

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0173 of 24 March 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Sleeve Anchor MHA-S CE

Mechanical fastener for use in concrete

Mungo srl Via Germania 23 35127 PADOVA ITALIEN

Plant 1

12 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

European Technical Assessment ETA-21/0173

Page 2 of 12 | 24 March 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z28845.21 8.06.01-12/21

European Technical Assessment ETA-21/0173

Page 3 of 12 | 24 March 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Sleeve Anchor MHA-S CE is an anchor made of galvanised steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B 2 and C 1
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C 2
Displacements (static and quasi-static loading)	see Annex C 1 and C 2
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	see Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z28845.21 8.06.01-12/21

European Technical Assessment ETA-21/0173

Page 4 of 12 | 24 March 2021

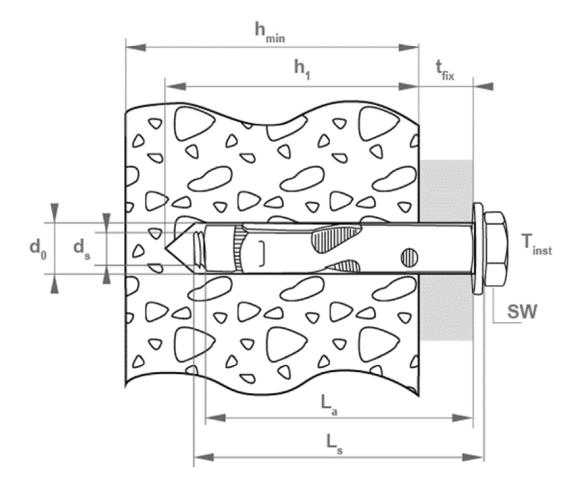
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

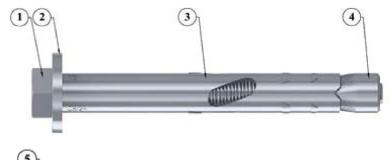
Issued in Berlin on 24 March 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Z28845.21 8.06.01-12/21

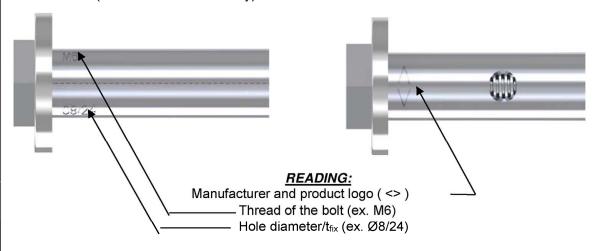
English translation prepared by DIBt




Installed conditions

Pre-setting Installation Sleeve Anchor MHA-S CE:

Sleeve Anchor MHA-S CE	
Product description Installed conditions	Annex A 1



COMPONENTS:

- 1 Hexagonal head bolt
- 2 Washer
- 3 Expander
- 4 Conical nut
- 5 Extension (for some dimensions only)

Sleeve Anchor MHA-S CE

Product descriptionMarking and denomination

Annex A 2

Z30461.21

Electronic copy of the ETA by DIBt: ETA-21/0173

Table A1: Materials and components

COMPONENT	DENOMINATION	FOR DIMENSIONS	MATERIAL
1	Hexagonal head bolt	All	Steel, property class 8.8 EN ISO 898-1:2013 Electrolytic zinc plated min. 5μm
2	Washer	All	Steel, DD11 EN ISO 10111:2008 (JIS G 3131 SPHC) Electrolytic zinc plated min. 5μm
3	Expander	All	Steel, DC01 EN 10139:2016+A1:2020 – EN 10130:2006 (SAE 1010) Electrolytic zinc plated min. 5μm
4	Conical nut	All	Steel, DC01-DC04 EN 10139:2016+A1:2020 (SAE 1006 - SAE 1010) Electrolytic zinc plated min. 5μm
5	Extension	8/54-100 10/45-100 10/65-120 12/45-100 12/65-120 16/50-130	Steel, DC01 EN 10139:2016+A1:2020 – EN 10130:2006 (SAE 1010) Electrolytic zinc plated min. 5μm

Sleeve Anchor MHA-S CE	
Product description Materials	Annex A 3

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete.

Use conditions (Environmental conditions):

 Anchorages subject to dry internal conditions (zinc coated steel or stainless steel).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Design of fastenings in accordance to FEN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018

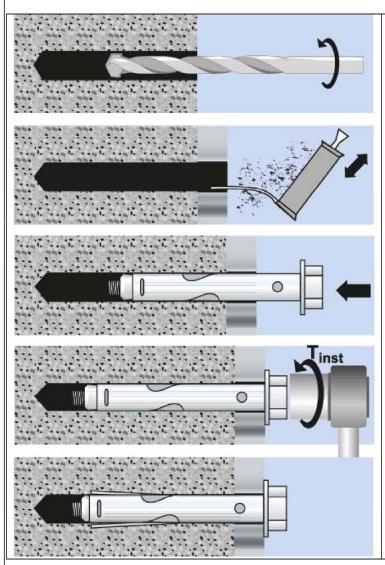
Installation:

- Hole drilling by hammer drilling only.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Hexagonal head bolt and washer may be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex A 3 and B 2.
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
 - Length of hexagonal head bolt according to Table B1 shall be complied with.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured, if the leading edge of expander does not more exceed the concrete surface.

