

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/1282 of 9 March 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Friulsider Injection system KEM ES for concrete

Bonded fastener for use in concrete

Friulsider S.p.A. Via Trieste 1 33048 SAN. GIOVANNI AL NATISONE ITALIEN

Friulsider S.p.A., Plant 1 Germany

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-20/1282

Page 2 of 24 | 9 March 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/1282

Page 3 of 24 | 9 March 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Friulsider Injection System KEM ES for concrete" is a bonded anchor consisting of a cartridge with injection KEM ES and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-20/1282

Page 4 of 24 | 9 March 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

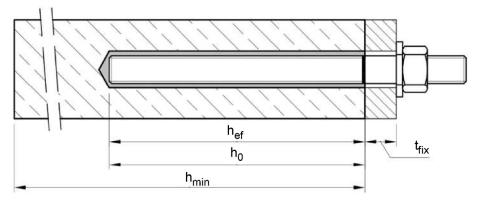
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

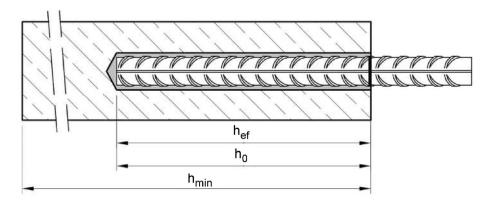
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 March 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider


Installation threaded rod M8 up to M30

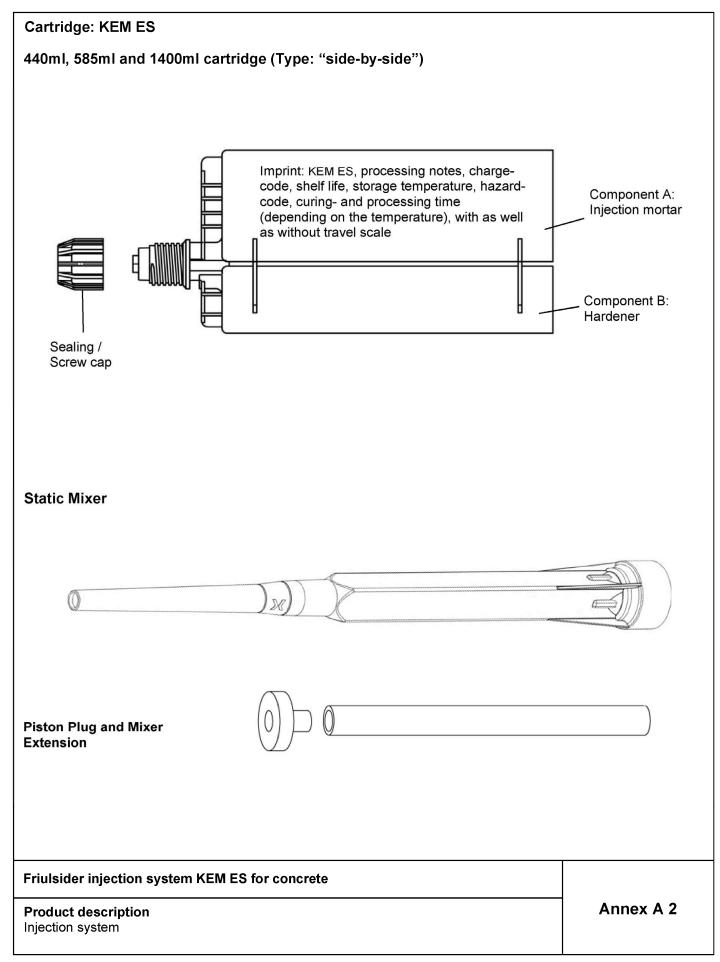
prepositioned installation or

push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

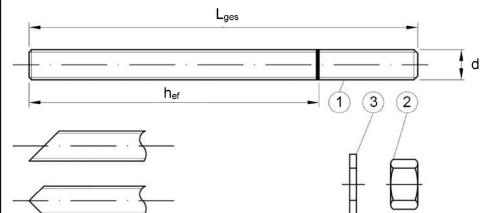
 t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth


 h_0 = depth of drill hole

 h_{min} = minimum thickness of member

Friulsider injection system KEM ES for concrete	
Product description Installed condition	Annex A 1


English translation prepared by DIBt

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Friulsider injection system KEM ES for concrete

