

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0324 of 10 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

DuoXpand 8 mm and 10 mm

Plastic anchors for redundant non-structural systems in concrete and masonry

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

25 pages including 3 annexes which form an integral part of this assessment

EAD 330284-00-0604, edition 12/2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-21/0324 English translation prepared by DIBt

Page 2 of 25 | 10 December 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 10 December 2021

Specific part

1 Technical description of the product

The fischer frame fixing DuoXpand 8 and DuoXpand 10 is a plastic anchor consisting of a plastic sleeve made of polyamide and polyoxymethylene and an accompanying specific screw of galvanised steel, of galvanised steel with an additional organic layer or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Resistance to fire	No performance assessed			

3.2 Mechanical resistance and stability (BWR 4)

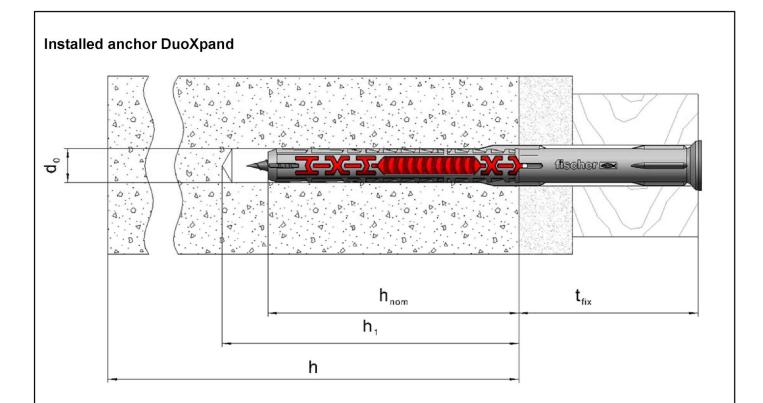
Essential characteristic	Performance
Resistance to steel failure under tension loading	See Annex C 1
Resistance to steel failure under shear loading	See Annex C 1
Resistance to pull-out or concrete failure under tension loading (base material group a)	See Annex C 1
Resistance in any load direction without lever arm (base material group b, c, d)	See Annexes C 7 – C 13
Edge distance and spacing (base material group a)	See Annex B 2
Edge distance and spacing (base material group b, c, d)	See Annex B 3 and B 4
Displacements under short-term and long-term loading	See Annex C 2
Durability	See Annex B 1

European Technical Assessment ETA-21/0324 English translation prepared by DIBt

Page 4 of 25 | 10 December 2021

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD 330284-00-0604 the applicable European legal act is: 97/463/EC. The system to be applied is: 2+


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

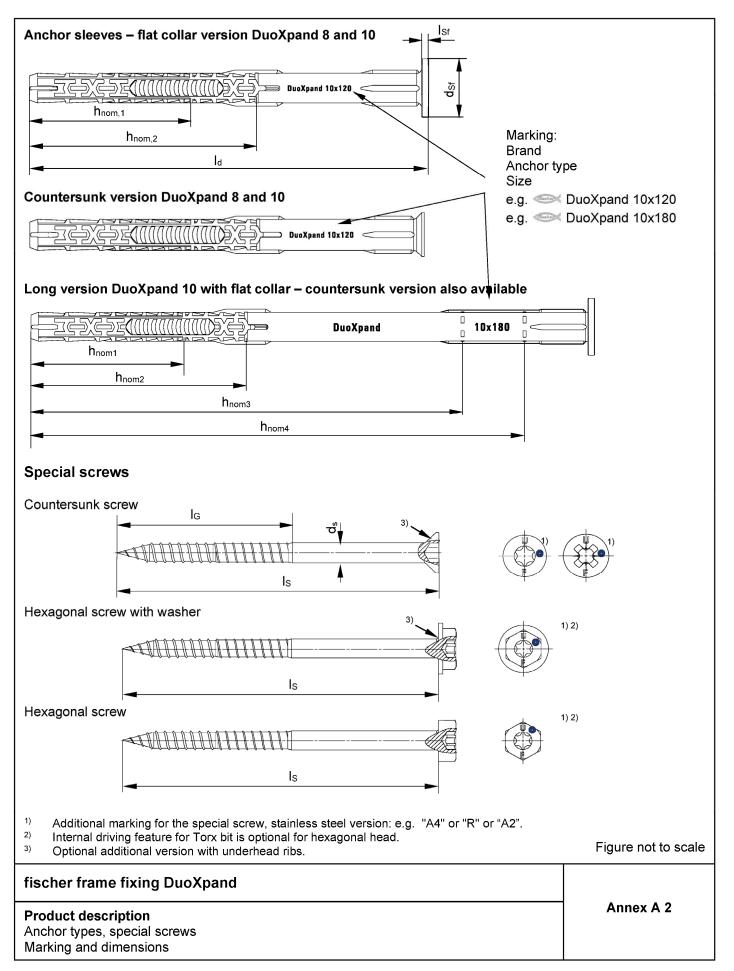
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 10 December 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Kerstin Ziegler

Legend

do	=	Nominal drill hole diameter
h _{nom}	=	Overall plastic anchor embedment depth in the base material
h₁	=	Depth of drill hole to deepest point
h	=	Thickness of member (wall)
t _{fix}	=	Thickness of fixture and / or non-load bearing layer


fischer frame fixing DuoXpand

Product description Installed anchor Figure not to scale

Annex A 1

Page 6 of European Technical Assessment ETA-21/0324 of 10 December 2021

Anchor type		Anchor sleeve Special screw								
	h _{nom} [mm]	d _{nom} [mm]	t _{fix} [mm]	min. l _d [mm]	max.l₄ [mm]	l _{sf} [mm]	d _{sf} [mm]	d₅ [mm]	l _G [mm]	l _s [mm]
DuoXpand 8	50	8	< 1	80	120	16	14,0	57	≥77	
	70	0	≥ 1	80	120	1,6	14,0	5,7	211	≥ I _d + 6
DuoXpand 10	50									
	70	10	≥ 1	80		30 2,2 18,5	40.5			
	140 ¹⁾	10			230		6,9 ≥	≥ 77	≥ I _d + 7	
	160 ¹⁾									

Table A3.2: Materials

Name	Material
Anchor sleeve	- Polyamide, PA6, colour grey - Polyoxymethylene POM, colour red
Special screw	 Galvanised steel gvz with Zn5/Ag or Zn5/An in accordance with EN ISO 4042:2018 Or Galvanised steel gvz with Zn5/Ag or Zn5/An in accordance with EN ISO 4042:2018 with additional organic layer (Zn5/Ag/T7 or Zn5/An/T7, resp.) in three layers (total layer thickness ≥ 6 µm) Stainless steel "A2" of corrosion resistance class CRC II in accordance with EN 1993-1-4:2006 + A1:2015 Stainless steel "A4" or "R" of corrosion resistance class CRC III in accordance with EN 1993-1-4:2006 + A1:2015

fischer frame fixing DuoXpand

Product description Dimensions and materials Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Redundant non-structural systems.

