Injection system WIT-PE 510 for concrete Product family Bonded fastener for use in concrete to which the construction product belongs Manufacturer Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND Manufacturing plant Werk 3 This European Technical Assessment contains of this assessment This European Technical Assessment is EAD 330499-01-0601, Edition 04/2020 issued in accordance with Regulation (EU)

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt.de | www.dibt.de

24 pages including 3 annexes which form an integral part

European Technical Assessment ETA-20/1038 English translation prepared by DIBt

Page 2 of 24 | 2 February 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 2 February 2021

European Technical Assessment ETA-20/1038 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Würth Injection System WIT-PE 510 for concrete" is a bonded anchor consisting of a cartridge with injection WIT-PE 510 and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-20/1038

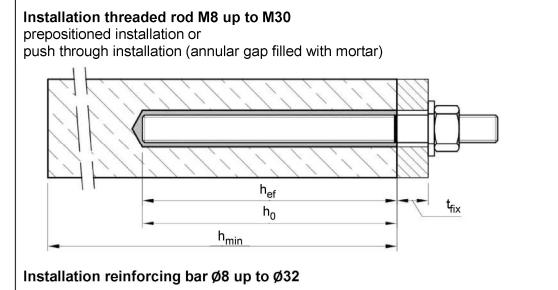
Page 4 of 24 | 2 February 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

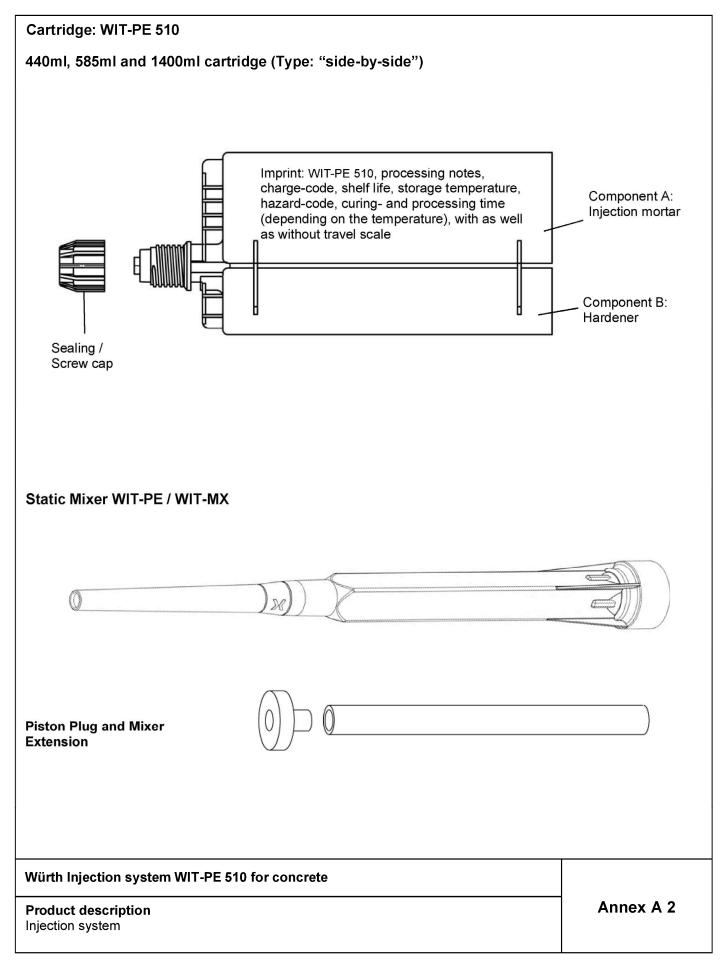
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 2 February 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

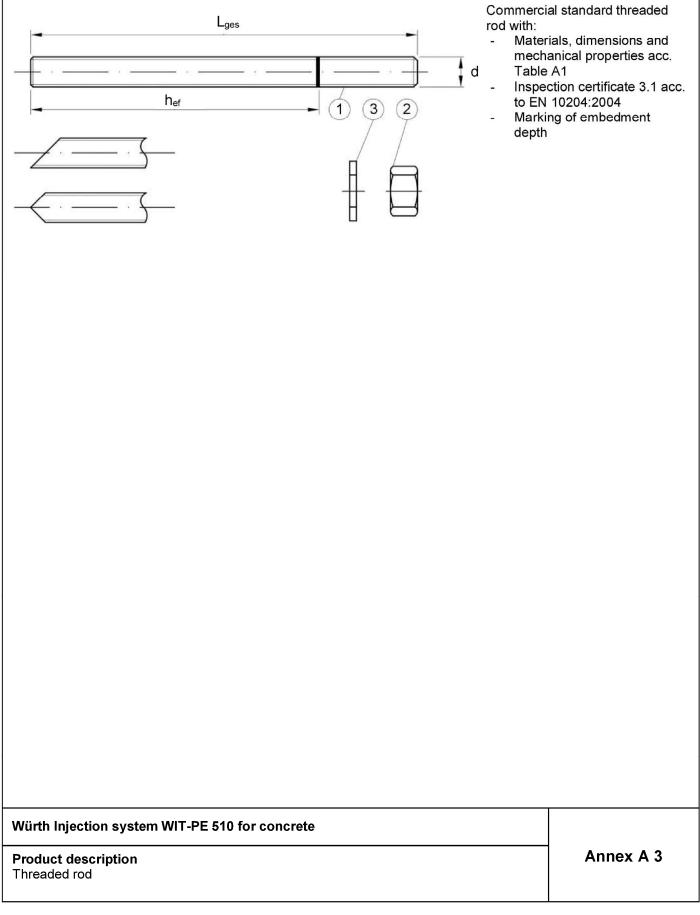
h_{ef}

 t_{fix} = thickness of fixture


- h_{ef} = effective anchorage depth
- h₀ = depth of drill hole
- h_{min} = minimum thickness of member