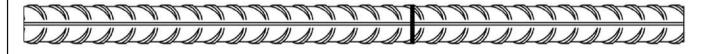
Product description
Threaded rod

Annex A 3

Electronic copy of the ETA by DIBt: ETA-20/1282

English translation prepared by DIBt

Table A1: Materials								
	Designation	Material						
		acc. to EN 10087:1998						
		μm acc. to EN ISO		2:1999 or 1:2009 and EN ISO 10684:	2004 40:2000 or			
		5 μm acc. to EN ISO			2004+AC.2009 01			
-		Property class	., .	Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture		
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/mm ²	A ₅ > 8%		
1	Threaded rod		4.8	f _{uk} = 400 N/mm²	f _{yk} = 320 N/mm²	A ₅ > 8%		
		acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%		
		EN 130 898-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%		
			8.8	f _{uk} = 800 N/mm²	f _{yk} = 640 N/mm ²	A ₅ > 8%		
		acc. to	4	for anchor rod class 4.6 o	r 4.8			
2	Hexagon nut	EN ISO 898-2:2012	5	for anchor rod class 5.6 or 5.8				
			8	for anchor rod class 8.8				
3	Washer			galvanised or sherardized EN ISO 7089:2000, EN ISC	7093:2000 or EN ISO 7	094:2000)		
				1 / 1.4567 or 1.4541, acc. t				
				1 / 1.4362 or 1.4578, acc. t				
High	n corrosion resistand	ce steel (Material 1.45	29 o	r 1.4565, acc. to EN 10088	· · · · · · · · · · · · · · · · · · ·	Ter e e		
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture		
1	Threaded rod ¹⁾²⁾	acc. to	50	f _{uk} = 500 N/mm ²	f _{vk} = 210 N/mm ²	A ₅ ≥ 8%		
'	Timedaea roa	EN ISO 3506-		f _{uk} = 700 N/mm²	f _{vk} = 450 N/mm²	A ₅ > 8%		
		1:2009		f _{uk} = 800 N/mm²	f _{yk} = 600 N/mm²	A ₅ > 8%		
		acc. to	50	for anchor rod class 50		-		
2	Hexagon nut 1)2)	EN ISO 3506-	70	for anchor rod class 70				
	1:2009 80 for anchor rod class 80							
A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014 A4: Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014								
3	Washer			-04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1		:2014		
				1.4565, acc. to EN 10066-1 EN ISO 7089:2000, EN ISC		094:2000)		


¹⁾ Property class 70 or 80 for anchor s and hexagon nuts up to M24

Friulsider injection system KEM ES for concrete	
Product description Materials threaded rod	Annex A 4

²⁾ Property class 80 only for stainless steel A4 and HCR

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

	TARIO / LEI III ALGITATO						
Part	Designation	Material					
Reinf	orcing bars						
1	EN 1992_1_1.2004+4(2010 Anney (Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Electronic copy of the ETA by DIBt: ETA-20/1282

Product description
Materials reinforcing bar

Annex A 5

8.06.01-770/20

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +35 °C and max short term temperature +60 °C)
- III: 40 °C to +70 °C (max long term temperature +43 °C and max short term temperature +70 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

Electronic copy of the ETA by DIBt: ETA-20/1282

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Friulsider injection system KEM ES for concrete

Intended Use
Specifications

Annex B 1

Table B1: Installation parameters for threaded rod											
Anchor size				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	t	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole dia	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective and advantage of		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	it deptil	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in	Prepositioned installation d _f		[mm]	9	12	14	18	22	26	30	33
the fixture	Push through installation d _f		[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	ment	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀					
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	nce	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Anchor size			Ø 8¹)	Ø 10¹)	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Enective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			$h_{ef} + 2d_0$						
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Electronic copy of the ETA by DIBt: ETA-20/1282

Friulsider injection system KEM ES for concrete Annex B 2 **Intended Use** Installation parameters

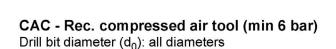
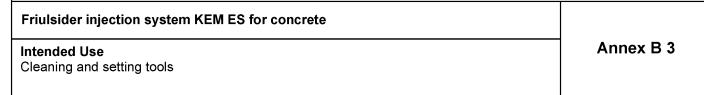


