

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0168 of 1 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Capsule Adhesive Anchor W-VPZ

Bonded anchor for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 1

15 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-21/0168

Page 2 of 15 | 1 June 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0168

Page 3 of 15 | 1 June 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Capsule Adhesive Anchor W-VPZ is a bonded fastener consisting of a glass capsule W-VPZ and a threaded rod W-VD-A according to Annex A1.

The glass capsule W-VPZ is placed in the hole and the threaded rod W-VD-A is driven by machine as specified in Annex B4.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 to C2, B2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C3
Displacements under short-term and long-term loading	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0168

Page 4 of 15 | 1 June 2021

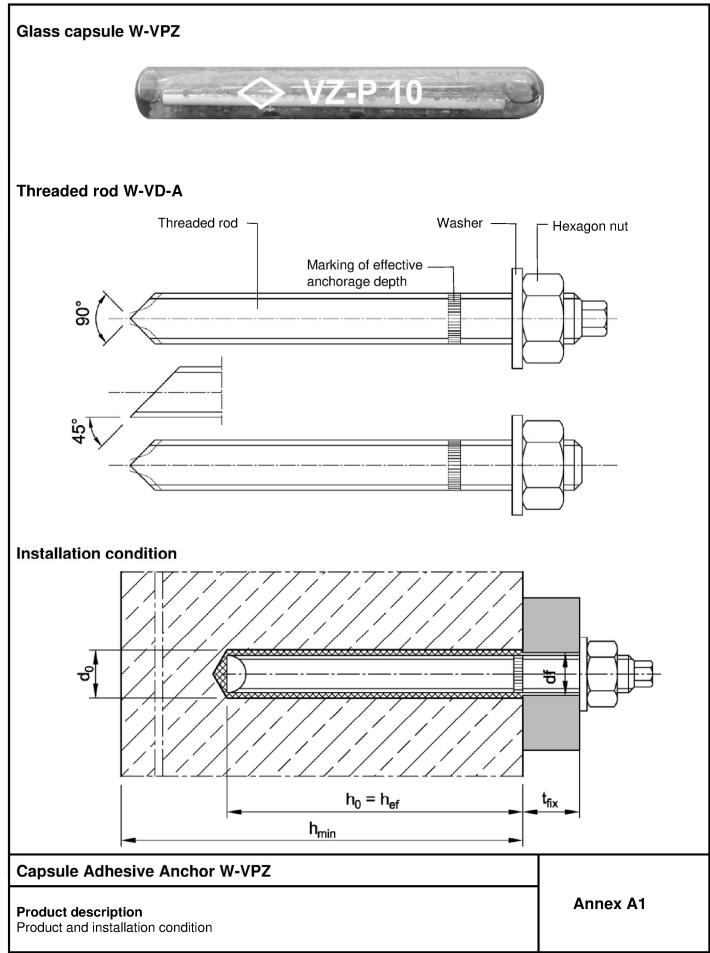
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

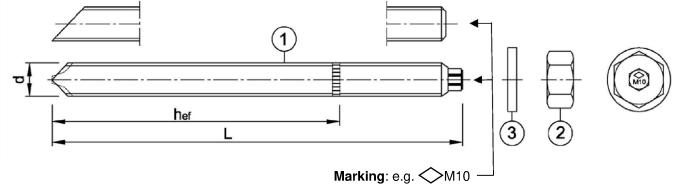
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 1 June 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Electronic copy of the ETA by DIBt: ETA-21/0168

Threaded rod W-VD-A M8, M10, M12, M16, M20

identifying mark of manufacturing plant

M10 anchor size

Additional marking:

-8 property class 8.8 A4 stainless steel

HC high corrosion resistant steel

Glass capsule W-VPZ

Table A1: Dimensions

Part	Anchor size			M8	M10	M12	M16	M20
		d	[mm]	8	10	12	16	20
1	Threaded rod	L≥	[mm]	95	100	120	140	190
		h _{ef}	[mm]	80	90	110	125	170
2	Hexagon nut	sw	[mm]	13	17	19	24	30
4	Glass capsule, in	mprint	[-]	VZ-P 8	VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20

Capsule Adhesive Anchor W-VPZ	
Product description Marking and dimensions	Annex A2

