

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/1040 of 23 March 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Stemax Injection system RFS-V for concrete

Bonded fastener for use in concrete

LLC "Stemax"
Turgenevskaya str. 38
01054 KIEV
UKRAINE

Plant 1

28 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-20/1040

Page 2 of 28 | 23 March 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z14552.21 8.06.01-752/20

European Technical Assessment ETA-20/1040

Page 3 of 28 | 23 March 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Stemax injection system RFS-V concrete" is a bonded anchor consisting of a cartridge with injection mortar RFS-V or RFS-VW Winter and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod RF-M6 to RF-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 3, C 5, C 7				
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C 4, C 6, C 8				
Displacements (static and quasi-static loading)	See Annex C 9 to C 11				
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 12 to C 16				
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed				

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z14552.21 8.06.01-752/20

European Technical Assessment ETA-20/1040

Page 4 of 28 | 23 March 2021

English translation prepared by DIBt

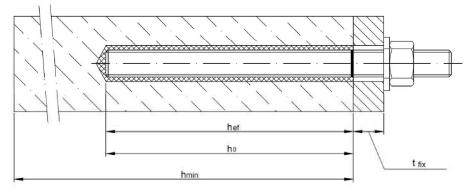
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

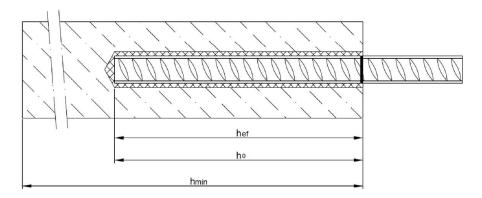
The system to be applied is: 1

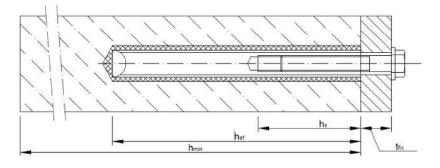
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 23 March 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Z14552.21 8.06.01-752/20


Installation threaded rod M8 up to M30

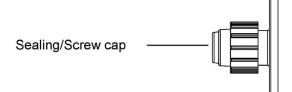
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod RF-M6 up to RF-M20

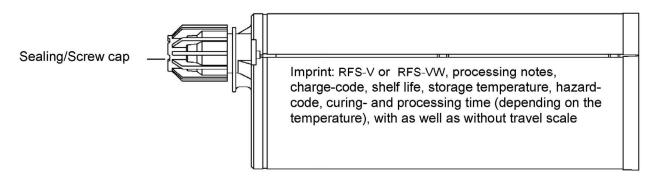
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

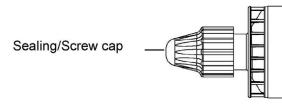
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

Stemax Injection system RFS-V for concrete	
Product description Installed condition	Annex A 1

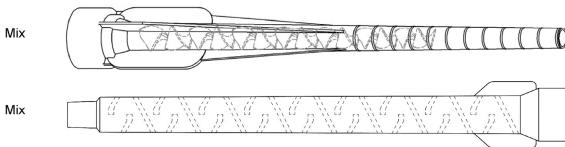

Cartridge: RFS-V or RFS-VW

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: RFS-V or RFS-VW, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

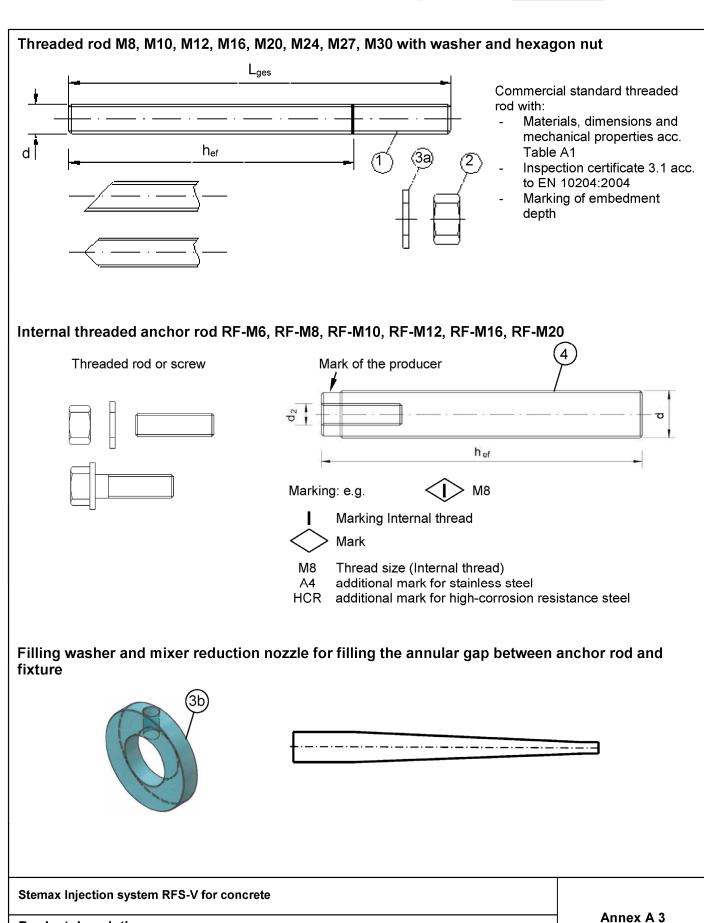

165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: RFS-V or RFS-VW, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