Table B3:	Parame	Parameter cleaning and setting tools									
			-998-	************	and the state of t						
Threaded Rod	Rebar	d ₀ Drill bit - Ø HD, HDB, CD	1	h - Ø	d _{b,min} min. Brush - Ø	Piston Installation direction and uplug piston plug					
[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1		
M8	8	10	RB10	11,5	10,5						
M10	8 / 10	12	RB12	13,5	12,5		No pluo	required			
M12	10 / 12	14	RB14	15,5	14,5		ino piug	required			
	12	16	RB16	17,5	16,5						
M16	14	18	RB18	20,0	18,5	VS18					
	16	20	RB20	22,0	20,5	VS20					
M20		22	RB22	24,0	22,5	VS22					
	20	25	RB25	27,0	25,5	VS25	,	h _{ef} >			
M24		28	RB28	30,0	28,5	VS28	h _{ef} >	i	all		
M27		30	RB30	31,8	30,5	VS30	250 mm	250 mm			
	24 / 25	32	RB32	34,0	32,5	VS32					
M30	28	35	RB35	37,0	35,5	VS35]				
	32	40	RB40	43,5	40,5	VS40					

MAC - Hand pump (volume 750 ml)

Drill bit diameter (d_0): up to 20 mm Drill hole depth (h_0): < 10 d_s Only in non-cracked concrete



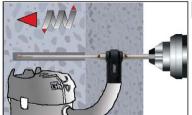
HDB - Hollow drill bit system

Drill bit diameter (d₀): all diameters

The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa <u>and</u> flow rate of minimum 150 m³/h (42 l/s).

Installation instructions

Drilling of the bore hole



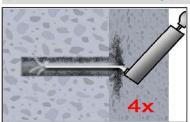
Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or B2).

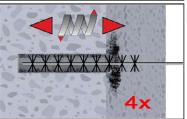
Proceed with Step 2.

In case of aborted drill hole, the drill hole shall be filled with mortar.

Hollow drill bit system (HDB) (see Annex B 3)

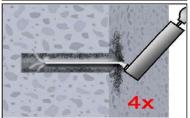

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or B2). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.

In case of aborted drill hole, the drill hole shall be filled with mortar.


Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for dry and wet bore hole with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10 d_{nom}$ (uncracked concrete only!)

used.



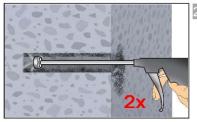
Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B 3) a minimum of four times until return air stream is free of noticeable dust.

Check brush diameter (Table B3). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of four times in a twisting motion.

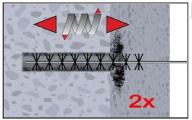
If the bore hole ground is not reached with the brush, a brush extension must be

Finally blow the hole clean again with handpump (Annex B 3) a minimum of four times until return air stream is free of noticeable dust.

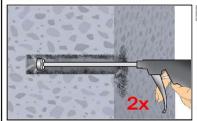
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

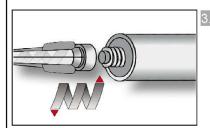

Friulsider injection system KEM ES for concrete

Intended Use
Installation instructions


Annex B 4

Installation instructions (continuation)

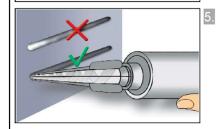

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete


Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

Check brush diameter (Table B3). Brush the hole with an appropriate sized wire brush > $d_{b,min}$ (Table B3) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).



Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.



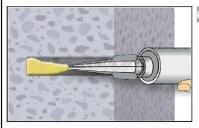
Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.

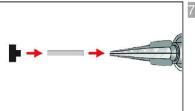
Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

Friulsider injection system KEM ES for concrete

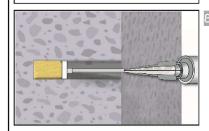

Intended Use

Electronic copy of the ETA by DIBt: ETA-20/1282

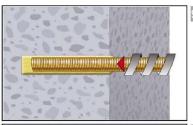

Installation instructions (continuation)

Annex B 5

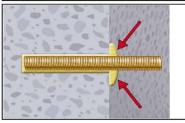
Installation instructions (continuation)



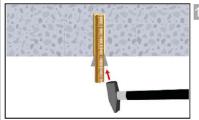
Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B4.


Piston plugs shall be used according to Table B3 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.


Insert piston plug to back of the hole and inject adhesive. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used

During injection the piston plug is naturally pushed out of the borehole by the back pressure of the mortar. Observe the gel-/ working times given in Table B4.



Push the fixing element into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment mark has reached the surface level.

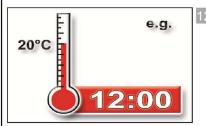
The anchor shall be free of dirt, grease, oil or other foreign material.

After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed.

11. For overhead application the anchor rod shall be fixed (e.g. wedges) until the mortar has started to harden.

Friulsider injection	system KEM	ES for concrete

Intended Use


Electronic copy of the ETA by DIBt: ETA-20/1282

Installation instructions (continuation)

Annex B 6

Installation instructions (continuation)

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).