Würth Injection system WIT-PE 510 for concrete

Product description Installed condition


Annex A 1

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut

Electronic copy of the ETA by DIBt: ETA-20/1038

1Threaded rodProperty classultimate tensile strengthyield strengthfracture1Threaded rod $a_{acc. to}$ EN ISO 898-1:2013 $\frac{4.6}{4.8}$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8$ $\frac{4.8}{2.8}$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8$ $\frac{5.6}{2.8}$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8$ $\frac{2}{2}$ Hexagon nut $a_{acc. to}$ EN ISO 898-2:2012 $\frac{4}{5}$ for anchor rod class $4.6 \text{ or } 4.8$ $\frac{3}{2}$ Washer $\frac{acc. to}{EN ISO 898-2:2012}$ $\frac{4}{5}$ for anchor rod class $5.6 \text{ or } 5.8$ $\frac{3}{2}$ WasherSteel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:200 $\frac{1}{2}$ $1.4301 / 1.4307 / 1.4311 / 1.4567 \text{ or } 1.4541, acc. to EN 10088-1:2014)$ $\frac{1}{2}$ Property class $Characteristic steel$ ultimate tensile strength $Characteristic steel$ yield strength	Characteristic steel Elongation at fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 δ or 5.8 δ δ or δ δ δ or δ	4042:1999 1461:2009 17668:2010 Chara ultima 4.6 f _{uk} = 4 4.8 f _{uk} = 4 5.6 f _{uk} = 5	EN ISO EN ISO EN ISO ss	5 μm acc. to EN ISC 40 μm acc. to EN ISC 45 μm acc. to EN ISC Property class	inc plated ≥ ot-dip galvanised ≥	zir hc			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristic steel Elongation at fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 B $A_5 > 8\%$ B $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ δ or 5.8 B B $A_5 > 8\%$ B $A_5 > 8\%$ B $A_5 > 8\%$	$\begin{array}{c} 1461:2009\\ 17668:2010\\ Chara\\ ultima\\ 4.6 \\ f_{uk} = 4\\ 4.8 \\ f_{uk} = 4\\ 5.6 \\ f_{uk} = 5\end{array}$	SEN ISO EN ISO SS	40 μm acc. to EN ISC 45 μm acc. to EN ISC Property class	ot-dip galvanised ≥	hc			
sherardized $\geq 45 \ \mu\text{m}$ acc. to EN ISO 17668:20161Threaded rodProperty classCharacteristic steel ultimate tensile strength $f_{kk} = 240 \ N/mm^2$ Characteristic steel yield strength $f_{yk} = 240 \ N/mm^2$ Elongy fracturn1Threaded rodacc. to EN ISO 898-1:2013 $\frac{4.6}{5.6} \ f_{uk} = 400 \ N/mm^2$ $f_{yk} = 240 \ N/mm^2$ $A_5 > 8$ 2Hexagon nutacc. to EN ISO 898-2:2012 $\frac{4.6}{5.8} \ f_{uk} = 500 \ N/mm^2$ $f_{yk} = 300 \ N/mm^2$ $A_5 > 8$ 3Washeracc. to EN ISO 898-2:2012 $\frac{4}{5} \ for anchor rod class 4.6 or 4.8$ $4 \ for anchor rod class 5.6 \ or 5.8$ $4.8 \ for anchor rod class 5.6 \ or 5.8$ 3WasherSteel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 \ or EN ISO 7094:20001Threaded rod ⁽¹⁾⁽²⁾ $\frac{1.4401 / 1.4404 / 1.4571 / 1.4367 \ or 1.4574 / 1.4362 \ or 1.4578, acc. to EN 10088-1:2014)$ 1Threaded rod ⁽¹⁾⁽²⁾ $\frac{1.4001 / 1.4307 / 1.4311 / 1.4567 \ or 1.4578, acc. to EN 10088-1:2014)$ 1Threaded rod ⁽¹⁾⁽¹⁾ $\frac{1.2009}{acc. to}$ $\frac{50}{50} \ for anchor rod class 5.0 \ or 5.8 $	Characteristic steel yield strength Elongation at fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 δ or 5.8 δ δ δ δ or 5.8 δ	$ \begin{array}{c} 17668:2010\\ Chara\\ ultima\\ 4.6 f_{uk} = 4\\ 4.8 f_{uk} = 4\\ 5.6 f_{uk} = 5 \end{array} $	SS	45 μm acc. to EN ISC Property class					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n yield strength fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 δ or 5.8 δ <td< td=""><td>Chara ultima 4.6 $f_{uk} = 4$ 4.8 $f_{uk} = 4$ 5.6 $f_{uk} = 5$</td><td>SS</td><td>Property class</td><td></td><td>SI</td></td<>	Chara ultima 4.6 $f_{uk} = 4$ 4.8 $f_{uk} = 4$ 5.6 $f_{uk} = 5$	SS	Property class		SI			