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres, strength classes ≥ C12/15 (base material group "a"), in accordance with EN 206:2013+A1:2016, see Annex C 1 and C 3.
- Solid brick masonry (base material group "b") as per EN 771-1:2011+A1:2015, EN 771-2:2011+A1:2015 or EN 771-3:2011+A1:2015, see Annex C 3, C 7 and C 8.
 Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the
- Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- Hollow brick masonry (base material group "c"), as per EN 771-1:2011+A1:2015, EN 771-2:2011+A1:2015 or EN 771-3:2011+A1:2015, see Annex C 3 – C 6 and C 8 – C 12.
- Reinforced autoclaved aerated concrete (base material group "d"), as per EN 12602:2016, and unreinforced autoclaved aerated concrete (base material group "d") as per EN 771-4:2011+A1:2015, see Annex C 3 + C 13.
- Mortar strength class of the masonry ≥ M2,5 in accordance with EN 998-2:2010.
- For other comparable base materials of the base material group "a", "b", "c" and "d" the characteristic resistance of the anchor may be determined by job site tests in accordance with TR 051:2018-04.

Temperature Range:

- c: 40 °C to 50 °C (max. short term temperature + 50 °C and max long term temperature + 30 °C)
- b: 40 °C to 80 °C (max. short term temperature + 80 °C and max long term temperature + 50 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: Special screw made of zinc coated steel or stainless steel.
 The specific screw made of galvanised steel or galvanised steel with an additional organic layer may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore, there shall be an external cladding or a ventilated rainscreen mounted in
 - front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e.g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist: Special screw made of stainless steel of corrosion resistance class CRC III.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are to be designed in accordance with TR 064:2018-05 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances. The position of the anchor is indicated on the design drawings.

Installation:

- Hole drilling by the drilling method in accordance with Annex C 1 for base material group "a", and in accordance with Annexes C 7 – C 13 for base material group "b", "c" and "d".
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature: 20 °C to + 40 °C
- Exposure to UV due to solar radiation of the anchor not protected by rendering \leq 6 weeks.
- No ingress of water in the borehole at temperatures < 0°C

fischer frame fixing DuoXpand

Intended use Specifications

Table B2.1: Installation parameters							
Anchor type		DuoXpand 8	DuoXpand 10				
Nominal drill hole diameter	d ₀ = [mm]	8	10				
Cutting diameter of drill bit	d _{cut} ≤ [mm]	8,45	10,45				
	$\mathbf{h}_{nom1} \geq [mm]$	50	50				
Overall plastic anchor embedment	$h_{nom2} \ge [mm]$	70	70				
depth in the base material ¹⁾	$h_{nom3}^{2} \ge [mm]$	-	140				
	$h_{nom4}^{2} \ge [mm]$	-	160				
	h _{1,1} ≥ [mm]	60	60				
Double of drill halp to decreat point	h _{1,2} ≥ [mm]	80	80				
Depth of drill hole to deepest point	$h_{1,3}^{2)} \ge [mm]$	-	150				
	$h_{1,4}^{2)} \ge [mm]$	-	170				
Diameter of clearance hole in the fixture	d _f ≤ [mm]	8,5	10,5				

¹⁾ For base material group "c": If the embedment depth is higher than h_{nom} given in the Table B2.1, job site tests have to be carried out in accordance with TR 051:2018-04.

 $^{2)}$ Only valid for Sepa Parpaing see Annex C 11 at anchor length $I_{d} \geq$ 160 mm.

 Table B2.2: Minimum thickness of member, edge distance and spacing in concrete – base material group "a"¹⁾

Anchor Type	Embed- ment depth h _{nom}	Strength class	Minimum thickness of member h _{min}	Charac- teristic edge distance Ccr, N	Charac- teristic spacing Scr, N	Minimum spacing and edge distances ²⁾ S _{min} , C _{min}
	[mm]		[mm]	[mm]	[mm]	[mm]
	≥ 50	≥ C16/20	80	50	65	$s_{min} = 50$ for $c \ge 100$ $c_{min} = 50$ for $s \ge 100$
DuoXpand	2 50	C12/15	00	70	90	$s_{min} = 70$ for $c \ge 140$ $c_{min} = 70$ for $s \ge 140$
8	. 70	≥ C16/20	100 -	50	70	s _{min} =50 for c ≥ 100 c _{min} =50 for s ≥ 100
	≥ 70	C12/15		70	100	$s_{min} = 70 \text{ for } c \ge 140$ $c_{min} = 70 \text{ for } s \ge 140$
	> 50	≥ C16/20	00	50	70	s _{min} =50 for c ≥ 100 c _{min} =50 for s ≥ 100
DuoXpand	≥ 50	C12/15	80	70	100	s _{min} =70 for c ≥ 140 c _{min} =70 for s ≥ 140
10	10	≥ C16/20	100	50	80	s _{min} =50 for c ≥ 100 c _{min} =50 for s ≥ 100
	≥ 70	C12/15	100	70	115	$s_{min} = 70 \text{ for } c \ge 140$ $c_{min} = 70 \text{ for } s \ge 140$

¹⁾ See scheme of distances and spacing Annex B 3.

²⁾ Intermediate values by linear interpolation.

Fixing points with spacing $a \le s_{cr,N}$ are considered as a group with a maximum characteristic resistance $N_{Rk,p}$ as per Table C1.2. For a spacing $a > s_{cr,N}$ the anchors are considered as single anchors, each with characteristic resistance $N_{Rk,p}$ as per Table C1.2.

fischer frame fixing DuoXpand

In	teı	nd	ed	use	

Installation parameters

Minimum thickness of member, edge distances and spacings for use in concrete

Anchor Type			DuoXpand 8	DuoXpand 10
Minimum thickness of member ¹⁾	h _{min}	[mm]	115	115
Single anchor				
Minimum spacing	a _{min}	[mm]	250	250
Minimum edge distance	C _{min}	[mm]	100	100
Anchor group			· /	
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	100	100
Minimum spacing parallel to free edge	S 2,min	[mm]	100	100
Spacing between anchor groups and / or single anchors	a _{min}	[mm]	250	250
Minimum edge distance	C _{min}	[mm]	100	100

Scheme of distance and spacing in concrete, solid and hollow or perforated masonry – base material group "a", "b" and "c"