Injection system

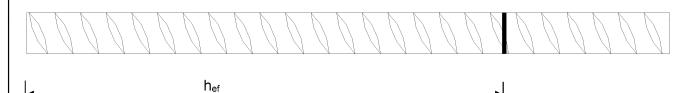
Stemax Injection system RFS-V for concrete


Product description

Annex A 2

Product description

Threaded rod, internal threaded rod and filling washer



Electronic copy of the ETA by DIBt: ETA-20/1040

zinc plate hot-dip ga sherardiz 1 Thread 2 Hexago a Washe b Filling 4 International Thread 2 Hexago a Washe corros	plated (Steel acc. to Bed ≥ 5 µm a plated) ≥ 40 µm a plated ≥ 45 µm a plated ≥ 45 µm a plated acc. to Bed ≥ 45 µm a plated acc. to Bed ≥ 40 µm a plated acc. to Bed ≥ 40 µm a plated acc. to Bed ≥ 40 µm a plated acc. to Bed ≥ 45 µm a plated acc. to Bed ≥ 40 µm a plated acc. to Bed ≥ 40 µm a plated acc. to Bed ≥ 45 µm a plated acc. to	EN 10087:1998 or EN 1026 acc. to EN ISO 4042:1999 of acc. to EN ISO 1461:2009 af acc. to EN ISO 17668:2016 Property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456401 / 1.4404 / 1.4571 / 1.436401 (Material 1.4529 or 1.4565	4.6 4.8 5.6 5.8 8.8 4 5 9 galva EN ISO 9 galva 5.8 6.7 or 1 6.2 or 1	Characteristic tensile strength f _{uk} = 400 N/mm² f _{uk} = 400 N/mm² f _{uk} = 500 N/mm² f _{uk} = 500 N/mm² f _{uk} = 800 N/mm² for threaded rod consed or sherardized or sherardized characteristic tensile strength f _{uk} = 800 N/mm² A541, acc. to EN	Characteristic yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ lass 4.6 or 4.8 lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or Ed Characteristic yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	Elongation at fracture $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ $A_5 \ge 8\%$ EN ISO 7094:20 $A_5 = 8\%$ Elongation at fracture $A_5 > 8\%$ $A_5 > 8\%$		
1 Thread 2 Hexago 4 International Thread 2 Hexago 5 International Thread 2 Hexago 6 International Thread 2 Hexago 6 International Thread 6 International Thread 6 International Thread 6 International Thread	alvanised ≥ 40 µm a zed ≥ 45 µm a aded rod gon nut gon nut ger g washer all threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 1461:2009 acc. to EN ISO 17668:2016 Property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456401 / 1.4404 / 1.4571 / 1.4366	4.6 4.8 5.6 5.8 8.8 4 5 8 9 galva EN ISC 9 galva 5.8 6.7 or 1 6.2 or 1	Characteristic tensile strength $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod consed or sherardized or sherardized or sherardized Characteristic tensile strength $f_{uk} = 800 \text{ N/mm}^2$	Characteristic yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ lass 4.6 or 4.8 lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or Ed Characteristic yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	fracture $A_5 > 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
1 Thread 2 Hexago 4 International Thread 2 Hexago 4 International Thread 2 Hexago 5 Hexago 6 Hexago 6 Hexago 6 International Thread 7 Hexago 6 International Thread	aded rod gon nut gon nut ger g washer all threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 17668:2016 Property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dig (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dig Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 301 / 1.4404 / 1.4571 / 1.436	4.6 4.8 5.6 5.8 8.8 4 5 8 9 galva EN ISC 9 galva 5.8 8.8 67 or 1 62 or 1	Characteristic tensile strength $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod consed or sherardized or sherardized or sherardized Characteristic tensile strength $f_{uk} = 800 \text{ N/mm}^2$	Characteristic yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ lass 4.6 or 4.8 lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or Ed Characteristic yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	fracture $A_5 > 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
1 Thread 2 Hexago 4 International Thread 2 Hexago 1 Thread 2 Hexago 4 Washe 5 Filling 6 Filling	gon nut gon steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 301 / 1.4404 / 1.4571 / 1.436	4.6 4.8 5.6 5.8 8.8 4 5 8 8 o galva EN ISO 9 galva 5.8 8.8 67 or 1 62 or 1	tensile strength $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod consist of threaded rod consist of threaded rod consist of the strength o	yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ $lass 4.6 \text{ or } 4.8$ $lass 5.6 \text{ or } 5.8$ $lass 8.8$ ed $SO 7093:2000 \text{ or } E$ ed $Characteristic$ $yield strength$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	fracture $A_5 > 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