$ \begin{array}{ c c c c c } 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	n yield strength fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 δ or 5.8 δ δ δ δ or 5.8 δ	ultima 4.6 $f_{uk} = 4$ 4.8 $f_{uk} = 4$ 5.6 $f_{uk} = 5$							
$ \begin{array}{ c c c c c c } 1 & \mbox{Threaded rod} & \mbox{Interval} & \m$	$f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $6 \text{ or } 4.8$ $3 \text{ or } 5.8$ $3 or $	$\begin{array}{c} 4.6 & f_{uk} = 4 \\ 4.8 & f_{uk} = 4 \\ 5.6 & f_{uk} = 5 \end{array}$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 δ or 5.8 δ δ or 5.9 δ δ or 5.9 δ δ or 5.9 δ δ δ δ or 5.9 δ <td>$\begin{array}{c c} 4.8 & f_{uk} = 4 \\ \hline 5.6 & f_{uk} = 5 \end{array}$</td> <td></td> <td></td> <td></td> <td></td>	$\begin{array}{c c} 4.8 & f_{uk} = 4 \\ \hline 5.6 & f_{uk} = 5 \end{array}$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 δ or 5.8 δ δ or 6.1 δ δ or 6.2 δ δ or 6.3 δ δ or 6.4 δ δ or 5.8 δ	5.6 f _{uk} = 5			Throaded red	1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ δ or 4.8 δ or 5.8 δ or 5.8 δ δ δ δ or 5.8 δ δ or 5.8 δ				Threaded fou				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_{yk} = 640 \text{ N/mm}^2 \qquad A_5 > 8\%$ S or 4.8 S or 5.8 S or	$58 f_{11} = 5$	-1:2013	EN ISO 898-1:2013					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SO 7093:2000 or EN ISO 7094:2000) c. to EN 10088-1:2014)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5 or 5.8 3 ed SO 7093:2000 or EN ISO 7094:2000) c. to EN 10088-1:2014)								
3 Washer Steel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7093:2000, EN ISO 7093:2000 or EN ISO 7094:200 Stainless steel A2 (Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014) Property class Characteristic steel ultimate tensile strength Characteristic steel yield strength Elongation fracture fracture 1 Threaded rod ¹⁾²⁾ Property class Characteristic steel ultimate tensile strength Characteristic steel yield strength Elongation fracture fracture 2 Hexagon nut ¹⁾²⁾ acc. to EN ISO 3506- 1:2009 50 fuk = 700 N/mm ² fyk = 450 N/mm ² A ₅ > 8 2 Hexagon nut ¹⁾²⁾ acc. to EN ISO 3506- 1:2009 50 for anchor rod class 50 70 for anchor rod class 50 2 Hexagon nut ¹⁾²⁾ A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4367 or 1.4541, acc. to EN 10088-1:2014	3 ed SO 7093:2000 or EN ISO 7094:2000) c. to EN 10088-1:2014)				Hexagon nut	2			
3 Washer Steel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7093:2000 or EN ISO 7094:200 Stainless steel A2 (Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014) Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014) High corrosion resistance steel (Material 1.4529 or 1.4565, acc. to EN 10088-1:2014) Property class Characteristic steel ultimate tensile strength yield strength Characteristic steel fractur yield strength Elonga fractur fractur 1 Threaded rod ¹⁾⁽²⁾ acc. to EN ISO 3506- 1:2009 50 f _{uk} = 500 N/mm ² f _{yk} = 210 N/mm ² A ₅ ≥ 8 2 Hexagon nut ¹⁾²⁾ acc. to EN ISO 3506- 1:2009 50 for anchor rod class 50 70 2 Hexagon nut ¹⁾²⁾ Acc. to EN ISO 3506- 1:2009 50 for anchor rod class 50 70 2 Hexagon nut ¹⁾²⁾ Acc. to EN ISO 3506- 1:2009 50 for anchor rod class 50 70 3 Gramma for anchor rod class 80 Acc. to EN 10088-1:2014	ed SO 7093:2000 or EN ISO 7094:2000) c. to EN 10088-1:2014)	8 for an	-2:2012	EN ISO 898-2:2012		<u> </u>			