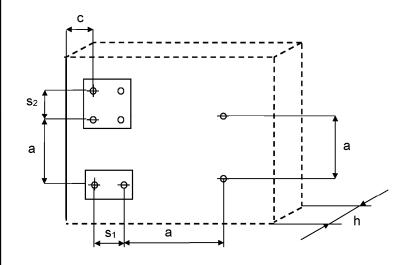


Figure not to scale

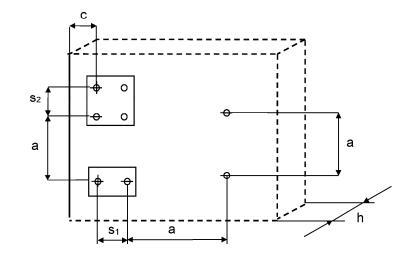
fischer frame fixing DuoXpand

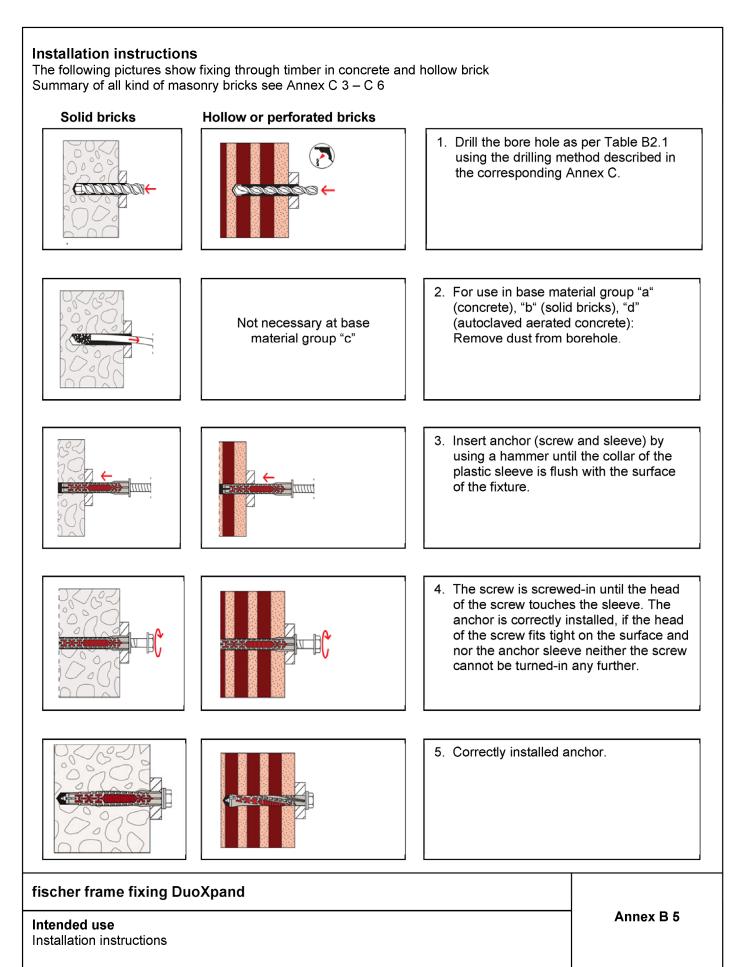
Intended use Minimum thickness of member, edge distances and spacings for use in solid, hollow or perforated masonry

Table B4.1: Minimum thickness of member, edge distance and spacing in reinforced and unreinforced autoclaved aerated concrete – base material group "d"									
Anchor type		-	DuoXp	oand 8	DuoXp	band 10			
Compressive strength ¹⁾	f _{ck} f _{cm,decl}	[N/mm²]	≥2	≥6	≥2	≥6			
Nominal embedment depth	h _{nom} ≥	[mm]	70	70	70	70			
Single anchor									
Minimum thickness of member	h _{min}	[mm]	100	100	100	100			
Minimum spacing	a _{min}	[mm]	250	250	250	250			
Minimum edge distance	C _{min}	[mm]	100	100	100	100			
Anchor group									
Minimum thickness of member	h _{min}	[mm]	100	175	100	175			
Minimum edge distance	C _{min}	[mm]	100	100	100	100			
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	100	100	100	100			
Minimum spacing parallel to free edge	S _{2,min}	[mm]	100	80	100	80			
Spacing between anchor groups and / or single anchors	a _{min}	[mm]	250	250	250	250			

 $^{1)}$ see table C13.1 and C13.2

Scheme of distance and spacing in autoclaved aerated concrete – base material group "d"




Figure not to scale

fischer frame fixing DuoXpand

Intended use

Minimum thickness of member, edge distances and spacings for use in autoclaved aerated concrete

Electronic copy of the ETA by DIBt: ETA-21/0324

Г

Table C1.1: Characte	eristic	resista	ance of the screw	/S			
Failure of expansion	eleme	nt	DuoXp	oand 8	DuoXpand 10		
(special screw)			galvanised steel	stainless steel	galvanised steel	stainless steel	
Characteristic tension resistance	N _{Rk,s}	[kN]	14,8	14,3	21,7	21,7	
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,50	1,55	1,55	1,55	
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,4	7,1	10,8	10,8	
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25	1,29	1,29	1,29	
Characteristic bendi		stance	e of the screw		1		
Characteristic bending resistance	M _{Rk,s}	[N m]	12,4	12,0	20,6	20,6	
Partial safety factor	γγMs ¹⁾	[-]	1,25	1,29	1,29	1,29	
1) In absence of other na	tional reg	gulations	З.				

Table C1.2: Characteristic resistance due to pullout-failure for use in concrete base material group "a"1)

Pull-out failure (plastic sleeve)		DuoXp	oand 8	DuoXpand 10		
Embedment depth h _{nom} [mm]		≥	50	70	50	70
Concrete ≥ C12/15						
Characteristic tension resistance (30/50 °C)	N _{Rk,p}	[kN]	3,5	4,0	3,5 / 4,0 ²⁾	5,0
Characteristic tension resistance (50/80 °C)	N _{Rk,p}	[kN]	3,5	4,0	3,0 / 4,0 ²⁾	4,5
Partial safety factor	Ύмс ³⁾	[-]	1,8			

¹⁾ Drilling method: hammer drilling.

²⁾ Valid for concrete \geq C16/20.

³⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Performances Characteristic resistance and characteristic bending resistance of the screw Characteristic resistance for use in concrete

			under tension ar ted bricks	nd shear loading	g in concrete, in so	olid bricks, in
Displacements under			Tensior	n load ²⁾	Shear	load ²⁾
Anchor type	h _{nom} [mm]	F [kN]	δ ΝΟ [mm]	δ ∾∞ [mm]	<mark>δ</mark> vo [mm]	δ γ∞ [mm]
DuoXpand 8	50	1,4	0,46	0,92	0,60	0,90
	70	1,6	0,45	0,90	0,63	0,95
	50	1,6	0,59	1,18	0,68	1,02
Due Veend 40	70	2,0	0,58	1,16	0,88	1,32
DuoXpand 10	140 ³⁾	1,6	0,59	1,18	0,68	1,02
	160 ³⁾	2,0	0,58	1,16	0,88	1,32

¹⁾ Valid for all ranges of temperatures.