Sleeve Anchor MHA-S CE	
Intended Use	Annex B 1
Specifiactions	

Table B1: Installation parameters

Anchor size	M6 / ø8	M8 / ø10	M10 / ø12	M12 / ø16		
Effective anchorage depth	h _{ef}	[mm]	31	35	40	60
Nominal drill hole diameter	d _o	[mm]	8	10	12	16
Drill hole depth	h₁≥	[mm]	50	55	60	85
Clearance hole in the fixture	d _f	[mm]	10	12	14	18
Torque moment	T _{inst}	[Nm]	10	25	40	65
Minimum fixture thickness	T _{fix,min}	[mm]	1	1	1	1
Maximum fixture thickness	T _{fix,max}	[mm]	24/54	25/45/65	25/45/65	10/30/50
Hexagonal head bolt length	Ls	[mm]	70/100	75/100/120	80/100/120	90/110/130


Table B2: Minimum thickness of concrete member, minimum spacing and edge distance

Anchor size			M6 / ø8	M8 / ø10	M10 / ø12	M12 / ø16
Minimum thickness of the member	h _{min}	[mm]	80	100	120	150
Minimum spacing	S _{min}	[mm]	95	120	145	175
Minimum edge distance	C_{min}	[mm]	50	60	75	90

Sleeve Anchor MHA-S CE	
Intended Use	Annex B 2
Installation Parameters,	
Minimum thickness of concrete member, minimum spacing and edge distance	

Installation instruction

- 1. Make a drill hole with a hammer drilling
- 2. Clean the drill hole
- 3. Place the anchor
- 4. Apply the required installation torque
- 5. Anchor is installed

Sleeve Anchor MHA-S CE

Intended Use Installation intructions Annex B 3

Table C1: Characteristic values for tension loads

Anchor size			M6 / ø8	M8 / ø10	M10 / ø12	M12 / ø16
Steel failure				L	L	L
Characteristic resistance	N _{Rk,s}	[kN]	16,1	29,3	46,4	67,4
Partial factor	ү мs	[-]	1,5	1,5	1,5	1,5
Pullout failure	•	•				
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,P}	[kN]	6,0	7,5	12,0	20,0
		C30/37				
Increasing factor for concrete	Ψc	C40/50		1,0		
		C50/60	1			
Concrete cone failure						
Effective anchoring depth	h _{ef}	[mm]	31	35	40	60
Factor for uncracked concrete	k _{ucr,N}	[-]			11,0	
Factor for cracked concrete	k _{cr,N}	[-]		No Perform	nance assesse	ed
Spacing	Scr,N	[mm]			3 h _{ef}	
Edge distance	C _{cr,N}	[mm]		1	l,5 h _{ef}	
Splitting failure						
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	$N^0_{Rk,sp} = N_{Rk,p}$			
Spacing	Scr,sp	[mm]	200	300	340	430
Edge distance	C _{cr,sp}	[mm]	100	150	170	215
Installation factor	Y inst	[-]	1,0			

Table C2: Displacements under tension loads

Anchor size			M6 / ø8	M8 / ø10	M10 / ø12	M12 / ø16
Tension load	N	[KN]	3,4	5,2	5,3	11,6
Displacement	δ_{NO}	[mm]	0,10	0,19	0,39	0,51
Displacement	$\delta_{N^{\infty}}$	[mm]	0,39			

Sleeve Anchor MHA-S CE	
Performances Characteristic values and displacements under tension loads	Annex C 1

Table C3: Characteristic values for shear loads

Anchor size			M6 / ø8	M8 / ø10	M10 / ø12	M12 / ø16
Steel failure without level arm				ı		
Characteristic resistance	$V^0_{Rk,s}$	[kN]	7,5	12,0	20,0	30,0
Partial factor	ү мs	[-]	1,25			
Steel failure with level arm	1		•			
Characteristic bending moment	M ⁰ Rk,s	[kN]	12,2	30,0	59,8	104,8
Ductility factor	k ₇	[-]	0,8			
Partial factor	γ ms	[-]	1,25			
Concrete pry out failure	•		•			
Factor for pryout failure	k ₈	[mm]	1	1	1	2
Installation safety factor	γinst	[mm]	1,0			
Concrete edge failure			•			
Effective length of anchor in shear loading	lf	[mm]	31	35	40	60
Effective external diameter of anchor	d _{nom}	[mm]	10	12	14	18
Installation factor	Y inst	[-]	1,0			

Table C4: Displacements under shear loads

Anchor size			M6 / ø8	M8 / ø10	M10 / ø12	M12 / ø16
Shear load	V	[KN]	3,8	7,0	11,0	16,1
Displacement	δ_{V0}	[mm]	1,1	1,4	2,6	2,7
	$\delta_{V^{\infty}}$	[mm]	1,6	2,1	3,9	4,1

Sleeve Anchor MHA-S CE	
Performances Characteristic values and displacements under shear loads	Annex C 2