3 Washer (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:200 Stainless steel A2 (Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014) Figh corrosion resistance steel (Material 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014) 1 Threaded rod ¹⁾² Property class Characteristic steel ultimate tensile strength 1:2009 Characteristic steel of fuck = 500 N/mm² Characteristic steel yield strength 1:2009 Elongation for the fuck = 1:2000 for anchor rod class 50 2 Hexagon nut ¹⁾² acc. to EN ISO 3506- 1:2009 50 for anchor rod class 50 for anchor rod class 70 2 Hexagon nut ¹⁾² A2: Material 1.4301 / 1.4307 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014	SO 7093:2000 or EN ISO 7094:2000) c. to EN 10088-1:2014)			Steel, zinc plated, h					
1Property classCharacteristic steel ultimate tensile strengthCharacteristic steel yield strengthElonga fractur fractur1Threaded rod ¹⁾⁽²⁾ acc. to EN ISO 3506- 1:200950 $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 210 \text{ N/mm}^2$ $A_5 \ge 8$ 2Hexagon nut ¹⁾⁽²⁾ acc. to EN ISO 3506- 1:200950for anchor rod class 50 $f_{yk} = 600 \text{ N/mm}^2$ $A_5 > 8$ 2Hexagon nut ¹⁾⁽²⁾ acc. to EN ISO 3506- 1:200950for anchor rod class 50 70 for anchor rod class 702A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014					Washer	3			
High corrosion resistance steel (Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014)1Property classCharacteristic steel ultimate tensile strengthCharacteristic steel yield strengthElongation fractur1Threaded rod ¹⁾²⁾ $acc. to$ EN ISO 3506- 1:2009 50 $f_{uk} = 500$ N/mm² $f_{yk} = 210$ N/mm² $A_5 \ge 8$ $A_5 > 8$ 2Hexagon nut ¹⁾²⁾ $acc. to$ EN ISO 3506- 1:2009 50 $f_{uk} = 700$ N/mm² $f_{yk} = 600$ N/mm² $A_5 > 8$ $A_5 > 8$ 2Hexagon nut ¹⁾²⁾ $acc. to$ EN ISO 3506- 1:2009 50 for anchor rod class 50 70 for anchor rod class 702A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014	c. to EN 10088-1:2014)								
1Property classCharacteristic steel ultimate tensile strengthCharacteristic steel yield strengthElonga fractur fractur1Threaded rod ¹⁾⁽²⁾ acc. to EN ISO 3506- 1:200950 $f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 210 \text{ N/mm}^2$ $A_5 \ge 8$ 2Hexagon nut ¹⁾⁽²⁾ acc. to EN ISO 3506- 1:200950for anchor rod class 50 $f_{yk} = 600 \text{ N/mm}^2$ $A_5 > 8$ 2Hexagon nut ¹⁾⁽²⁾ acc. to EN ISO 3506- 1:200950for anchor rod class 50 70 for anchor rod class 702A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		erial 1.45	ce steel (Material 1.4)	n corrosion resista	gh			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ss	Property class					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	j. Č		e.		Inreaded rod 1/2/	1			
2 Hexagon nut ¹⁾²⁾ acc. to EN ISO 3506- 1:2009 50 for anchor rod class 50 2 Hexagon nut ¹⁾²⁾ Acc. to EN ISO 3506- 1:2009 50 for anchor rod class 50 30 for anchor rod class 70 70 for anchor rod class 80 A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014	j		0-						
2 Hexagon nut ¹⁾²⁾ EN ISO 3506- 1:2009 70 for anchor rod class 70 80 for anchor rod class 80 A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014	yk 0								
1:2009 80 for anchor rod class 80 A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014			^						
A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014			0-						
			1 4 3 0 1 /						
2 Mashar A4. Material 1.4401 / 1.4404 / 1.4571 / 1.4502 01 1.4570, acc. to EN 10000-1.2014						`			
3 Washer HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014					vvasner	5			
(e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:200	SO 7093:2000 or EN ISO 7094:2000)								
 ¹⁾ Property class 70 or 80 for anchor s and hexagon nuts up to M24 ²⁾ Property class 80 only for stainless steel A4 and HCR 			-						