2 Hexago Washed Filling International Thread Washed Washed Washed International Intern	gon nut ner g washer nal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 301 / 1.4404 / 1.4571 / 1.436	4.8 5.6 5.8 8.8 4 5 8 9 galva EN ISO 9 galva 5.8 8.8 67 or 1 62 or 1	f_{uk} = 400 N/mm ² f_{uk} = 400 N/mm ² f_{uk} = 500 N/mm ² f_{uk} = 500 N/mm ² f_{uk} = 800 N/mm ² for threaded rod of t	$\begin{aligned} &f_{yk} = 240 \text{ N/mm}^2 \\ &f_{yk} = 320 \text{ N/mm}^2 \\ &f_{yk} = 300 \text{ N/mm}^2 \\ &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \\ &lass 4.6 \text{ or } 4.8 \\ &lass 5.6 \text{ or } 5.8 \\ &lass 8.8 \\ &ed \\ &SO 7093:2000 \text{ or } E \\ &ed \\ &Characteristic \\ &yield strength \\ &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \end{aligned}$	$A_5 > 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
2 Hexago Washed Filling International Thread Washed Washed Washed International Intern	gon nut ner g washer nal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 301 / 1.4404 / 1.4571 / 1.436	4.8 5.6 5.8 8.8 4 5 8 9 galva EN ISO 9 galva 5.8 8.8 67 or 1 62 or 1	f_{uk} = 400 N/mm ² f_{uk} = 500 N/mm ² f_{uk} = 500 N/mm ² f_{uk} = 800 N/mm ² for threaded rod consist of t	f _{yk} = 320 N/mm ² f _{yk} = 300 N/mm ² f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² lass 4.6 or 4.8 lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or E ed Characteristic yield strength f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ²	$A_5 > 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
2 Hexago Washed Filling International Thread Washed Washed Washed International Intern	gon nut ner g washer nal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 301 / 1.4404 / 1.4571 / 1.436	5.6 5.8 8.8 4 5 8 9 galva EN ISO 9 galva 5.8 8.8 67 or 1 62 or 1	f _{uk} = 500 N/mm ² f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² for threaded rod consist of threaded rod c	$\begin{aligned} f_{yk} &= 300 \text{ N/mm}^2 \\ f_{yk} &= 400 \text{ N/mm}^2 \\ f_{yk} &= 640 \text{ N/mm}^2 \\ lass 4.6 \text{ or } 4.8 \\ lass 5.6 \text{ or } 5.8 \\ lass 8.8 \\ ed \\ SO 7093:2000 \text{ or E} \\ ed \\ Characteristic \\ yield strength \\ f_{yk} &= 400 \text{ N/mm}^2 \\ f_{yk} &= 640 \text{ N/mm}^2 \end{aligned}$	$A_5 > 8\%$ $A_5 > 8\%$ $A_5 \ge 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
a Washe Filling International	ner g washer hal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 401 / 1.4404 / 1.4571 / 1.436	5.8 8.8 4 5 8 9 galva EN ISO 9 galva 5.8 8.8 67 or 1 62 or 1	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² for threaded rod consist of threaded r	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² lass 4.6 or 4.8 lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or E ed Characteristic yield strength f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ²	$A_5 > 8\%$ $A_5 \ge 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
a Washe Filling International	ner g washer hal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456401 / 1.4404 / 1.4571 / 1.4366	8.8 4 5 8 9 galva EN ISO 9 galva 5.8 8.8 67 or 1 62 or 1	f _{uk} = 800 N/mm ² for threaded rod consed or sherardized characteristic tensile strength f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² .4541, acc. to EN	f _{yk} = 640 N/mm ² lass 4.6 or 4.8 lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or E ed Characteristic yield strength f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ²	$A_5 \ge 8\%$ EN ISO 7094:20 Elongation at fracture $A_5 > 8\%$		
a Washe Filling International	ner g washer hal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456401 / 1.4404 / 1.4571 / 1.4366	4 5 8 p galva EN ISC p galva 8.8 67 or 1 62 or 1	for threaded rod of for threaded rod of for threaded rod of for threaded rod of threaded or sherardized 7089:2000, EN Is anised or sherardized Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN	lass 4.6 or 4.8 lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or E ed Characteristic yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	EN ISO 7094:20 Elongation at fracture A ₅ > 8%		