After full curing, the add-on part can be installed with up to the max. torque (Table B1) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Table B4: Maximum working time and minimum curing time

Concrete temperature		erature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+ 5 °C	to	+ 9 °C	80 min	60 h	120 h
+ 10 °C	to	+ 14 °C	60 min	48 h	96 h
+ 15 °C	to	+ 19 °C	40 min	24 h	48 h
+ 20 °C	to	+ 24 °C	30 min	12 h	24 h
+ 25 °C	to	+ 34 °C	12 min	10 h	20 h
+ 35 °C	to	+ 39 °C	8 min	7 h	14 h
+4(0 °C		8 min	4 h	8 h
Cartridge temperature				+5°C to +40°C	

Friulsider injection system KEM ES for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 7

Cross section area As Imm² 36,6 58 84,3 157 245 353 459 556	T	Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods											
Steel Property class 4 & and 4 & NRK, RNS NRK, RNS 15 (13) 23 (21) 34 63 98 141 184 22 25 (16) Property class 5 & and 5 & NRK, RNS RNS 18 (17) 29 (27) 42 78 122 176 230 28 25 (16) RNS, RNS RNS 18 19 (17) 29 (27) 42 78 122 176 230 28 25 (16) RNS, RNS 18 29 (27) 46 (43) 67 125 196 282 368 44 35 (16) RNS, RNS RNS RNS 18 29 42 79 123 177 230 28 25 (16) RNS, RNS RNS 18 29 42 79 123 177 230 28 25 (16) RNS, RNS	Si	ze			M8	M10	M12	M16	M20	M24	M27	M30	
Steel Property class 4.6 and 4.8 NRks Steel Property class 5.6 and 5.8 NRks NRks Steel Property class 5.6 and 5.8 NRks NRks Steel Representation NRks Stainless 5.8 NRks NRks Stainless 5.8 NRks NRks Stainless 5.8 NRks	Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561	
Steel, Property class 5.6 and 5.8 N _{Rk,s} KN 18 (17) 29 (27) 42 78 122 176 230 28 28 28 29 24 79 125 196 282 368 44 36 36 36 36 36 36 36	Cł	naracteristic tension resistance, Steel failu	re 1)	•	•				•	•			
Steel Property class 8.8 NRk,s KN 29 (27) 46 (43) 67 125 196 282 368 44 44 44 44 45 45 45 4	St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Stainless steel A2, A4 and HCR, class 50 N _{Rk,8} (kN) 18 29 42 79 123 177 230 28 Stainless steel A2, A4 and HCR, class 80 N _{Rk,8} (kN) 26 41 59 110 171 247 -30 -3 Characteristic tension resistance, Partial factor 2? Steel, Property class 4.6 and 5.6 Y _{Ms,N} (F) 1 2,0 1,5 1,8 1,1 1,8 1,8 1,1 1,8 1,8 1,1 1,8 1,8 1,1 1,6 1,6 1,6	St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
Stainless steel A2, A4 and HCR, class 70 N _{Rk,8} [kN] 26 41 59 110 171 247 -30 -30 -30	St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
Stainless steel A4 and HCR, class 80 N _{Rk,s} [kN] 29 46 67 126 196 282 -3) -3 -3	St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281	
Steel Property class 4.6 and 5.6 Y _{MS,N} [-] 2,0	St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)	
Steel Property class 4.6 and 5.6 YMs,N [-] 2,0	St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)	
Steel Property class 4.8, 5.8 and 8.8 YMs,N [-] 2,86	Cł	naracteristic tension resistance, Partial fac	tor ²⁾										
Stainless steel A2, A4 and HCR, class 50 Y _{Ms,N} [-] 2,86	St	eel, Property class 4.6 and 5.6	$\gamma_{Ms,N}$	[-]				2,0)				
Stainless steel A2, A4 and HCR, class 70 Y _{Ms,N} [-] 1,87	St	eel, Property class 4.8, 5.8 and 8.8	$\gamma_{Ms,N}$	[-]				1,	5				
Stainless steel AA and HCR, class 80 Y _{Ms,N} [-] 1,6	St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6				