Reir	nforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 1	6, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32	
	INNNNNNNNNNN I MAAAAAAAAAAAA		NNNNNN AAAAAA
 	h _{ef}		
	 Minimum value of related rip area f_{R,min} a Rib height of the bar shall be in the range (d: Nominal diameter of the bar; h: Rip he 	9,05d ≤ h ≤ 0,07d	
Tab	le A2: Materials		
Part	Designation	Material	
Reinf	orcing bars		
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA
Wür	th Injection system WIT-PE 510 for concre	te	
	duct description erials reinforcing bar		Annex A 5

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +35 °C and max short term temperature +60 °C)
- III: 40 °C to +70 °C (max long term temperature +43 °C and max short term temperature +70 °C)

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class: - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
- Stainless steel Stanl A2 according to Annex A 4, Table A1: CRC II
 Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
- High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Würth Injection system WIT-PE 510 for concrete

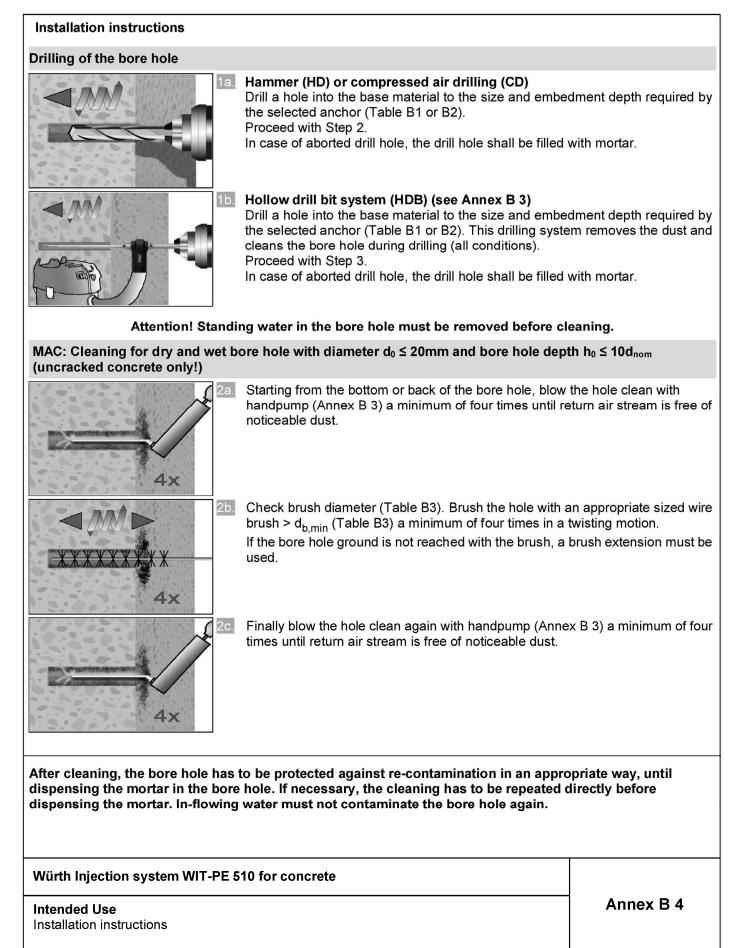
Intended Use Specifications Annex B 1

Table B1: Ir	stallation par	ameters f	or threa	aded r	od						
Anchor size				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of elemen	t	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter		d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmer	at donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	it depth	h _{ef,max}	[mm]	160	200	200 240 320 400 480 5		540	600		
Diameter of clearance hole in the fixture	Prepositioned i		[mm]	9	12	14	18	22	26	30	33
	Push through installation d _f		[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	oment	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness	of member	h _{min}	[mm]	-	_{ef} + 30 m : 100 mr		h _{ef} + 2d ₀				
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	ance	c _{min}	[mm]	35	40	45	50	60	65	75	80
	man and fan M40	ith staal Orada	4 0 10 25	Ni se						•	

¹⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

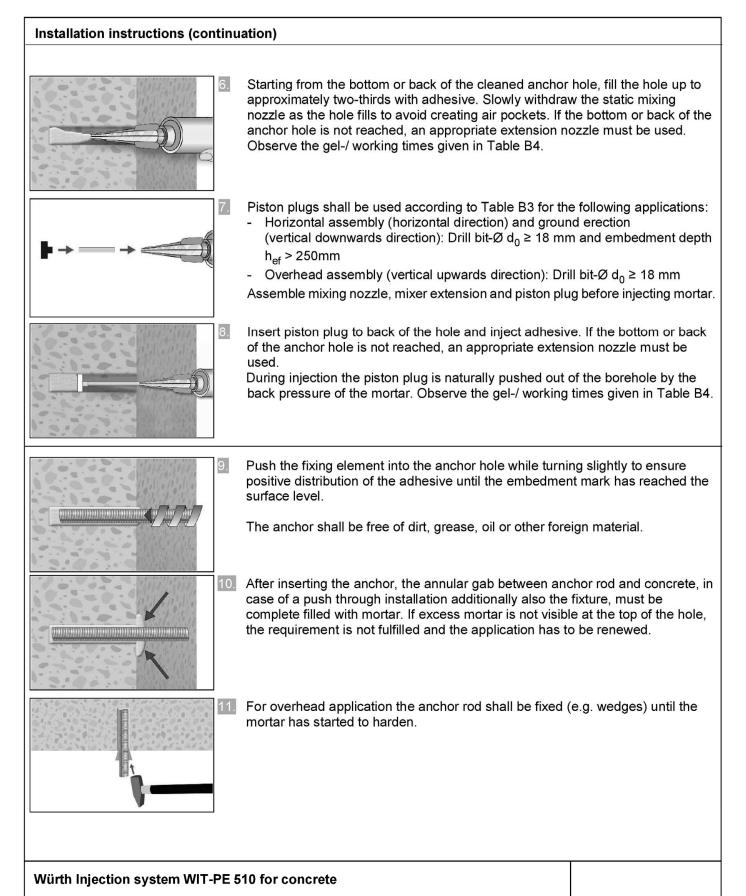
Table B2: Installation parameters for rebar

Anchor size			Ø 81)	Ø 101)	Ø 121)	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Ellective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀					
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