²⁾ Intermediate values by linear interpolation.

³⁾ Only valid for Sepa Parpaing see Annex C 11.

Table C2.2: Displacements¹⁾ under tension and shear loading in reinforced and unreinforced autoclaved aerated concrete

Displacements	under			Tensior	n load ²⁾	Shear I	oad ²⁾
Anchor type	f _{ck} / f _{cm,decl} [N/mm²]	h _{nom} [mm]	F [kN]	δ _{NO} [mm]	δ ∾∞ [mm]	δ _{vo} [mm]	δ _{ν∞} [mm]
Due Veend 8	≥ 2	70	0,11	0,13	0,26	0,22	0,33
DuoXpand 8	≥ 6	70	0,71	0,68	1,36	1,42	2,13
Duc Voord 10	≥ 2	70	0,18	0,12	0,24	0,36	0,54
DuoXpand 10	≥ 6	70	0,32	0,66	1,32	0,64	0,96

1) Valid for all ranges of temperatures.

²⁾ Intermediate values by linear interpolation.

fischer frame fixing DuoXpand

Displacements under tension and shear loading in concrete, masonry and autoclaved aerated concrete

Base material		Format	Dimensions	Mean compressive strength as per EN 771		Bulk density ρ	See Annex
Concrete ≥ C12/15			[mm]	[N/mm²]		[kg/dm³]	C 1
Autoclaved aerate			•				C 13
Reinforced autocl		rated cond	crete, AAC as per l	EN 12602:2016			C 13
Clay brick Mz, as p EN 771-1:2011+A1 e.g. Mz Ziegelwerk Nordhausen, DE	:2015	≥ NF	≥ 240x115x71	≥ 10		≥ 1,8	C 7
Calcium silicate se brick KS, as per EN 771-2:2011+A1 e.g. KS Wemding, a	:2015	≥ NF	≥ 240x115x71	≥ 10		≥ 2,0	C 7
Calcium silicate s brick KS, as per EN 771-2:2011+A1 e.g. KS Wemding, i	olid :2015	≥ 12 DF	≥ 498x175x248	≥ 10		≥ 1,8	C 7
Lightweight solid Vbl, as per EN 771-3:2011+A1 <i>e.g. Vbl KLB, DE</i>	brick	≥ 2 DF	≥ 240x115x113	≥ 2,5		≥ 1,4	C 8
				ertically to the resting area.		1)	
Base material	Fo Dime	rmat/ ensions nm]	Brick	– base material grou drawing nm]	con s as p [N bulk	Mean npressive trength per EN 771 J/mm²] / α density ρ kg/dm³]	See Annex
Perforated clay brick HIz as per EN 771-1:2011 +A1:2015 e.g. Wienerberger HIz, DE		2 DF 115 x 113		240	≥ 5	5,0 / ≥ 0,9	C 8
fischer frame fixir	ng DuoX	(pand					

Table C4.1: Summary of hollow or perforated bricks – base material group "c ^{"1)}									
Base material	Format/ Dimensions [mm]	Brick drawing [mm]	com st as p [N bulk	Mean ppressive rength er EN 771 //mm²] / density ρ g/dm³]	See Annex				
Perforated clay brick HIz, as per EN 771-1:2011 +A1:2015 e.g. Schlagmann, DE	3 DF 240x175x113	92 14 11 240 240	≥ 5	,0 / ≥ 0,9	C 8				
Perforated clay brick HLz as per EN 771-1:2011 +A1:2015 e.g. Wienerberger Porotherm 30 R, FR	370x300x250		≥ 7	,5 / ≥ 0,7	C 9				
Perforated clay brick HLz, as per EN 771-1:2011 +A1:2015 e.g. Doppio Uni IT Wienerberger, IT	250x120x190		≥ 5	,0 / ≥ 0,9	C 9				
fischer frame fixing Performances Summary of hollow or p	-			Anne	x C 4				

Base material	Format/ Dimensions [mm]	Brick drawing [mm]	Mean compressive strength as per EN 771 [N/mm²] / bulk density ρ [kg/dm³]	See Annex
Perforated clay brick HLz as per EN 771-1:2011 +A1:2015 e.g. Wienerberger Pth Bio Modulare, DE	8 DF 300x250x190	300 10 15 30 35 	≥ 7,5 / ≥ 1,0	C 9
Calcium silicate hollow brick KSL, as per EN 771-1:2011 +A1:2015 <i>e.g. Bösel, DE</i>	2 DF 240x115x113	$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	≥ 10 / ≥ 1,6	C 10
Calcium silicate hollow brick KSL, as per EN 771-1:2011 +A1:2015 e.g. KS Wemding, DE	3 DF 240x175x113	EL Ø 45 En 35 °7 35 °7 238	≥ 10 / ≥ 1,4	C 10
fischer frame fixing Performances Summary of hollow or			Annex	C 5

EN 771-3:2011 +A1:2015, e.g. Knobel, DE Hollow brick lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015, e.g. Sepa Parpaing, FR 500x200x200 25 + 133 + 25 = 1,0 EN 771-3:2011 +A1:2015, e.g. Indelasa, ES Hollow brick lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015, e.g. Indelasa, ES	Base material	Format/ Dimensions [mm]	Brick drawing [mm]	Mean compressive strength as per EN 771 [N/mm ²] / bulk density ρ [kg/dm ³]	See Annex
lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015, e.g. Sepa Parpaing, FR500x200x200 10 $\geq 2,5 / \geq 1,0$ CHollow brick lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015, e.g. Indelasa, ES $500x200x200$ 25 133 25 $500x200x200$ 25 133 25 25 133 25 $\geq 2,5 / \geq 1,0$ CHollow brick lightweight e.g. Indelasa, ES $500x200x200$ 25 133 	lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015,			≥ 2,5 / ≥ 0,7	C 10
Hollow brick lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015, e.g. Indelasa, ES $500\times200\times200$ 25 133 25 133 133 25 133 25 133 25 	lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015, <i>e.g. Sepa</i>	500×200×200		≥ 2,5 / ≥ 1,0	C 11
Hollow brick lightweight	lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015,	500x200x200		≥ 2,5 / ≥ 1,0	C12
	lightweight concrete Hbl, as per EN 771-3:2011 +A1:2015,	500x240x240	540 55 57	≥ 2,5 / ≥ 0,9	C 12