Steel, Property class 4.6 and 4.8 V ⁰ _{Rk,s} [kN] 9 (8) 14 (13) 20 38 59 85 110 13 15 15 15 15 15 15 15	St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87								
Steel, Property class 4.6 and 4.8 VORK, seed Fig.	St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6								
Steel, Property class 5.6 and 5.8 V ⁰ _{Rk,s} [kN] 11 (10) 17 (16) 25 47 74 106 138 16	Cł	naracteristic shear resistance, Steel failure											
Steel, Property class 5.6 and 5.8 V ⁰ _{Rk,s} [kN] 11 (10) 17 (16) 25 47 74 106 138 16	_	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
Steel, Property class 8.8 V ⁰ _{Rk,s} [kN] 15 (13) 23 (21) 34 63 98 141 184 22		Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168	
Stainless steel A4 and HCR, class 80 $V^0_{Rk,s}$ [kN] 15 23 34 63 98 141 -3 -3 -3 Steel, Property class 4.6 and 4.8 $M^0_{Rk,s}$ [Nm] 15 (13) 30 (27) 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 $M^0_{Rk,s}$ [Nm] 19 (16) 37 (33) 65 166 324 560 833 113 Steel, Property class 8.8 $M^0_{Rk,s}$ [Nm] 30 (26) 60 (53) 105 266 519 896 1333 173 Stainless steel A2, A4 and HCR, class 50 $M^0_{Rk,s}$ [Nm] 19 37 66 167 325 561 832 113 Stainless steel A2, A4 and HCR, class 70 $M^0_{Rk,s}$ [Nm] 26 52 92 232 454 784 -3 -3 -3 Stainless steel A4 and HCR, class 80 $M^0_{Rk,s}$ [Nm] 30 59 105 266 519 896 -3 -3 Stainless steel A5, A6 and 5.6 $Y_{Ms,V}$ [-] 1,67 Steel, Property class 4.8, 5.8 and 8.8 $Y_{Ms,V}$ [-] 1,25 Stainless steel A2, A4 and HCR, class 70 $Y_{Ms,V}$ [-] 1,56	eve	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Stainless steel A4 and HCR, class 80 $V^0_{Rk,s}$ [kN] 15 23 34 63 98 141 -3 -3 -3 Steel, Property class 4.6 and 4.8 $M^0_{Rk,s}$ [Nm] 15 (13) 30 (27) 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 $M^0_{Rk,s}$ [Nm] 19 (16) 37 (33) 65 166 324 560 833 113 Steel, Property class 8.8 $M^0_{Rk,s}$ [Nm] 30 (26) 60 (53) 105 266 519 896 1333 173 Stainless steel A2, A4 and HCR, class 50 $M^0_{Rk,s}$ [Nm] 19 37 66 167 325 561 832 113 Stainless steel A2, A4 and HCR, class 70 $M^0_{Rk,s}$ [Nm] 26 52 92 232 454 784 -3 -3 -3 Stainless steel A4 and HCR, class 80 $M^0_{Rk,s}$ [Nm] 30 59 105 266 519 896 -3 -3 Stainless steel A5, A6 and 5.6 $Y_{Ms,V}$ [-] 1,67 Steel, Property class 4.8, 5.8 and 8.8 $Y_{Ms,V}$ [-] 1,25 Stainless steel A2, A4 and HCR, class 70 $Y_{Ms,V}$ [-] 1,56	int i	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140	
Stainless steel A4 and HCR, class 80 $V^0_{Rk,s}$ [kN] 15 23 34 63 98 141 -3 -3 -3 Steel, Property class 4.6 and 4.8 $M^0_{Rk,s}$ [Nm] 15 (13) 30 (27) 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 $M^0_{Rk,s}$ [Nm] 19 (16) 37 (33) 65 166 324 560 833 113 Steel, Property class 8.8 $M^0_{Rk,s}$ [Nm] 30 (26) 60 (53) 105 266 519 896 1333 173 Stainless steel A2, A4 and HCR, class 50 $M^0_{Rk,s}$ [Nm] 19 37 66 167 325 561 832 113 Stainless steel A2, A4 and HCR, class 70 $M^0_{Rk,s}$ [Nm] 26 52 92 232 454 784 -3 -3 -3 Stainless steel A4 and HCR, class 80 $M^0_{Rk,s}$ [Nm] 30 59 105 266 519 896 -3 -3 Stainless steel A5, A6 and 5.6 $Y_{Ms,V}$ [-] 1,67 Steel, Property class 4.8, 5.8 and 8.8 $Y_{Ms,V}$ [-] 1,25 Stainless steel A2, A4 and HCR, class 70 $Y_{Ms,V}$ [-] 1,56	Vitho	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)	
Steel, Property class 4.6 and 4.8 M ⁰ _{Rk,s} [Nm] 15 (13) 30 (27) 52 133 260 449 666 90 90 90 90 90 90	>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)	