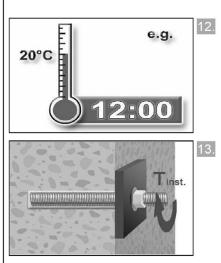

¹⁾ both nominal drill hole diameter can be used

Intended Use Installation parameters Annex B 2

	LELLAR	ter cleaning			tools						
Threaded Rod	Rebar	d ₀ Drill bit - Ø HD, HDB, CD	d Brus	h - Ø	d _{b,min} min. Brush - Ø	Piston plug		n direction a piston plug			
[mm]	[mm]	[mm]	WIT-	[mm]	[mm]	WIT-	Ļ		t		
M8	8	10	RB10	11,5	10,5		1				
M10	8 / 10	12	RB12	13,5	12,5	1	NI				
M12	10 / 12	14	RB14	15,5	14,5	1	No plug	required			
	12	16	RB16	17,5	16,5	1					
M16	14	18	RB18	20,0	18,5	VS18					
	16	20	RB20	22,0	20,5	VS20	1				
M20		22	RB22	24,0	22,5	VS22	1				
	20	25	RB25	27,0	25,5	VS25	1				
M24		28	RB28	30,0	28,5	VS28	- h _{ef} >	h _{ef} >	all		
M27		30	RB30	31,8	30,5	VS30	250 mm	250 mm			
	24 / 25	32	RB32	34,0	32,5	VS32	-				
M30	28	35	RB35	37,0	35,5	VS35	1				
	32	40	RB40	43,5	40,5	VS40	1				
(-)	0		
Drill bit d Drill hole		10 d _s	ml)		CAC - Rec. Drill bit diam				bar)		
Drill bit d Drill hole Only in n HDB – Ho Drill bit dian The hollow Drill Bit, He	Hand pump liameter (d ₀): depth (h ₀): < non-cracked co diameter (d ₀): all drill bit syster ller Duster Ex h minimum ne	up to 20 mm 10 d _s oncrete t system diameters n contains the pert hollow-con	Würth E e drill he	ollow dri		eter (d ₀): a Extractior	all diameters		par)		



	vater-filled bore holes with all diameter in uncracked	and cracked concrete				
2a.	Starting from the bottom or back of the bore hole, blow compressed air (min. 6 bar) (Annex B 3) a minimum of stream is free of noticeable dust. If the bore hole groun extension shall be used.	the hole clean with two times until return ai				
2b. 2x	Check brush diameter (Table B3). Brush the hole with a brush > $d_{b,min}$ (Table B3) a minimum of two times. If the bore hole ground is not reached with the brush, a be used (Table B5).					
2c.	Finally blow the hole clean again with compressed air (a minimum of two times until return air stream is free of bore hole ground is not reached an extension shall be u	noticeable dust. If the				
3.	Attach the supplied static-mixing nozzle to the cartridg into the correct dispensing tool. For every working interruption longer than the reco (Table B4) as well as for new cartridges, a new static-m	mmended working tim				
4.	Prior to inserting the anchor rod into the filled bore hole, the position of embedment depth shall be marked on the anchor rods.					
5.	Prior to dispensing into the anchor hole, squeeze out s three full strokes and discard non-uniformly mixed adhes mortar shows a consistent grey or red colour.					



Intended Use Installation instructions (continuation)

Annex B 6

Installation instructions (continuation)

After full curing, the add-on part can be installed with up to the max. torque (Table B1) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when

Allow the adhesive to cure to the specified time prior to applying any load or

torque. Do not move or load the anchor until it is fully cured (attend Table B4).

Table B4: Maximum working time and minimum curing time

Concrete	temp	erature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+ 5 °C	to	+ 9 °C	80 min	60 h	120 h
+ 10 °C	to	+ 14 °C	60 min	48 h	96 h
+ 15 °C	to	+ 19 °C	40 min	24 h	48 h
+ 20 °C	to	+ 24 °C	30 min	12 h	24 h
+ 25 °C	to	+ 34 °C	12 min	10 h	20 h
+ 35 °C	to	+ 39 °C	8 min	7 h	14 h
+40)°C		8 min	4 h	8 h
Cartridge	temp	erature		+5°C to +40°C	

mortar oozes out of the washer.

Intended Use Installation instructions (continuation) Curing time Annex B 7

Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	As	[mm²]	36,6	58	84,3	157	245	353	459	561
Cł	naracteristic tension resistance, Steel failu	re 1)									
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	naracteristic tension resistance, Partial fac	tor ²⁾	_								
St	eel, Property class 4.6 and 5.6	γMs,N	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γMs,N	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	γMs,N	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	γMs,N	[-]				1,8	7			
	ainless steel A4 and HCR, class 80	γMs,N	[-]				1,6	3			
Cł	naracteristic shear resistance, Steel failure	1)	1								
arm	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Without lever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
rt –	Stainless steel A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
litho	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	_3)	_3)
5	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	112:
	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
ith lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	112
VIE	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	naracteristic shear resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	γMs,V	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γMs,∨	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γMs,∨	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γMs,∨	[-]				1,3	3			

²⁾ in absence of national regulation

³⁾ Anchor type not part of the ETA

Würth Injection system WIT-PE 510 for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Electronic copy of the ETA by DIBt: ETA-20/1038

Table C2:	Characteristic value							
Anchor				All Anchor type and sizes				
Concrete cone	failure							
Non-cracked co	oncrete	k _{ucr,N}	[-]	11,0				
Cracked concre	ete	k _{cr,N}	[-]	7,7				
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}				
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}				
Splitting								
	h/h _{ef} ≥ 2,0			1,0 h _{ef}				
Edge distance	2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$				
	h/h _{ef} ≤ 1,3			2,4 h _{ef}				
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}				