Glass capsule

Part	Designation		Materials					
Steel, zinc plated electroplated ≥ 5 μm according to EN ISO 4042:2018 hot-dip galvanized ≥ 40 μm (50 μm in average) according to EN ISO 1461:2009 and EN ISO 10684:2004+AC:200 sherardized ≥ 45 μm according to EN ISO 17668:2016								
		Property class		cteristic strength		ristic yield ength	fracture elongation	EN 10277:2018,
1	Threaded rod	5.8	f _{uk}	500	f _{yk}	400	A ₅ > 8 %	EN 10263:2001, EN 10025-2:2019
		8.8	[N/mm²]	800	[N/mm²]	640	A ₅ > 8 %	
2	Llava na na navit	5	for class	5.8				EN ICO 000 0:0010
	Hexagon nut			EN ISO 898-2:2012				
_		8	for class	5.8, 8.8				
3	Washer	8	steel, zind					
3 Stain			steel, zind					
3 Stain Stain High	Washer nless steel A2 nless steel A4 corrosion resist		cR			ristic yield ength	fracture elongation	EN 10088:2014
3 Stain	Washer nless steel A2 nless steel A4	ant steel H	cr charac ultimate	c plated	stre f _{yk}			EN 10088:2014 EN ISO 3506-1:2009
3 Stain Stain High	Washer nless steel A2 nless steel A4 corrosion resist	eant steel H	cr charac ultimate	c plated	stre	ength	elongation	
3 Stain Stain High	Washer nless steel A2 nless steel A4 corrosion resist Threaded rod	Property class	cr charac ultimate	c plated cteristic strength 700 800	stre f _{yk}	ength 450	elongation A ₅ > 8 %	EN ISO 3506-1:2009 EN 10088:2014
3 Stain Stain High	Washer nless steel A2 nless steel A4 corrosion resist	Property class	charac ultimate f _{uk} [N/mm²]	c plated cteristic strength 700 800	stre f _{yk}	ength 450	elongation A ₅ > 8 %	EN ISO 3506-1:2009

Capsule Adhesive Anchor W-VPZ	
Product description Materials	Annex A3

glass, quartz, resin, hardener

Specifications of intended use

Anchor size	M8	M10	M12	M16	M20		
Static or quasi-static action	→						
	compacted, reinforced or unreinforced normal weight concr without fibers acc. to EN 206:2013+A1:2016						
Base materials	strength classes C20/25 to C50/60, acc. to EN 206:2013+A1:2016						
	cracked or uncracked concrete						
Temperature range I -40°C to +40°C	max long term temperature +24°C; max short term temperature +40°C						
Temperature range II -40°C to +80°C	max long term	temperature	+50°C; max sh	ort term tempe	erature +80°C		

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- · For all other conditions:

Threaded rod	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
W-VD-A/A2	CRC II
W-VD-A/A4	CRC III
W-VD-A/HCR	CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

Installation:

- · Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling
- · Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation

Capsule Adhesive Anchor W-VPZ			
Intended use Specifications	Annex B1		

Table B1: Installation parameters

Anchor size			M8	M10	M12	M16	M20
Diameter of threaded rod	d=d _{nom}	[mm]	8	10	12	16	20
Nominal diameter of drill hole	d ₀	[mm]	10	12	14	18	22
Depth of drill hole	h ₀	[mm]	80	90	110	125	170
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170
Diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22
Cleaning Brush WIT-		[-]	RMB 10	RMB 12	RMB 14	RMB 18	RMB 22
Diameter of Cleaning Brush	d _{b,min} ≥	[mm]	10,5	12,5	14,5	18,5	22,5
Maximum installation torque	T _{inst} ≤	[Nm]	10	20	40	80	150

Accessories

Vacuum drill bit

Vacuum drill bit (Würth extraction drill bit, MKT Hollow drill bit SB or Heller Duster Expert) and a class M vacuum with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s

Blow-out pump (volume 750ml)

Cleaning Brush WIT-RMB

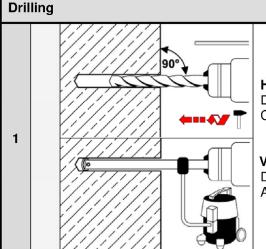
Table B2: Minimum member thickness, edge distance and spacing

Anchor size		М8	M10	M12	M16	M20
Minimum member thickness h _{min}	[mm]	110	120	140	160	220
Minimum edge distance c _{min}	[mm]	40	45	45	50	55
Minimum spacing Smin	[mm]	40	50	60	75	90

Table B3: Curing time

Concrete temperature	Minimum curing time
-20°C to -16°C	17 h
-15°C to -11°C	7 h
-10°C to -6°C	4 h
-5°C to -1°C	3 h
0°C to +4°C	50 min
+5°C to +9°C	25 min
+10°C to +19°C	15 min
+20°C to +29°C	6 min
+30°C to +40°C	6 min
Capsule temperature	-15°C to +40°C

Capsule Adhesive Anchor W-VPZ


Intended use

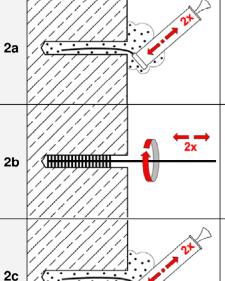
Installation parameters, accessories, minimum member thickness, edge distance and spacing, curing time

Annex B2

Installation instructions

Hammer drill or compressed air drill:

Drill the hole with diameter and depth according to Table B1. Continue with <u>step 2.</u>


Vacuum drill: see Annex B2

Drill the hole with diameter and depth according to Table B1. Additional cleaning is not necessary - continue with <u>step 3</u>.