Steel, Property class 5.6 and 5.8 M ⁰ _{Rk,s} [Nm] 19 (16) 37 (33) 65 166 324 560 833 113 174 115 1		Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
$\frac{1}{2} = \frac{1}{2} $	Ш	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
$\frac{\Phi}{S} = \begin{cases} \text{Stainless steel A2, A4 and HCR, class 50} & M^0_{Rk,s} & [Nm] & 19 & 37 & 66 & 167 & 325 & 561 & 832 & 113 \\ \hline \text{Stainless steel A2, A4 and HCR, class 70} & M^0_{Rk,s} & [Nm] & 26 & 52 & 92 & 232 & 454 & 784 & -^3 & -^3 \text{Stainless steel A4 and HCR, class 80} & M^0_{Rk,s} & [Nm] & 30 & 59 & 105 & 266 & 519 & 896 & -^3 & -^3 \text{Characteristic shear resistance, Partial factor} \] Steel, Property class 4.6 and 5.6 & \gamma_{Ms,V} [-] & 1,67 \text{Steel, Property class 4.8, 5.8 and 8.8} & \gamma_{Ms,V} [-] & 1,25 \text{Stainless steel A2, A4 and HCR, class 50} & \gamma_{Ms,V} [-] & 2,38 \text{Stainless steel A2, A4 and HCR, class 70} & \gamma_{Ms,V} [-] & 1,56 \text{Table 1.56}$	ē	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797	
Stainless steel A4 and HCR, class 80 $M_{Rk,s}$ [Nm] 30 59 105 266 519 896 -3 -3 Characteristic shear resistance, Partial factor 2) Steel, Property class 4.6 and 5.6 $\gamma_{Ms,V}$ [-] 1,67 Steel, Property class 4.8, 5.8 and 8.8 $\gamma_{Ms,V}$ [-] 1,25 Stainless steel A2, A4 and HCR, class 50 $\gamma_{Ms,V}$ [-] 2,38 Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,V}$ [-] 1,56	h h	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk.s	[Nm]	19	37	66	167	325	561	832	1125	
Stainless steel A4 and HCR, class 80 $M_{Rk,s}$ [Nm] 30 59 105 266 519 896 -3 -3 Characteristic shear resistance, Partial factor 2) Steel, Property class 4.6 and 5.6 $\gamma_{Ms,V}$ [-] 1,67 Steel, Property class 4.8, 5.8 and 8.8 $\gamma_{Ms,V}$ [-] 1,25 Stainless steel A2, A4 and HCR, class 50 $\gamma_{Ms,V}$ [-] 2,38 Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,V}$ [-] 1,56	₹	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)	
Characteristic shear resistance, Partial factor 2 Steel, Property class 4.6 and 5.6 $\gamma_{Ms,V}$ [-] 1,67 Steel, Property class 4.8, 5.8 and 8.8 $\gamma_{Ms,V}$ [-] 1,25 Stainless steel A2, A4 and HCR, class 50 $\gamma_{Ms,V}$ [-] 2,38 Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,V}$ [-] 1,56		Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)	
Steel, Property class 4.8, 5.8 and 8.8 $\gamma_{Ms,V}$ [-] 1,25 Stainless steel A2, A4 and HCR, class 50 $\gamma_{Ms,V}$ [-] 2,38 Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,V}$ [-] 1,56	Cł	naracteristic shear resistance, Partial facto	r ²⁾										
Stainless steel A2, A4 and HCR, class 50 $\gamma_{Ms,V}$ [-] 2,38 Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,V}$ [-] 1,56	St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7				
Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,V}$ [-] 1,56	St	eel, Property class 4.8, 5.8 and 8.8	$\gamma_{Ms,V}$	[-]				1,2	:5				
0.11	St	ainless steel A2, A4 and HCR, class 50	$\gamma_{Ms,V}$	[-]				2,3	8				
Stainless steel A4 and HCR, class 80 $\gamma_{Ms,V}$ [-] 1,33	St	ainless steel A2, A4 and HCR, class 70	$\gamma_{Ms,V}$	[-]				1,5	6				
	St	ainless steel A4 and HCR, class 80	$\gamma_{Ms,V}$	[-]				1,3	3				