a Washe Filling International	ner g washer hal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	EN ISO 898-2:2012 Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456401 / 1.4404 / 1.4571 / 1.4366	5 8 o galva EN ISO o galva 5.8 8.8 67 or 1 62 or 1	for threaded rod consisted or sherardized characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN	lass 5.6 or 5.8 lass 8.8 ed SO 7093:2000 or E ed	Elongation at fracture A ₅ > 8%		
a Washe Filling International	ner g washer hal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 401 / 1.4404 / 1.4571 / 1.436	8 p galva EN ISG p galva 5.8 8.8 67 or 1 62 or 1	for threaded rod conised or sherardized or sherardized or sherardized or sherardized characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN	lass 8.8 ed SO 7093:2000 or E ed Characteristic yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	Elongation at fracture A ₅ > 8%		
International In	y washer nal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	(e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 401 / 1.4404 / 1.4571 / 1.436	5.8 8.8 67 or 1	nised or sherardized or sherardized or sherardized or sherardized characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN	ed SO 7093:2000 or E ed Characteristic yield strength f_{yk} = 400 N/mm² f_{yk} = 640 N/mm²	Elongation at fracture A ₅ > 8%		
International In	y washer nal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	(e.g.: EN ISO 887:2006, Steel, zinc plated, hot-dip Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 401 / 1.4404 / 1.4571 / 1.436	5.8 8.8 67 or 1	O 7089:2000, EN Is unised or sherardize Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN	SO 7093:2000 or E ed Characteristic yield strength f_{yk} = 400 N/mm ² f_{yk} = 640 N/mm ²	Elongation at fracture A ₅ > 8%		
International In	nal threaded or rod steel A2 (Material 1.43 steel A4 (Material 1.44	Property class acc. to EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.456 401 / 1.4404 / 1.4571 / 1.436	5.8 8.8 67 or 1 62 or 1	Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN	Characteristic yield strength f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ²	fracture A ₅ > 8%		
ancho ainless si ainless si ainless si gh corros Thread Hexag Washe b Filling	or rod steel A2 (Material 1.43 steel A4 (Material 1.44	acc. to EN ISO 898-1:2013 801 / 1.4307 / 1.4311 / 1.456 801 / 1.4404 / 1.4571 / 1.436	8.8 67 or 1 62 or 1	tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN	yield strength f_{yk} = 400 N/mm ² f_{yk} = 640 N/mm ²	fracture A ₅ > 8%		
ancho ainless si ainless si ainless si gh corros Thread Hexag Washe b Filling	or rod steel A2 (Material 1.43 steel A4 (Material 1.44	EN ISO 898-1:2013 801 / 1.4307 / 1.4311 / 1.456 801 / 1.4404 / 1.4571 / 1.436	8.8 67 or 1 62 or 1	f _{uk} = 800 N/mm ² .4541, acc. to EN	f _{yk} = 640 N/mm ²			
ainless sigh corros Thread Hexag Washe Filling	steel A4 (Material 1.44	_	67 or 1 62 or 1	.4541, acc. to EN	7	A ₅ > 8%		
ainless sigh corros Thread Hexag Washe Filling	steel A4 (Material 1.44	101 / 1.4404 / 1.4571 / 1.436	62 or 1		10088-1:2014)			
2 Hexagona Washeb Filling		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture		
2 Hexagona Washeb Filling	1 Threaded rod ¹⁾³⁾	d rod ¹⁾³⁾		f _{uk} = 500 N/mm²	f _{vk} = 210 N/mm²	A ₅ ≥ 8%		
a Washe	, a d a i d a	acc. to	70	f _{uk} = 700 N/mm²	f _{vk} = 450 N/mm ²	A ₅ ≥ 8%		
a Washe		EN ISO 3506-1:2009	80	f _{uk} = 800 N/mm²	f _{vk} = 600 N/mm ²	A ₅ ≥ 8%		
a Washe		,	50	for threaded rod c	lass 50			
b Filling	gon nut ¹⁾³⁾	acc. to EN ISO 3506-1:2009	70	0 for threaded rod class 70				
b Filling				for threaded rod c				
ı Interna	ner	A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	404 / 1 1.456	1.4571 / 1.4362 or [.] 5, acc. to EN 10088	1.4578, acc. to EN 8-1: 2014	10088-1:2014		
	y washer	Stainless steel A4, High						
		Property class		Characteristic	Characteristic	Elongation at		
				tensile strength	yield strength	fracture		
† L	nal threaded	acc. to		f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ > 8%		
	or rod ¹⁾²⁾	EN ISO 3506-1:2009		f _{uk} = 700 N/mm ²	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ > 8%		
2) for RF-N	•		thread	ed anchor rods up to	o RF-M16,			
/ Property	M20 only property class	iiess sieei A4						
Stemax Inj	M20 only property class ty class 80 only for stair							