Base material [Supplier Title, country] Mean compressive strength and drilling method Characteristic resistance F_{Rk} [kN] Mean (L x W x H) [mm] and drilling method DuoXpand 8 DuoXpand 10 Image: Strength and drilling method DuoXpand 8 DuoXpand 10 Image: Strength and drilling method Exercise 12,5 1,5 0,9 / 1,57 0,9 / 2,07 Clay brick Mz as per EN 771-1:2011+A1:2015 E 12,5 1,5 1,5 / 2,07 1,2 / 2,07 EN 721-2:2011+A1:2015 E 20,0 2,5 2,5 1,5 / 3,07 2,0 / 3,07 EN 771-1:2011+A1:2015 E 25,0 3,0 3,5 2,0 / 3,07 2,0 / 3,07 2,0 / 3,07 Expression S 35,0 4,5 5,0 3,0 / 4,57 3,0 / 5,57 Imammer drilling E 37,3 4,5 5,0 3,0 / 4,57 3,0 / 5,57 S oper EN 771-1:2011+A1:2015 E 12,5 2,0 2,5 3,0 4,5 5,0 3,0 / 4,57 S oper EN 771-2:2011+A1:2015 E 10,0 1,2 / 1,5 ¹⁰ 1,5 1,5 / 2,00 2,5 3,0 / 4,0 / 4,52 3,5 <t< th=""></t<>
(L x W x H) [mm] and drilling methodas per EN 771 [N/mm²]Duoxpland to brok particleClay brick Mz as per EN 771-1:2011+A1:2015 $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 12,5$ 1,51,50,9 / 1,5710,9 / 2,00 $\geq 20,0$ 2,52,51,5 / 2,5711,5 / 3,072,0 / 3,0712,0 / 3,071 $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 35,0$ 4,55,03,0 / 4,5773,0 / 5,07 $\geq 0,0$ 2,52,51,5 / 2,5711,5 / 3,0722,0 / 3,572 $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 37,3$ 4,55,03,0 / 4,5773,0 / 5,572 $\geq NF (\geq 240x115x71)$ Rotary drilling $\geq 10,0$ 1,52,02,5 / 3,02 / 3,5 / 4,02 / 4,5 / 5,02^2 / 4,5 / 5,02^2 / 5,0 / 5,05 / 0,02 / 2,5 / 3,02
and drilling methodhnom [mm][N/mm²] ≥ 50 ≥ 70 ≥ 50 ≥ 70 Clay brick Mz as per EN 771-1:2011+A1:2015 ≥ 0.9 $\geq 12,5$ 1,51,50,9 / 1,570,9 / 2,07 $\geq NF$ ($\geq 240x115x71$) Hammer drilling $\geq 25,0$ $3,0$ $3,5$ $2,0$ / $3,07$ $2,0$ / $3,07$ Clay brick Mz $\geq NF$ ($\geq 240x115x71$) Hammer drilling $\geq 35,0$ $4,5$ $5,0$ $3,0$ / $4,57$ $3,0$ / $5,07$ Clay brick Mz
$ \begin{array}{ $
Clay brick Mz as per EN 771-1:2011+A1:2015 e.g. Mz Ziegelwerk Nordhausen, DE $\geq 20,0$ $\geq 15,0$ $2,0$ $2,0$ $1,2/2,0^7$ $1,2/2,0^7$ $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 25,0$ $3,0$ $3,5$ $2,0/3,0^7$ $2,0/3,5^7$ $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 35,0$ $4,5$ $5,0$ $3,0/4,5^7$ $3,0/5,5^7$ Clay brick Mz as per EN 771-1:2011+A1:2015 e.g. Mz Ziegelwerk Nordhausen, DE $\geq NF (\geq 240x115x71)$ Rotary drilling $\geq 10,0$ $1,5$ $2,0$ $2,5$ $3,0/4,5^7$ Calcium silicate solid brick KS as per EN 771-2:2011+A1:2015 $e.g. KS Wemding, DE\geq NF (\geq 240x115x71)Hammer drilling\geq 10,01,2/1,5^{11}1,51,5/2,0^7Calcium silicate solid brick KSas per\geq NF (\geq 240x115x71)Hammer drilling\geq 15,02,02,53,0/4,0/4,5^{21}/5\geq 12,51,52,02,53,0/4,0/4,5^{21}/5\geq 20,02,53,0/3,5^43,0/3,5^23,5/4,0^7\geq NF (\geq 240x115x71)Hammer drilling\geq 25,03,54,04,0/4,5^6/7\geq NF (\geq 240x115x71)Hammer drilling\geq 20,02,53,0/3,5^43,0/3,5^23,5/4,0^7\geq NF (\geq 240x115x71)Hammer drilling\geq 25,03,54,04,0/4,5^6/7\geq 10,01,52,02,52,5/3,0^73,5/4,0^7\geq 10,01,52,02,0/2,5^6/72,0/2,5^6/7\geq 10,01,52,02,0/2,5^6/72,0/2,5^6/7$
as per EN 771-1:2011+A1:2015 e.g. Mz Ziegelwerk Nordhausen, DE $\geq NF (\geq 240x115x71)$ Hammer drilling $20,0$ $2,0$ $2,0$ $1,2/2,0^{-1}$ $1,2/2,0^{-1}$ $1,2/2,0^{-1}$ $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 20,0$ $2,5$ $2,5$ $1,5/2,5^{-1}$ $1,5/3,0^{-1}$ $\geq 25,0$ $3,0$ $3,5$ $2,0/3,0^{-1}$ $2,0/3,5^{-1}$ $3,0/4,5^{-1}$ $3,0/4,5^{-1}$ $\geq NF (\geq 240x115x71)$ e.g. Mz Ziegelwerk Nordhausen, DE $\geq NF (\geq 240x115x71)$ Rotary drilling $\geq 10,0$ $1,5$ $2,0$ $2,5$ $3,0/4,6^{-1}$ $\geq NF (\geq 240x115x71)$ Rotary drilling $\geq 18,5$ $3,0$ $3,5$ $3,0/4,0/4,5^{-1}/5$ $\geq 10,0$ $1,2/1,5^{-1}$ $1,5$ $1,5/2,0^{-1}$ $\geq RF (\geq 240x115x71)$ e.g. KS Wemding, DE $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 10,0$ $1,2/1,5^{-1}$ $1,5$ $2,0$ $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 25,0$ $3,5$ $4,0$ $4,0/4,5^{-1}/5$ $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 25,0$ $3,5$ $4,0$ $4,0/4,5^{-1}/5$ $\geq NF (\geq 240x115x71)$ Hammer drilling $\geq 20,0$ $2,5$ $3,0/3,5^{-1}$ $3,0/3,5^{-2}$ $3,5/4,0^{-1}/5$ $\geq 20,0$ $2,5$ $3,0,0$ $4,0$ $4,5/5,0^{-2}$ $4,5/5,0^{-2}$ $5,0/5,5^{-1}/6$ $\geq 10,0$ $1,5$ $2,0$ $2,0$ $2,0/2,2,5^{-1}/5$ $\geq 10,0$ $1,5$ $2,0$ $2,0$ $2,0/2,5^{-1}/5$ $\geq 10,0$ $1,5$ $2,0$ $2,0/2,0^{-1}/5$ $\geq 10,0$ $1,5$ $2,0$ $2,0/2,0^{-1}/$
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
$ \begin{split} & > NF (\ge 240 \times 115 \times 71) \\ & Hammer drilling \\ & > 35,0 \\ & A,5 \\ & S,0 \\ & > 35,0 \\ & A,5 \\ & S,0 \\ & S,0 \\ & > 35,0 \\ & A,5 \\ & S,0 \\ & S,0 \\ & > 35,0 \\ & A,5 \\ & S,0 \\ & S,0 \\ & > 35,0 \\ & A,5 \\ & S,0 \\ & S,0 \\ & > 30,0 \\ & A,5 \\ & S,0 \\ & S,0 \\ & S,0 \\ & > 30,0 \\ & A,5 \\ & S,0 \\ & S,$