Würth Injection system WIT-PE 510 for concrete

Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action

Anchor	r size threaded re	bd			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ilure											
Charact	teristic tension res	sistance	N _{Rk,s}	[kN]			Α _s ・fι	_{ık} (or s	ee Tab	le C1)		
Partial f	factor		γMs,N	[-]				see Ta	ble C1			
Combi	ned pull-out and	concrete failure										
Charact	teristic bond resis	tance in non-crac	ked concrete	C20/25								
iture	l: 40°C/24°C	Dry, wet			15	15	15	14	14	13	13	13
Temperature range	II: 60°C/35°C	concrete and flooded bore	⁷ Rk,ucr	[N/mm²]	10	10	10	9,5	9,5	9,0	9,0	9,0
Ten	III: 70°C/43°C	hole			7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Charact	teristic bond resis	tance in cracked	concrete C20	/25								
ture	l: 40°C/24°C	Dry, wet			7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
Temperature range	ll: 60°C/35°C	concrete and flooded bore	^τ Rk,cr	[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5
Ter	III: 70°C/43°C	hole			3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0
Reducti	ion factor $\psi^0_{\ sus}$ in	cracked and non	-cracked cond	crete C20/25								
ture	L: 40°C/24°C Dry, wet concrete and flooded bore							0,	60			
npera range		Ψ^0 sus	[-]				0,	60				
Ten	III: 70°C/43°C	hole						0,	60			
			C25/30		1,02							
			C30/37		1,04							
	ing factors for cor	icrete	C35/45		1,07							
Ψ_{c}			C40/50		1,08							
	bry, wet concrete and flooded bore		C45/55						09			
-			C50/60					1,	10			
								T -	h la 00			
								see Ta				
Splittin								see Ta				
	nt parameter I tion factor							See 18				
	and wet concrete	or flooded bore	γinst	[-]				1	,4			
			1	1	L							

Würth Injection system WIT-PE 510 for concrete

Performances

Characteristic values of tension loads under static and quasi-static action

Table C4: Characteristic va	lues of	shear	loads	s unde	er stati	ic and	quas	i-statio	c action	
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γMs,∨	[-]				see	Table C	1		
Ductility factor	k 7	[-]					1,0			
Steel failure with lever arm		II								
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} ∙f _{uk}	(or see	Table C	21)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see	Table C	1		
Concrete pry-out failure	•	·								
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure		·								
Effective length of fastener	l _f	[mm]		r	nin(h _{ef} ; 1	2 · d _{nor}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

Würth Injection system WIT-PE 510 for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

Table C5: Characteristic va	alues of te	ension lo	bads	und	er sta	atic a	nd q	uasi	-stati	c ac	tion	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure	-											
Characteristic tension resistance	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,N	[-]					1,	4 ²⁾				
Combined pull-out and concrete fail												
Characteristic bond resistance in non-	cracked conc	rete C20/2	5		1							
L: 40°C/24°C Dry, wet concrete and flooded bore hole			14	14	14	12	12	12	12	11	11	11
the begin the second se	⁷ Rk,ucr	[N/mm²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Characteristic bond resistance in crack	ted concrete	C20/25										
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ			6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
L: 40°C/24°C Dry, wet concrete and flooded bore hole	^τ Rk,cr	[N/mm²]	4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
⊢ III: 70°C/43°C hole			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reduction factor $\psi^{0}_{\mbox{ sus }}$ in cracked and	non-cracked	concrete (20/25	I								
₽ <u></u> I: 40°C/24°C Dry, wet							0,	60				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ψ^0 sus	[-]					0,	60				
III: 70°C/43°C hole							0,	60				
	C25	/30					1,	02				
	C30						,	04				
Increasing factors for concrete	C35							07				
Ψc	C40							08				
	C45 C50							09 10				
Concrete cone failure	000	/00					•,	10				
Relevant parameter						:	see Ta	ble C2	2			
Splitting												
Relevant parameter						:	see Ta	ble C2	2			
Installation factor												
for dry and wet concrete or flooded bore hole	γinst	[-]					1	,4				
¹⁾ f _{uk} shall be taken from the specificatio ²⁾ in absence of national regulation	ns of reinforci	ing bars										
Würth Injection system WIT-PE 5	10 for conc	rete										
Performances Characteristic values of tension loads u	nder static an	d quasi-sta	tic acti	on					A	nne	с С 5	

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm									I			
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]					0,5	• A _s •	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,∨	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm												
Characteristic bending moment	M ⁰ Rk,s	[Nm]					1.2 •	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γMs,∨	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure	· ·		·									
Effective length of fastener	۱ _f	[mm]		I	nin(h _e	_{ef} ; 12 •	d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]						1,0				
 f_{uk} shall be taken from the specific in absence of national regulation 	ations of reinfo	rcing bars										

Würth Injection system WIT-PE 510 for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