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009. ²⁾ in absence of national regulation

³⁾ Anchor type not part of the ETA

Friulsider injection system KEM ES for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

English translation prepared by DIBt

Table C2:	Characteristic values for Concrete cone action	e failure and Splitting with all kind of
Anchor		All Anchor type and sizes
Concrete con	e failure	

			All Anchor type and sizes
ailure			
crete	k _{ucr,N}	[-]	11,0
	k _{cr,N}	[-]	7,7
	c _{cr,N}	[mm]	1,5 h _{ef}
	s _{cr,N}	[mm]	2 c _{cr,N}
h/h _{ef} ≥ 2,0			1,0 h _{ef}
2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
h/h _{ef} ≤ 1,3			2,4 h _{ef}
	s _{cr,sp}	[mm]	2 c _{cr,sp}
	2,0 > h/h _{ef} > 1,3	crete $k_{ucr,N}$ $k_{cr,N}$ $c_{cr,N}$ $s_{cr,N}$ $s_{cr,N}$ $s_{cr,N}$ $h/h_{ef} \ge 2.0$ $2.0 > h/h_{ef} > 1.3$ $c_{cr,sp}$	crete $k_{ucr,N}$ [-] $k_{cr,N}$ [-] $c_{cr,N}$ [mm] $c_{cr,N}$ [mm] $c_{cr,N}$ [mm] $c_{cr,N}$ [mm] $c_{cr,N}$ [mm]

Friulsider injection system KEM ES for concrete Annex C 2 **Performances** Characteristic values for Concrete cone failure and Splitting with all kind of action

English translation prepared by DIBt

Ancho	r size threaded re	od			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure											
Charac	teristic tension re	sistance	$N_{Rk,s}$	[kN]	A _s ⋅ f _{uk} (or see Table C1)							
Partial	factor		$\gamma_{Ms,N}$	[-]				see Ta	ble C1			
Combi	ned pull-out and	concrete failure	•									
Charac	teristic bond resis	tance in non-cracl	ked concrete	C20/25		•	•					
ature	Dry, wet				15	15	15	14	14	13	13	13
Temperature range	II: 60°C/35°C	concrete and flooded bore	τ _{Rk,ucr} [N/m	[N/mm²]	10	10	10	9,5	9,5	9,0	9,0	9,0
	III: 70°C/43°C	hole			7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Charac	teristic bond resis	tance in cracked o	concrete C20	/25			T					
말 I: 40°C/	l: 40°C/24°C	Dry, wet			7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
Temperature range	II: 60°C/35°C concrete and flooded bore	τ _{Rk,cr}	[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5	
Ter	III: 70°C/43°C	hala			3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0
Reduct	tion factor ψ ⁰ sus in	cracked and non-	-cracked con	crete C20/25								
ture	l: 40°C/24°C	Dry, wet			0,60							
Temperature range	II: 60°C/35°C	concrete and flooded bore	Ψ ⁰ sus	[-]	0,60							
Ten	III: 70°C/43°C	hole			0,60							
			C25/30						02			
			C30/37						04			
	sing factors for cor	ncrete	C35/45		1,07							
Ψ_{C}			C40/50		1,08							
			C45/55		1,09							
			C50/60					1,	10			
	ete cone failure							225 T-	ble CC			
Splittir	nt parameter							see 12	ble C2			
	nt parameter							see Ta	ble C2			
	ation factor							000 10	1010 02			
	and wet concrete	or flooded bore	γinst	[-]				1	,4			

Friulsider injection system KEM ES for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 3

Table C4: Characteristic va	lues of	shear	loads	s unde	er stati	ic and	quas	i-statio	action	
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		•			•					
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	γMs,V	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} • f _{ul}	(or see	Table C	51)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	$\gamma_{Ms,V}$	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	_n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

Friulsider injection system KEM ES for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