Hammer drilling $\geq 35,0$ 4,55,03,0 / 4,5''3,0 / 5,0'' $\geq 37,3$ 4,55,03,0 / 4,5''3,0 / 5,0'' $\geq 37,3$ 4,55,03,0 / 4,5''3,0 / 5,5''as per EN 771-1:2011+A1:2015 e.g. Mz Ziegelwerk Nordhausen, DE $\geq NF$ ($\geq 240x115x71$) Rotary drilling $\geq 10,0$ 1,52,02,52,02,5 / 3,0'' $\geq NF$ ($\geq 240x115x71$) Rotary drilling $\geq 18,5$ 3,03,53,04,0 / 4,5''4,0Calcium silicate solid brick KS as per EN 771-2:2011+A1:2015 e.g. KS Wending, DE $\geq NF$ ($\geq 240x115x71$) Hammer drilling $\geq 15,0$ 2,02,52,52,5 / 3,0' $\geq NF$ ($\geq 240x115x71$) Hammer drilling $\geq 20,0$ 2,53,0 / 3,5''3,0 / 3,5''3,5 / 4,0' $\geq 20,0$ 2,53,0 / 3,5''3,0 / 3,5''3,5 / 4,0''4,0 / 4,5''/4 $\geq 0,0$ 2,53,0 / 4,0''4,0 / 4,5''/4 $\geq 10,0$ 1,52,02,02,0 / 2,5'' $\geq 10,0$ 1,52,02,02,0 / 2,5'' $\geq 10,0$ 1,52,02,02,0 / 2,5'' $\geq 10,0$ 1,52,02,02,0 / 2,0'' $\geq 10,0$ 1,52,02,02,0 / 2,0''
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
as per EN 771-1:2011+A1:2015 e.g. Mz Ziegelwerk Nordhausen, DE \geq NF (\geq 240x115x71) Rotary drilling \geq 12,52,02,52,02,5 / 3,0^2 / 3Rotary drilling \geq 15,02,53,02,53,0 / 4,0 / 4,5^2 / 3Calcium silicate solid brick KS as per EN 771-2:2011+A1:2015 e.g. KS Wemding, DE \geq NF (\geq 240x115x71) Hammer drilling \geq 10,01,2 / 1,5^1 / 1,51,5 / 2,0 / 2,0 / 2,0 / 2,0 / 2,5 / 3,0 / 4,0 / 4,5 / 3,0 / 3,5^2 / 3,5 / 4,0 / 4,0 / 4,5^6 / 4,0 / 4,5 / 5,0^2 / 3,5 / 4,0 / 4,0 / 4,5^6 / 4,0 / 4,5 / 5,0^2 / 4,5 / 5,0^2 / 5,0 / 5,5^6 / 4,0 / 4,5 / 5,0^2 / 5,0 / 5,5^6 / 4,0 / 4,5 / 5,0^2 / 5,0 / 5,5^6 / 4,0 / 4,5 / 5,0^2 / 5,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 3,5 / 4,0 / 4,5 / 5,0^2 / 3,5 / 4,0 / 4,5 / 5,0^2 / 4,5 / 5,0^2 / 5,0 / 5,5^6 / 4,0 / 4,5 / 5,0^2 / 5,0 / 5,5 / 5,0 / 5,5 / 4,0 / 4,5 / 5,0^2 / 5,0 / 5,5 / 4,5 / 5,0^2 / 5,0 / 5,5 / 4,5 / 5,0^2 / 5,0 / 5,5 / 4,5 / 5,0^2 / 5,0 / 5,5 / 4,5 / 5,0^2 / 5,0 / 5,5 / 4,5 / 5,0 / 2,5 / 3,0 / 2,5 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 3,5 / 4,0 / 4,5 / 5,0^2 / 4,5 / 5,0^2 / 5,0 / 5,5 / 4,5 / 5,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 2,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 5,0 / 2,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 / 3,5 / 4,5 / 3,0 /
e.g. Mz Ziegelwerk Nordhausen, DE $\geq 12,3$ $2,0$ $2,3$ $2,0$ $2,3$ $2,5$ $3,0$ $4,0$ $\geq NF (\geq 240 \times 115 \times 71)$ Rotary drilling $\geq 15,0$ $2,5$ $3,0$ $2,5$ $3,0$ $4,0$ $4,5^{21}$ Calcium silicate solid brick KS as per EN 771-2:2011+A1:2015 e.g. KS Wemding, DE $\geq NF (\geq 240 \times 115 \times 71)$ Hammer drilling $\geq 10,0$ $1,2$ / $1,5^{11}$ $1,5$ $1,5$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,5$ $3,0$ $4,0$ $4,0$ $4,5$ $4,0$ $4,0$ $4,5$ $4,0$ $4,5$ $4,0$ $4,0$ $4,5$ $4,0$ $4,5$ $4,0$ $4,5$ $4,0$ $4,5$ $4,0$ $4,5$ $4,0$ $4,5$ $4,5$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,0$ $2,5$ $3,0$ $4,0$ $4,5$ $5,0^{21}$ $4,5$ $5,0^{21}$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $5,0$ $2,0$ </td
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Rotary drilling $\geq 18,5$ 3,03,53,0 $4,0 / 4,5^2 / 4$ Calcium silicate solid brick KS as per EN 771-2:2011+A1:2015 e.g. KS Wemding, DE $\geq NF (\geq 240 \times 115 \times 71)$ Hammer drilling $\geq 10,0$ $1,2 / 1,5^{11}$ $1,5$ $1,5 / 2,0^{0}$ $\geq 10,0$ $1,2 / 1,5^{11}$ $1,5$ $2,0$ $2,0$ $2,0 / 2,5^{2}$ $\geq 12,5$ $1,5$ $2,0$ $2,0$ $2,5$ $2,5 / 3,0^{2}$ $\geq NF (\geq 240 \times 115 \times 71)$ Hammer drilling $\geq 20,0$ $2,5$ $3,0 / 3,5^{41}$ $3,0 / 3,5^{22}$ $3,5 / 4,0^{2}$ $\geq 30,0$ $4,0$ $4,5 / 5,0^{21}$ $4,5 / 5,0^{21}$ $5,0 / 5,5^{61} / 6$ $\geq 10,0$ $1,5$ $2,0$ $2,0$ $2,0$ $2,0$
Calcium silicate solid brick KS as per EN 771-2:2011+A1:2015 e.g. KS Wemding, DE $\geq NF (\geq 240 \times 115 \times 71)$ Hammer drilling $\geq 12,5$ 1,52,02,02,0 / 2,5 $\geq 15,0$ 2,02,52,52,5 / 3,0 $\geq 20,0$ 2,53,0 / 3,5 ⁴ 3,0 / 3,5 ² 3,5 / 4,0 $\geq 25,0$ 3,54,04,0 / 4,5 ⁴ 4,0 / 4,5 ⁶ / 4 $\geq 10,0$ 1,52,02,02,02,0 / 2,5
as per EN 771-2:2011+A1:2015 e.g. KS Wemding, DE $\geq NF (\geq 240 \times 115 \times 71)$ Hammer drilling $\geq 15,0$ 2,02,02,02,02,02,53,03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \stackrel{2}{\rightarrow} NF (\geq 240 \times 115 \times 71) \\ \text{Hammer drilling} \\ \stackrel{2}{\rightarrow} 25,0 \\ \stackrel{2}{\rightarrow} 30,0 \\ \stackrel{2}{\rightarrow} 10,0 \\ \stackrel{2}{\rightarrow} 10,0 \\ \stackrel{2}{\rightarrow} 25,0 \\ \stackrel{2}{\rightarrow} 10,0 \\ \stackrel{2}{\rightarrow} 10$
Hammer drilling $\geq 25,0$ 3,54,04,0 / 4,5 / 4,0 / 4,5 / 5,0 / 4,5 / 5,0 / 5,0 / 5,5 / 6 $\geq 30,0$ 4,04,5 / 5,0 ²¹ 4,5 / 5,0 ²¹ 5,0 / 5,5 ⁶¹ / 6 $\geq 10,0$ 1,52,02,02,0 / 2,5 / 5,0 / 5,5 / 6
$ \ge 30,0 \qquad 4,0 \qquad 4,5 / 5,0^{2} 4,5 / 5,0^{2} 5,0 / 5,5^{6} / (5,0) \\ \ge 10,0 \qquad 1,5 \qquad 2,0 \qquad 2,0 \qquad 2,0 / 2,5^{6} \\ \end{vmatrix} $
≥ 10,0 1,5 2,0 2,0 2,0 / 2,5
Calcium silicate solid brick KS ≥ 12,5 2,0 2,5 2,5 / 3,0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
e.g. KS Wemding, DE $\geq 20,0$ 3,5 3,5 4,0 / 4,5 ⁶ / 4
≥ 12 DF (≥ 498x175x248) Hammer drilling $≥$ 25,0 4,5 4,5 5,0 / 6,0 ⁶⁾ / 0
$\geq 26,5 \qquad 4,5 \qquad 5,0 \qquad 5,0 \qquad 5,5 \ / \ 6,0^{6} \ / \ 0$
Partial safety factor $\gamma_{Mm}^{8)}$ [-] 2,5