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
 - Rib height of the bar shall be in the range $0.05d \le h \le 0.07d$ (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: **Materials**

Part	Designation	Material					
Reinforcing bars							
1		Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Electronic copy of the ETA by DIBt: ETA-20/1040

Stemax Injection system RFS-V for concrete	
Product description	Annex A 5
Materials reinforcing bar	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, RF-M6 to RF-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, RF-M6 to RF-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, RF-M6 to RF-M20.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, RF-M6 to RF-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, RF-M6 to RF-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

Stemax Injection system RFS-V for concrete	A
Intended Use Specifications	Annex B 1

Page 11 of European Technical Assessment ETA-20/1040 of 23 March 2021

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod											
Anchor size		M8	M10	M12	M16	M20	M24	M27	M30		
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30		
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35		
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120		
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33		
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37		
Maximum torque moment	max T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200		
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30	0 mm ≥ ′	100 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150		
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150		

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	0 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø				Ø 32		
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment denth	h _{ef,min} [mm] =		60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 30 \text{ mm}$ $h_{ef} + 2d_0$ $\geq 100 \text{ mm}$								
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		RF-M6	RF-M8	RF-M10	RF-M12	RF-M16	RF-M20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective embedment depth	h _{ef,max} [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	max T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	٠.	30 mm 0 mm	$I = II_{\alpha f} + ZU_{\alpha}$			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Stemax Injection system RFS-V for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools																																				
	cerrencescaeses		8		**************************************	- Address of the London																														
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d _i Brush		d _{b,min} min. Brush - Ø	Piston plug	Installation direction and us of piston plug																												
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1																										
M8			10	RFB10	12	10,5																														
M10	8	RF-M6	12	RFB12	14	12,5		No piston p	dua roquira																											
M12	10	RF-M8	14	RFB14	16	14,5		NO PISION P	nug require	;u																										
	12		16	RFB16		16,5																														
M16	14	RF-M10	18	RFB18		18,5	VS18																													
	16		20	RFB20		20,5	VS20																													
M20	20	RF-M12	24	RFB24		24,5	VS24	h _{ef} >	h _{ef} >																											
M24		RF-M16	28	RFB28		28,5	VS28	250 mm	250 mm	all																										
M27	25		32	RFB32	34	32,5	VS32	230 111111	230 111111																											
M30	28	RF-M20	35	RFB35	37	35,5	VS35]]]]]]]		_			_				_		
	32		40	RFB40	41,5	40,5	VS40																													

MAC - Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

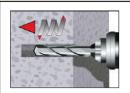
Drill hole depth (h₀): < 10 d_{nom}

Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

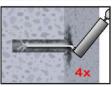
Drill bit diameter (d_0): 18 mm to 40 mm


Steel brush RFB
Drill bit diameter (d₀): all diameters

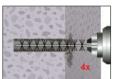
Stemax Injection system RFS-V for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

Drilling of the bore hole

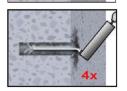


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

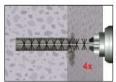
MAC: Cleaning for bore hole diameter d₀ ≤ 20mm and bore hole depth h₀ ≤ 10d_{nom} (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump ¹⁾ (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.


2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

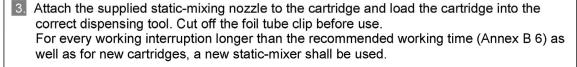
If the bore hole ground is not reached with the brush, a brush extension must be used.

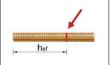
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

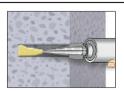
Stemax Injection system RFS-V for concrete

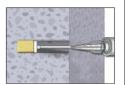
Intended Use

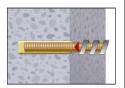

Installation instructions


Annex B 4

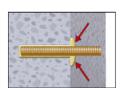
Installation instructions (continuation)



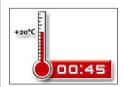

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6 Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Stemax Injection system RFS-V for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Maximum working time and minimum curing time
	RFS-V

Concre	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete 1)			
-10 °C	to	-6°C	90 min²)	24 h ²⁾			
-5 °C	to	-1°C	90 min	14 h			
0 °C	to	+4°C	45 min	7 h			
+5 °C	to	+9°C	25 min	2 h			
+ 10 °C	to	+19°C	15 min	80 min			
+ 20 °C	to	+29°C	6 min	45 min			
+ 30 °C	to	+34°C	4 min	25 min			
+ 35 °C	to	+39°C	2 min	20 min			
	+ 40 °C	;	1,5 min	15 min			
Cartridge temperature +5°C to +40°C				+40°C			

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Table B6: Maximum working time and minimum curing time **RFS-VW**

Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete 1)				
-20 °C	to	-16°C	75 min	24 h				
-15 °C	to	-11°C	55 min	16 h				
-10 °C	to	-6°C	35 min	10 h				
-5 °C	to	-1°C	20 min	5 h				
0 °C	to	+4°C	10 min	2,5 h				
+5 °C	to	+9°C	6 min	80 Min				
+	10 °C		6 min	60 Min				
Cartrido	ge tem	perature	-20°C to +10°C					

¹⁾ In wet concrete the curing time must be doubled.

Stemax Injection system RFS-V for concrete	
Intended Use	Annex B 6
Curing time	

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods											
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	[mm²]	36,6	58	84,3	157	245	353	459	561	
Cross section area A _s [mm²] 36,6 58 84,3 157 245 353 459 Characteristic tension resistance, Steel failure 1)											
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	naracteristic tension resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0	0			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]				1,8	7			
St	ainless steel A4 and HCR, class 80	Y _{Ms,N}	[-]				1,6	3			
CI	haracteristic shear resistance, Steel failure	1)									
E	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ^U Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
e e	Steel, Property class 8.8	$ V^0_{Rks} $	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ħ,	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ^U Rk.s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
₹	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	haracteristic shear resistance, Partial factor	2)									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	.5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]								
St	ainless steel A4 and HCR, class 80	Y _{Ms,V}	[-]				1,3	3			

¹⁾ Values are only valid for the given stress area As. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009. ²⁾ in absence of national regulation