Cleaning

2

Drill hole must be cleaned directly before installation of the anchor, or it must be protected against recontamination in a suitable manner until installation of the anchor.

Blow out the drill hole completely at least 2x from the bottom of the drill hole with blow-out pump or compressed air.

Brush the drill hole 2x with Cleaning Brush WIT-RMB (Table B1). Observe and check brush diameter $d_{b,min}$. When inserting the brush into the drill hole, a clear resistance must be noticeable. Otherwise use a new Cleaning Brush.

Blow out the drill hole completely at least **2x** from the bottom of the drill hole with blow-out pump or compressed air.

Capsule Adhesive Anchor W-VPZ

Intended use Installation instructions **Annex B3**

Installation instructions - continuation

Electronic copy of the ETA by DIBt: ETA-21/0168

Inserting the threaded rod 3 Insert the capsule into the drill hole. Drive in the anchor rod using a hammer drill set on rotary impact. Stop immediately after reaching the setting depth. Observe curing time according to Table B3. Do not move or load the 5 anchor until it is fully cured. 6 Remove excess adhesive. T_{inst} ٣ 7 Install fixture and apply installation torque T_{inst} according to Table B1.

Capsule Adhesive Anchor W-VPZ	
Intended Use Installation instructions - continuation	Annex B4

Table C1: Characteristic steel resistance under tension load

Anchor size					M10	M12	M16	M20
Steel failure								
Characteristic resistance	under tension load							
Steel,	Property class 5.8	N _{Rk,s}	[kN]	18	29	42	79	123
zinc plated	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196
Stainless steel /	Property class 70	N _{Rk,s}	[kN]	26	41	59	110	172
high corrosion resistant steel	Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196
Partial factor 1)								
Steel,	Property class 5.8	γ̃Ms,N	[-]			1,5		
zinc plated	Property class 8.8	γMs,N	[-]			1,5		
Stainless steel / high corrosion resistant	Property class 70	γMs,N	[-]			1,87		
steel	Property class 80	γMs,N	[-]			1,6		

¹⁾ In absence of other national regulations

Table C2: Characteristic steel resistance under shear load

Anchor size	M8	M10	M12	M16	M20			
Characteristic resistances	under shear load							
Steel failure without lever	arm							
Steel,	Property class 5.8	V ⁰ Rk,s	[kN]	11	17	25	47	73
zinc plated	Property class 8.8	V ⁰ Rk,s	[kN]	15	23	34	63	98
Stainless steel /	Property class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86
high corrosion resistant steel	Property class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98
Steel failure with lever arr	n							
Steel,	Property class 5.8	M ⁰ Rk,s	[Nm]	19	37	65	166	325
zinc plated	Property class 8.8	M ⁰ Rk,s	[Nm]	30	60	105	266	519
Stainless steel / high corrosion resistant	Property class 70	M ⁰ Rk,s	[Nm]	26	52	92	233	454
steel	Property class 80	M ⁰ Rk,s	[Nm]	30	60	105	266	519
Partial factor 1)								
Steel,	Property class 5.8	γMs,V	[-]			1,25		
zinc plated	Property class 8.8	γMs,V	[-]			1,25		
Stainless steel /	Property class 70	γMs,V	[-]			1,56		
high corrosion resistant steel	Property class 80	γMs,V	[-]			1,33		

¹⁾ In absence of other national regulations

Capsule Adhesive Anchor W-VPZ Performance Characteristic steel resistance under tension and shear load Annex C1