Anchor size threade	d rod		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concre	te under static a	and quasi-static a	action		I	I	I			1
Temperature range	: δ _{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range	l: δ _{N0} -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,05
60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Temperature range l	ll: δ _{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,06
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,07
Cracked concrete ur	der static and	quasi-static actio	n							
Temperature range	: δ _{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,08
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,17
Temperature range	l: δ _{N0} -factor	[mm/(N/mm ²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,11
60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,22
Temperature range l		[mm/(N/mm ²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,12
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,25
¹⁾ Calculation of the	τ; τ: a τ;	ction bond stress fo under shear		thread	led roc	1)				
$\delta_{N0} = \delta_{N0}$ -factor · $\delta_{N\infty} = \delta_{N\infty}$ -factor ·	τ; τ: a τ; placements			thread	led roc M12	l) M16	M20	M24	M27	M30
$\begin{array}{ll} \delta_{N0} = \delta_{N0} \text{-factor} & \cdot \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} & \cdot \end{array}$	τ; τ: a τ; placements d rod	under shear	load ²⁾ (M8	M10	M12	, 	M20	M24	M27	МЗС
δ _{N0} = δ _{N0} -factor · δ _{N∞} = δ _{N∞} -factor · Table C8: Dis Anchor size threade Non-cracked and cra	τ; τ: a τ; placements d rod	under shear	load ²⁾ (M8	M10	M12	, 	M20	M24	M27	M30
$\delta_{N0} = \delta_{N0} - \text{factor} \cdot \delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \delta_{N\infty}$ Table C8: Dis Anchor size threade Non-cracked and cra All temperature ranges ²⁾ Calculation of the	τ; τ: a τ; τ: a placements d rod cked concrete δ_{V0} -factor $\delta_{V\infty}$ -factor displacement	under shear	load ²⁾ (M8 quasi-st 0,06 0,09	M10 atic actio	M12 on	M16				
$\delta_{N0} = \delta_{N0}$ -factor · $\delta_{N∞} = \delta_{N∞}$ -factor · Table C8: Dis Anchor size threade Non-cracked and cra All temperature ranges	r; τ: a τ; τ: a placements d rod cked concrete δ_{V0} -factor $\delta_{V\infty}$ -factor displacement /;	under shear under static and [mm/kN]	load ²⁾ (M8 quasi-st 0,06 0,09	M10 atic action 0,06	M12 on 0,05	0,04	0,04	0,03	0,03	0,03

Electronic copy of the ETA by DIBt: ETA-20/1038

Anchor size rein	forcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked cor	ncrete under	static and quas	i-static	action	1		I	I	I		I	
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,04
range l: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,02
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,05
range II: 60°C/35°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,07
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,06
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,07
Cracked concret	e under stati	c and quasi-sta	tic actio	on	1							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,08
range l: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,19
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,11
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,26
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,12
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,28
¹⁾ Calculation of $\delta_{N0} = \delta_{N0}$ -fact $\delta_{N\infty} = \delta_{N\infty}$ -fact	f the displacem or · τ; tor · τ;	ent τ: action bond				ır)				1		
¹⁾ Calculation of $\delta_{N0} = \delta_{N0}$ -fact $\delta_{N\infty} = \delta_{N\infty}$ -fact Table C10:	f the displacem or · τ; tor · τ; Displacem	τ: action bonc	shear	load ²⁾	(reba		Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø3
¹⁾ Calculation of δ _{N0} = δ _{N0} -fact δ _{N∞} = δ _{N∞} -fact Table C10: Anchor size rein	f the displacem or · τ; tor · τ; Displacem forcing bar	τ: action bond	shear Ø 8	load ²⁾ Ø 10	Ø (reba	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø3
¹⁾ Calculation of δ _{N0} = δ _{N0} -fact δ _{N∞} = δ _{N∞} -fact Table C10: Anchor size rein Non-cracked and	f the displacem or · τ; tor · τ; Displacem forcing bar	τ: action bond	shear Ø 8 atic and	load ²⁾ Ø 10 quasi-	Ø (reba	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28 0,03	Ø 3 0,03
¹⁾ Calculation of δ _{N0} = δ _{N0} -fact δ _{N∞} = δ _{N∞} -fact Table C10: Anchor size rein Non-cracked and All temperature ranges	f the displacem or $\cdot \tau$; tor $\cdot \tau$; Displacem forcing bar d cracked cor δ_{V0} -factor $\delta_{V\infty}$ -factor	t: action bond nents under ncrete under st [mm/kN] [mm/kN]	shear Ø 8 atic and 0,06	load ²⁾ Ø 10 quasi-4 0,05	Ø (reba Ø 12 static a	Ø 14		I	I			
¹⁾ Calculation of δ _{N0} = δ _{N0} -fact δ _{N∞} = δ _{N∞} -fact Table C10: Anchor size rein Non-cracked and All temperature	f the displacem or $\cdot \tau$; bor $\cdot \tau$; Displacem forcing bar d cracked cor δ_{V0} -factor $\delta_{V\infty}$ -factor f the displacem or $\cdot V$;	t: action bond nents under ncrete under st [mm/kN] [mm/kN]	Ø 8 Ø 10 0,06 0,09	load ²⁾ Ø 10 I quasi- 0,05	Ø 12 Ø 12 static a	Ø 14 ction 0,04	0,04	0,04	0,03	0,03	0,03	0,0