Electronic copy of the ETA by DIBt: ETA-20/1040

Stemax Injection system RFS-V for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

³⁾ Anchor type not part of the ETA

Table C2: C	haracteristic values	for Concrete	cone failure	and Splitting with all kind of action
Anchor size				All Anchor types and sizes
Concrete cone fa	ailure			
Non-cracked con	crete	k _{ucr,N}	[-]	11,0
Cracked concrete	;	k _{cr,N}	[-]	7,7
Edge distance	Edge distance		[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

T	
-20/1	
ETA	
DIBT:	
0 \	
ETAL	
the	
of	
CODV	
tronic	
<u>lec</u>	

Stemax Injection system RFS-V for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

8.06.01-752/20

Z28921.21

Page 18 of European Technical Assessment ETA-20/1040 of 23 March 2021

English translation prepared by DIBt

Table			eristic values of	tension load	s under st	atic ar	nd qua			on			
Ancho Steel fa		e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30
		tic tension resi	stance	N _{Rk,s}	[kN]	A _s • f _{uk} (or see Table C1)							
	Partial factor Y _{Ms,N} [-]						see Table C1						
			concrete failure	1 W 3, W	, .,								
Charac	teris	tic bond resist	ance in non-cracl	ked concrete C	20/25	ı		1		ı			
	1:	40°C/24°C				10	12	12	12	12	11	10	9
Temperature range	II:	80°C/50°C	Dry, wet concrete			7,5	9	9	9	9	8,5	7,5	6,5
n.e.	III:	120°C/72°C		σ.	[N]/ma.ma.21	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
perat	l:	40°C/24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5				•
Tem	II:	80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	N	lo Perfo Asse	ormand ssed	e
·	III:	120°C/72°C				4,0	5,0	5,0	5,0				
Charac	teris	tic bond resist	ance in cracked o	concrete C20/2	5						ı	ı	
4)	l:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
ange	II:	80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range	III:	120°C/72°C		Τρ.	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
perat	<u>l:</u>	40°C/24°C		^τ Rk,cr		4,0	4,0	5,5	5,5	No Performance Assessed			
Tem	II:	80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0				
	III:	120°C/72°C				2,0	2,5	3,0	3,0				
Redukt	ion f	actor ψ ⁰ sus in	cracked and nor	-cracked conc	rete C20/25	•	•	•	•	•			
	l:	40°C/24°C	Dry, wet		0,73								
Temperature range	 :	80°C/50°C	concrete and flooded bore	Ψ^0 sus	[-]	0,65							
Temp	—— III:	120°C/72°C	hole			0,57							
									,02				
				C30/37		1,04							
Increas	sing f	actors for con-	crete	C35/45		1,07							
Ψ_{c}				C40/50		1,08							
				C45/55						09			
				C50/60					1,	10			
		one failure arameter							see Ta	ble C2			
Splittir													
		arameter ı factor							see Ta	ble C2			
		wet concrete				1,0				1,2			
for flooded bore hole		γinst	[-]	,	1	,4		No Performance Assessed					
			RFS-V for concr	ete							Anne	ex C 3	
Perfor Charac			nsion loads under	static and quas	i-static actio	n							

Page 19 of European Technical Assessment ETA-20/1040 of 23 March 2021

English translation prepared by DIBt

Table C4: Characteristic values	s of shea	ar loads	under	static	and qu	asi-sta	tic actio	on		
Anchor size threaded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s • f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γMs,V	[-]				see	Table C	:1		
Ductility factor	k ₇ [-] 1,0									
Steel failure with lever arm	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 •	W _{el} • f _{ul}	(or see	Table C	(1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300)$						300mm)	
Outside diameter of fastener	tside diameter of fastener d _{nom} [mm] 8 10 12			16	20	24	27	30		
Installation factor	γinst	[-]					1,0		_	-

Stemax Injection system RFS-V for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Page 20 of European Technical Assessment ETA-20/1040 of 23 March 2021