Table C3: Characteristic	values for tension	n loac	I					
Anchor size				М8	M10	M12	M16	M20
Steel failure								
Characteristic resistance un	der tension load							
Characteristic tension resistan	ce	N _{Rk,s}	[kN]		se	e Table	C1	
Partial factor		γMs,N	[-]		se	e Table	C1	
Combined pull-out and cond	rete failure							
Characteristic bond resistar	ice in <u>uncracked</u> con	crete C2	20/25					
Temperature range I:	+24°C / +40°C	τ _{Rk,ucr}	[N/mm ²]	10,0	13,0	13,0	13,0	13,0
Temperature range II:	+50°C / +80°C	τ _{Rk,ucr}	[N/mm ²]	8,5	11,0	11,0	11,0	11,0
Increasing factors for uncracke	ed concrete	Ψα	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,17}$				
Characteristic bond resistar	ice in <u>cracked</u> concre	te C20/	25					
Temperature range I:	+24°C / +40°C	τ _{Rk,cr}	[N/mm ²]	5,0	6,5	7,0	7,5	7,5
Temperature range II:	+50°C / +80°C	τ _{Rk,cr}	[N/mm ²]	4,5	5,5	6,0	6,0	6,0
Increasing factors for <u>cracked</u> concrete			[-]	$\left(\frac{f_{ck}}{20}\right)^{0.14}$				
Reduction factor ψ ⁰ sus in cor	crete C20/25							
Temperature range I:	+24°C / +40°C	ψ^0 sus	[-]			0,64		

+50°C / +80°C	ψ^0 sus	[-]	0,63
uncracked concrete	k _{ucr,N}	[-]	11,0
cracked concrete	k _{cr,N}	[-]	7,7
	C cr,N	[mm]	1,5 h _{ef}
	Scr,N	[mm]	3 h _{ef}
h/h _{ef} ≥ 2,0			1,0 h _{ef}
2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
h/h _{ef} ≤ 1,3			2,4 h _{ef}
	S _{cr,sp}	[mm]	2 C _{cr,sp}
	γinst	[-]	1,2
	uncracked concrete cracked concrete $h/h_{ef} \ge 2.0$ $2.0 > h/h_{ef} > 1.3$	$\begin{array}{c c} \text{uncracked concrete} & k_{\text{ucr,N}} \\ \text{cracked concrete} & k_{\text{cr,N}} \\ \text{Ccr,N} \\ \text{Scr,N} \\ \\ \hline \\ h/h_{ef} \geq 2,0 \\ \hline \\ 2,0 > h/h_{ef} > 1,3 \\ \hline \\ h/h_{ef} \leq 1,3 \\ \\ \text{Scr,sp} \\ \\ \end{array}$	$\begin{array}{c cccc} & & & & & & & & & & & \\ & uncracked \ concrete & & & & & & & & \\ & cracked \ concrete & & & & & & \\ & & & cr,N & & & & \\ & & & cr,N & & & \\ & & & cr,N & & & \\ & & & scr,N & & & \\ & & & & h/h_{ef} \geq 2,0 & & \\ & & & 2,0 > h/h_{ef} > 1,3 & & \\ & & & & cr,sp & & \\ & & & h/h_{ef} \leq 1,3 & & \\ & & & & scr,sp & & \\ & & & & scr,sp & & \\ & & & & & \\ & & & & & \\ & & & & $

Capsule Adhesive Anchor W-VPZ	
Performance Characteristic values under tension load	Annex C2

Table C4: Characteristic values for shear loads

Anchor size			М8	M10	M12	M16	M20
Steel failure without lever arm							
Characteristic shear resistance	V ⁰ Rk,s	[kN]		se	e Table	C2	
Ductility factor	k ₇	[-]			1,0		
Partial factor	γMs,V	[-]		se	e Table	C2	
Steel failure with lever arm							
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	see Table C2				
Partial factor	γ̃Ms,V	[-]		se	e Table	C2	
Concrete pry-out failure							
Pry-out factor	k ₈	[-]			2,0		
Concrete edge failure							
Effective length of anchor	If	[mm]	min (h _{ef} ;12 d _{nom})				
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 16 2				20
Installation factor	γinst	[-]	1,0				

Capsule Adhesive Anchor W-VPZ	
Performance Characteristic values under shear load	Annex C3

Table C5: Displacements under tension load

Anchor size		М8	M10	M12	M16	M20	
Displacement factor ¹⁾ for uncracked concrete							
Diaplacement	δ _{N0} -factor	[mm/(N/mm²)]	0,015	0,031	0,035	0,015	0,046
Displacement δ _{N∞} -facto	δ _{N∞} -factor	[mm/(N/mm²)]	0,085	0,067	0,067	0,067	0,067
Displacement factor ¹⁾ for cracked concrete							
Diaplacement	δ _{N0} -factor	$[mm/(N/mm^2)]$	0,046	0,038	0,024	0,008	0,024
Displacement	δ _{N∞} -factor	$[mm/(N/mm^2)]$	0,192	0,142	0,090	0,104	0,082

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$;

Table C6: Displacements under shear load

Anchor size		M8	M10	M12	M16	M20	
Displacement factor ¹⁾							
Dienlessment	δ _{v0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04
Displacement	δ _{∨∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor $\cdot V$;

V: acting shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$

Capsule Adhesive Anchor W-VPZ

Performance Displacements

Annex C4