MICHO	r size reinforcii	ng bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Steel f		. J			Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 3											
Charac	cteristic tension r	esistance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{1}$											
Cross	section area		As	[mm²]	50	79	113	154	201	314	452	491	616	804		
Partial	factor		γ _{Ms,N}	[-]					1,	4 ²⁾						
Comb	ined pull-out an	d concrete fail														
Charac	cteristic bond res	sistance in non-c	racked conc	rete C20/2	5		ı				1	1				
ture	I: 40°C/24°C	Dry, wet			14	14	14	12	12	12	12	11	11	11		
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5		
Ten	III: 70°C/43°C	hole			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0		
Charac	cteristic bond res	istance in crack	ed concrete	C20/25												
ture	I: 40°C/24°C	Dry, wet			6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5		
Temperature range	II: 60°C/35°C	concrete and flooded bore	τ _{Rk,cr} [^τ Rk,cr	[N/mm²]	4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5	
Ten	Hole			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5			
Reduc	tion factor ψ ⁰ sus	in cracked and r	non-cracked	concrete (20/25											
	I: 40°C/24°C							0,60								
ı ⊉	1. 40 C/24 C	Dry, wet							U,	60						
nperatu ange	II: 60°C/35°C	Dry, wet concrete and flooded bore	Ψ^0 sus	[-]					·	60						
Temperature range		concrete and	Ψ ⁰ sus	[-]					0,							
Temperatu	II: 60°C/35°C	concrete and flooded bore	C25/	30					0, 0, 1,	60 60 02						
	II: 60°C/35°C III: 70°C/43°C	concrete and flooded bore hole	C25/	/30 /37					0, 0, 1,	60 60 02 04						
Increas	II: 60°C/35°C	concrete and flooded bore hole	C25/ C30/ C35/	/30 /37 /45					0, 0, 1, 1,	60 60 02 04 07						
	II: 60°C/35°C III: 70°C/43°C	concrete and flooded bore hole	C25/ C30/ C35/ C40/	/30 /37 /45 /50					0, 0, 1, 1, 1,	60 60 02 04 07						
Increas	II: 60°C/35°C III: 70°C/43°C	concrete and flooded bore hole	C25/ C30/ C35/ C40/ C45/	730 737 745 750					0, 0, 1, 1, 1,	60 60 02 04 07 08 09						
Increas	II: 60°C/35°C III: 70°C/43°C	concrete and flooded bore hole	C25/ C30/ C35/ C40/	730 737 745 750					0, 0, 1, 1, 1,	60 60 02 04 07						
Increas Ψ _c	II: 60°C/35°C III: 70°C/43°C sing factors for c	concrete and flooded bore hole	C25/ C30/ C35/ C40/ C45/	730 737 745 750					0, 0, 1, 1, 1, 1,	60 60 02 04 07 08 09	2					
Increas Ψ _c	II: 60°C/35°C III: 70°C/43°C sing factors for content parameter	concrete and flooded bore hole	C25/ C30/ C35/ C40/ C45/	730 737 745 750					0, 0, 1, 1, 1, 1,	60 60 02 04 07 08 09	2					
Increas Ψc Concr Releva Splittin	II: 60°C/35°C III: 70°C/43°C sing factors for content parameter	concrete and flooded bore hole	C25/ C30/ C35/ C40/ C45/	730 737 745 750					0, 0, 1, 1, 1, 1, 1, see Ta	60 60 02 04 07 08 09						
Increas Ψc Concr Releva Splittin	II: 60°C/35°C III: 70°C/43°C sing factors for content parameter and pa	concrete and flooded bore hole	C25/ C30/ C35/ C40/ C45/	730 737 745 750					0, 0, 1, 1, 1, 1, 1, see Ta	60 60 02 04 07 08 09 10						

²⁾ in absence of national regulation

Friulsider injection system KEM ES for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Table C6: Characteristic	values of	shear I	oads	und	er st	atic	and	quas	si-sta	ntic ac	tion	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•								
Characteristic shear resistance	V ⁰ Rk,s	[kN]	0,5 • A _s • f _{uk} 1)									
Cross section area	A _s	[mm²]	50 79 113 154 201 314 452 491 616				804					
Partial factor	γ _{Ms,V}	[-]	1,52)									
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm	·		•									
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2	W _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•				1,5 ²⁾				
Concrete pry-out failure		•	•									
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure	·											
Effective length of fastener	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)									
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]	1,0									

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Friulsider injection system KEM ES for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6
Characteristic values of shear loads under static and quasi-static action	

Table C7: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded re	М8	M10	M12	M16	M20	M24	M27	M30		
Non-cracked concrete	under static a	and quasi-static a	action							
Temperature range l:	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range II: 60°C/35°C	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077
Cracked concrete unde	r static and c	ιμαsi-static actio	n							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
່60°C/35°Cັ	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121
70°C/43°C	δ_{N^∞} -factor	[mm/(N/mm²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor } \cdot \tau;$

Table C8: Displacements under shear load²⁾ (threaded rod)

Anchor size threade	M8	M10	M12	M16	M20	M24	M27	M30		
Non-cracked and cracked concrete under static and quasi-static action										
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Friulsider injection system KEM ES for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C 7

Table C9: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfe		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Non-cracked concrete under static and quasi-static action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range l: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Cracked concrete	under statio	and quasi-stat	ic actio	n								
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range l: 40°C/24°C	δ_{N^∞} -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature range II: 60°C/35°C	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
	δ_{N^∞} -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperature range III: 70°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load²⁾ (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked and cracked concrete under static and quasi-static action												
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{ m V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Electronic copy of the ETA by DIBt: ETA-20/1282

Friulsider injection system KEM ES for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 8

8.06.01-770/20 Z23610.21