English translation prepared by DIBt

Anchor size internal threaded	l anchor rods			RF-M6	RF-M8	RF-M10	RF-M12	RF-M16	RF-M20	
Steel failure ¹⁾		,							_	
Characteristic tension resistance	e, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength class 5.8	and 8.8	γ _{Ms,N}	[-]		•	1	,5			
Characteristic tension resistance Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor		γ _{Ms,N}	[-]			1,87			2,86	
Combined pull-out and concr	ete cone failu	re								
Characteristic bond resistance i	n non-cracked	concret	e C20/25	5						
u l: 40°C/24°C	Dry, wet			12	12	12	12	11	9	
3 II. 80 C/30 C	concrete			9	9	9	9	8,5	6,5	
E	Concrete	τ	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
<u>ဗီ ဗွ် ၂: 40°C/24°C</u>	flooded bore	^τ Rk,ucr	[וא/ווווו]	8,5	8,5	8,5				
្ត៊ែ Ⅱ: 80°C/50°C	hole			6,5	6,5	6,5	No Performance Ass		ssessed	
III: 120°C/72°C	TIOLE			5,0	5,0	5,0				
Characteristic bond resistance i	n cracked con	crete C2	20/25							
l: 40°C/24°C	Day			5,0	5,5	5,5	5,5	5,5	6,5	
II: 80°C/50°C	Dry, wet		FA 1 /	3,5	4,0	4,0	4,0	4,0	4,5	
蓝 岛 III: 120°C/72°C	concrete			2,5	3,0	3,0	3,0	3,0	3,5	
©		^τ Rk,cr	[N/mm²]	4,0	5,5	5,5	,	,		
□ II: 80°C/50°C	flooded bore			3,0	4,0	4,0	No Perfo	ormance A	ssessed	
	hole			2,5	3,0	3,0				
	ced and non-cr	acked c	oncrete C	220/25	,	,				
	Dry, wet					0,	73			
a ab II. 80°C/20°C	concrete and flooded bore	ψ ⁰ sus	[-]			0,	65			
<u>Б</u> III: 120°С/72°С	hole					0,	57			
		C2	5/30			1,	02			
			0/37				04			
Increasing factors for concrete			5/45				07			
Ψc			0/50				80			
		C4	5/55			1,	09			
Concrete cone failure		C5	0/60			1,	10			
Relevant parameter						coo To	able C2			
Splitting failure						300 10	IDIC UZ			
Relevant parameter						SEE TO	able C2			
Installation factor						300 18	IDIC UZ			
for dry and wet concrete		Π				1	.2			
for flooded bore hole		γinst	[-]		1,4		<u> </u>	ormance A	ccaccad	
or needed bote field		L			1,7		1401611	Jilliance /		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For RF-M20 strength class 50 is valid

Stemax Injection system RFS-V for concrete	
Performances	Annex C 5
Characteristic values of tension loads under static and quasi-static action	

Page 21 of European Technical Assessment ETA-20/1040 of 23 March 2021

English translation prepared by DIBt

Table C6: Characteristic	values	of shear	loads	under sta	tic and q	uasi-stat	ic action		
Anchor size for internal threade	ed anch	or rods		RF-M6	RF-M8	RF-M10	RF-M12	RF-M16	RF-M20
Steel failure without lever arm ¹⁾)				l	1			
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,} ∨	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,} ∨	[-]	1,25					
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,} ∨	[-]		2,38				
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γinst	[-]				1,0		
Concrete edge failure									
Effective length of fastener		I _f	[mm]	all min(n '17 an)					min (h _{ef} ; 300mm
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γinst	[-]				1,0		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For RF-M20 strength class 50 is valid

Annex C 6

Page 22 of European Technical Assessment ETA-20/1040 of 23 March 2021

English translation prepared by DIBt

Anchor size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure	• ,	TNI	F1 A12					\ . f '	1)			
Characteristic tension res	istance	N _{Rk,s}	[kN]		T			\s • f _{uk}				
Cross section area		A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,42)				
Combined pull-out and o			1 000/0									
Characteristic bond resist	ance in non-c ⊺	racked cond	rete C20/2	10	12	12	12	12	12	11	10	0.5
### ### ### ### #### #################	Dry, wet			7,5	9	9	9	9	9	8,0	7,0	8,5 6,0
ill: 120°C/72°C	concrete			5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
## ## ## ## ## ## ## ## ## ## ## ## ##	<i>a</i>	^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5	8,5	,	,	,	
ω II: 80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	6,5]	lo Perfo Asse		е
III: 120°C/72°C				4,0	5,0	5,0	5,0	5,0		A330	:55CU	
Characteristic bond resist	ance in crack	ed concrete	C20/25		1							
υ <u>I: 40°C/24°C</u>	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
1: 40 C/24 C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
E		^τ Rk,cr	[N/mm²]	2,0 4,0	2,5 4,0	3,0 5,5	3,0 5,5	3,0 5,5	3,0	3,0	3,5	3,5
ا: 40°C/24°C اا: 80°C/50°C	flooded			2,5	3,0	4,0	4,0	4,0	N	lo Perf	ormand	е
III: 120°C/72°C	bore hole			2,0	2,5	3,0	3,0	3,0	Assessed			
Reduktion factor ψ ⁰ sus in	cracked and	non-cracke	d concrete				-,-					
	Dry, wet							0,73				
nange and see all so control of the	concrete and	ψ ⁰ sus	[-]	0,65								
III: 40°C/24°C	flooded bore hole							0,57				
<u>'</u>		C25	/30					1,02				
		C30						1,04				
Increasing factors for con-	crete	C35	/45					1,07				
$\Psi_{\mathbf{c}}$		C40	/50					1,08				
		C45	/55					1,09				
		C50	/60					1,10				
Concrete cone failure								Table	<u></u>			
Relevant parameter Splitting							See	rable	U2			
Relevant parameter							see	Table	C2			
Installation factor								1000				
for dry and wet concrete				1,2				1	,2			
for flooded bore hole		γinst	[-]	•	•	1,4				lo Perfo Asse		е
1) f _{uk} shall be taken from th 2) in absence of national re		ns of reinforc	ing bars						•			

Stemax Injection system RFS-V for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

English translation prepared by DIBt

Table C8: Characteristic valu	es of shea	r loads u	ınder s	static a	nd qu	asi-sta	tic act	ion			
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm		•					•				
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]			•		1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			•		1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]	1,0								

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Stemax Injection system RFS-V for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Dis	placements	under tension load ¹	(thread	led rod)					
Anchor size thread	led rod		М8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete C20/25 under static and quasi-static action										
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete C	20/25 under	static and quasi-station	action							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05			0,1	05		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	19			0,1	70		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255 0,2			245				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219				0,1	70		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concr	static ac	tion								
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{√∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete 0	220/25 under	static and quasi-statio	action							
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Stemax Injection system RFS-V for concrete	
Performances	Annex C 9
Displacements (threaded rods)	

Table C11: Displacements under tension load ¹⁾ (Internal threaded anchor rod)												
Anchor size Intern	al threaded an	chor rod	RF-M6	RF-M8	RF-M10	RF-M12	RF-M16	RF-M20				
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049				
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119				
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119				
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Cracked concrete C	20/25 under sta	atic and quasi-st	atic action									
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,090			0,070						
l: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170						
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219									
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245						

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C12: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Inte	rnal threaded an	chor rod	RF-M6	RF-M8	RF-M10	RF-M12	RF-M16	RF-M20	
Non-cracked and cracked concrete C20/25 under static and quasi-static action									
All temperature	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-factor }\cdot V;$

Stemax Injection system RFS-V for concrete	
Performances Displacements (Internal threaded anchor rod)	Annex C 10

Table C13: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
range I: 40°C/24°C	$\delta_{\text{N}\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range II: 80°C/50°C	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181		
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1							
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,0	90				0,070				
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170				
range II: 80°C/50°C			0,2	255				0,245				
		219				0,170						
range III: 120°C/72°C $\delta_{N\infty}$ -factor [mm/(N/mm²)]				0,255 0,245								

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacement under shear load¹⁾ (rebar) Table C14:

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} - factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25 und	ler static and qu	asi-stat	ic actior	1						
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{∨∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Stemax Injection system RFS-V for concrete	
Performances	Annex C 11
Displacements (rebar)	

Table	C15		eristic values of ance category (s under se	eismic	action	1						
Ancho	r siz	e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30	
Steel f	ailure)												
Charac	terist	tic tension resi	stance	N _{Rk,s,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$				
Partial	facto	or	$\gamma_{Ms,N}$	[-]				see Ta	ble C1					
		•	concrete failure											
Chara	cteris	tic bond resista	ance in non-crack	ed and cracke	d concrete	C20/25								
	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5	
Dry, v			Dry, wet concrete			1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
Temperature range	III:	120°C/72°C		TDI O1	To:	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
perat	l:	40°C/24°C		^τ Rk,eq,C1	[18/11111]	2,5	2,5	3,7	3,7					
Tem _l	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	N	o Perfo Asse	ormand ssed	e	
						1,3	1,6	2,0	2,0					
Increa	sing f	actors for cond	crete ψ_{C}	C25/30 to C5	0/60	1,0								
Install	ation	factor												
for dry	and '	wet concrete				1,0				1,2				
for floo	for flooded bore hole			γ inst	[-]		1	4		N	o Perfo Asse	ormand ssed	e	

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod	M8	M10	M12	M16	M20	M24	M27	M30				
Steel failure without lever arm												
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}									
Partial factor	[-]				see	Table C	1					
Factor for annular gap	[-]	0,5 (1,0)1)										

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Stemax Injection system RFS-V for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 12

Table C17: Characteristic values (performance categor		loads u	nder s	eismic	actio	n					
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure											
Characteristic tension resistance $N_{Rk,s,eq,C1}$ [kN] $1,0 \cdot A_s \cdot f_{uk}^{1}$											
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,N}	[-]					1,4 ²⁾				
Combined pull-out and concrete fails	ure										
Characteristic bond resistance in non-c	racked and cr	acked co	ncrete	C20/2							
<u>l: 40°C/24°C</u> Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
II: 80°C/50°C concrete			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
🖁 👼 : 120°C/72°C	TDI: 04	[N/m	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
I: 40°C/24°C flooded	^τ Rk, eq,C1	m²]	2,5	2,5	3,7	3,7	3,7		lo Perfo	ormano	ا م
bore hole	•		1,6	1,9	2,7	2,7	2,7	'`	Asse		.
III: 120°C/72°C Bote Hole			1,3	1,6	2,0	2,0	2,0		/ 1000		
Increasing factors for concrete ψ_{C}	50/60					1,0					
Installation factor											
for dry and wet concrete			1,2				1	,2			
for flooded bore hole	γ _{inst}	[-]			1,4			N	lo Perfo Asse		е

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C18: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]				0,3	5 • A _s •	f _{uk} ²⁾			
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor $\gamma_{Ms,V}$ [-]							1,5 ²⁾				
Factor for annular gap	[-]	0,5 (1,0)3)									

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Stemax Injection system RFS-V for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 13

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required