¹⁾ Only valid for temperature range "c" (30/50 °C).

²⁾ Only valid for c_{1min} 120 mm and c_{2min} 180 mm.

³⁾ Only valid for c_{1min} 130 mm and c_{2min} 195 mm.

⁴⁾ Only valid for c_{1min} 120 mm and c_{2min} 180 mm for temperature range "c" (30/50 °C).

⁵⁾ Only valid for c_{1min} 130 mm and c_{2min} 195 mm for temperature range "c" (30/50 °C).

⁶⁾ Only valid for c_{1min} 110 mm and c_{2min} 165 mm.

⁷⁾ Only valid for s_{2,min} 250 mm.

⁸⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Performances

Characteristic resistance for use in solid masonry

Γ

Table C8.1: Characteristic resistance F _{Rk} in [kN] for use in solid and in hollow or perforated masonry - base material group "b" and "c"							
Base material [Supplier Title, country]	Mean compressive	Characteristic resistance F _{Rk} [kN] Temperature range 30/50 °C and 50/80 °C					
Geometry, DF or nom. Size (L x W x H) [mm]	strength as per EN 771	DuoX	oand 8	DuoXp	and 10		
and drilling method			h _{nom} [mm] ¹⁾			
	[N/mm²]	50	70	50	70		
Lightweight solid brick Vbl as per EN 771-3:2011+A1:2015	≥ 2,5	0,4	0,6	0,3	0,6 / 0,75 ²⁾		
<i>e.g. Vbl KLB, DE</i> ≥ 2 DF (≥ 240x115x113) Rotary drilling	≥ 5,0	0,75 / 0,9 ²⁾	1,2	0,6 / 0,75 ²⁾	1,2 / 1,5 ²⁾		
Perforated clay brick HIz as per EN 771-1:2011+A1:2015 <i>e.g. Wienerberger HIz, DE</i>	≥ 5,0	0,5	0,4	0,4	0,4		
	≥ 7,5	0,75	0,6	0,6	0,6		
	≥ 10,0	0,9	0,75	0,9	0,75		
2 DF (240x115x113) Rotary drilling	≥ 10,9	0,9	0,75	0,9	0,9		
Perforated clay brick Hlz as per EN 771-1:2011+A1:2015	≥ 5,0	0,3	0,5 / 0,6 ²⁾	0,3	0,5 / 0,6 ²⁾		
e.g. Schlagmann, DE	≥ 7,5	0,4	0,75 / 0,9 ²⁾	0,4 / 0,5 ²⁾	0,75 / 0,9 ²⁾		
	≥ 10,0	0,6	0,9 / 1,2 ²⁾	0,6	1,2		
	≥ 12,5	0,75	1,2 / 1,5 ²⁾	0,75	1,2 / 1,5 ²⁾		
	≥ 15,0	0,9	1,5	0,9	1,5 / 2,0 ²⁾		
3 DF (240x175x113) Rotary drilling	≥ 16,2	0,9	1,5 / 2,0 ²⁾	0,9	1,5 / 2,0 ²⁾		
Partial safety factor			2	,5			

¹⁾ The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths. Exception for "Lightweight solid brick Vbl": here ≥ h_{nom} is valid

²⁾ Only valid for temperature range "c" (30/50 °C).

³⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Performances

Characteristic resistance for use in solid and in hollow or perforated masonry

Table C9.1: Characteristic resistance F_{Rk} in [kN] for use in hollow or perforated masonry - base material group "c"

Base material [Supplier Title, country]	Mean compressive	Characteristic resistance F _{Rk} [kN] Temperature range 30/50 °C and 50/80 °C					
Geometry, DF or nom. Size	strength	-					
(L x W x H) [mm]	as per EN	DuoXpand 8 DuoXpand 10 h _{nom} [mm] ¹⁾					
and drilling method	771 [N/mm²]	50	70	50	70		
Perforated clay brick HLz as per EN 771-1:2011+A1:2015	≥ 7,5	0,3	0,3	0,3	0,3		
e.g. Wienerberger Porotherm 30 R, FR	≥ 10,0	0,4	0,4	0,4	0,4		
370x300x250 Rotary drilling Perforated clay brick HLz as per EN 771-1:2011+A1:2015 e.g. Doppio Uni IT Wienerberger, IT 250x120x190 Rotary drilling Perforated clay brick HLz as per EN 771-1:2011+A1:2015 e.g. Wienerberger Pth Bio Modulare, IT	≥ 12,5	0,5	0,5	0,5	0,5 / 0,6 ²⁾		
	≥ 15,0	0,6	0,6	0,6	0,6		
	≥ 17,6	0,75	0,75	0,75	0,75		
	≥ 5,0	0,4	0,4	0,5	0,5		
	≥ 7,5	0,6	0,5	0,75	0,75		
	≥ 10,0	0,75	0,75	0,9	0,9		
	≥ 12,5	0,9	0,9	1,2	1,2		
	≥ 15,0	1,2	1,2	1,5	1,5		
	≥ 18,7	1,5	1,2	2,0	2,0		
	≥ 7,5	0,75	0,75	0,75	0,75		
	≥ 10,0	0,9	0,9	0,9	0,9		
	≥ 12,5	1,2	1,2	1,2	1,2		
	≥ 15,0	1,5	1,5	1,5	1,5		
	≥ 20,0	2,0	2,0	2,0	2,0		
8 DF (300x250x190) Rotary drilling	≥ 23,6	2,5	2,5	2,5	2,5		
Partial safety factor	γ _{Mm} ³⁾ [-]		2	,5	-		

The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.
 Only valid for temperature range "c" (30/50 °C).

³⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Performances

Characteristic resistance for use in hollow or perforated masonry

Base material [Supplier Title, country]	Mean compressive		acteristic res ure range 30			
Geometry, DF or nom. Size	strength	DuoXpa	and 8	DuoXp	DuoXpand 10	
(L x W x H) [mm] and drilling method	as per EN 771	h _{nom} [mm] ¹)				
	[N/mm²]	50	70	50	70	
Calcium silicate hollow brick KSL as per EN 771-1:2011+A1:2015 e.g. Bösel, DE	≥ 10,0	0,75 / 0,9 ²⁾	0,9	0,9 / 1,2 ²⁾	1,2	
	≥ 12,5	0,9 / 1,2 ²⁾	1,2	1,2 / 1,5 ²⁾	1,5	
	≥ 15,0	1,2 / 1,5 ²⁾	1,5	1,5	2,0	
	≥ 20,0	1,5 / 2,0 ²⁾	2,0	2,0 / 2,5 ²⁾	2,5	
2 DF (≥ 240x115x113) Hammer drilling	≥ 25,0	2,0	2,5	2,5 / 3,0 ²⁾	3,0	
	≥ 25,7	2,0 / 2,5 ²⁾	2,5	2,5 / 3,0 ²⁾	3,5	
Calcium silicate hollow brick KSL as per EN 771-1:2011+A1:2015	≥ 10,0	0,9	0,75 / 0,9 ²⁾	0,6 / 0,75 ²⁾	0,9 / 1,2²	
e.g. KS Wemding, DE	≥ 12,5	1,2	0,9 / 1,2 ²⁾	0,75 / 0,9 ²⁾	1,2 / 1,5 ²	

as per EN 771-1:2011+A1:2015	,			· ·	
e.g. KS Wemding, DE	≥ 12,5	1,2	0,9 / 1,2 ²⁾	0,75 / 0,9 ²⁾	1,2 / 1,5 ²⁾
EL @ 45	≥ 15,0	1,2 / 1,5 ²⁾	1,2 / 1,5 ²⁾	0,9 / 1,2 ²⁾	1,5
35 S	≥ 20,0	1,5 / 2,0 ²⁾	1,5 / 2,0 ²⁾	1,2 / 1,5 ²⁾	2,0
3 DF (240x175x113) Hammer drilling	≥ 21,4	1,5 / 2,0 ²⁾	1,5 / 2,0 ²⁾	1,2 / 1,5 ²⁾	2,0 / 2,5 ²⁾
Hollow brick lightweight concrete Hbl as per EN 771-3:2011+A1:2015 <i>e.g. Knobel, DE</i>	≥ 2,5	0,5 / 0,6 ²⁾	0,5 / 0,6 ²⁾	0,75	0,75
16 DF (495x240x248) Rotary drilling	≥ 5,0	0,9 / 1,2 ²⁾	0,9 / 1,2 ²⁾	1,5	1,5
Partial safety factor	γ _{Mm} ³⁾ [-]		2,5	5	

¹⁾ The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths. ²⁾ Only valid for temperature range "c" (30/50 °C)

²⁾ Only valid for temperature range "c" (30/50 °C).

³⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Performances

Characteristic resistance for use in hollow or perforated masonry

Table C11.1: Characteristic resistance F_{Rk} in [kN] for use in hollow or perforated masonry base material group "c"

	U 1 <i>"</i>						
Base material [Supplier Title, country]	Mean compressive				c resistance je 30/50 °C		°C
Geometry, DF or nom. Size	strength	DuoXpa	nd 8		DuoXp	and 10	
(L x W x H) [mm] and drilling method	as per EN 771			h,	10m [mm] ¹⁾		
	[N/mm²]	50	70	50	70	140	160
Hollow brick lightweight concrete Hbl as per EN 771-3:2011+A1:2015	≥ 2,5	0,3 / 0,4 ²⁾	3)	0,5	0,5	3)	0,3
e.g. Sepa Parpaing, FR	≥ 5,0	0,75	0,5	0,9	0,9	0,5	0,5
500x200x200 Rotary drilling	≥ 6,9	0,9 / 1,2 ²⁾	0,6	1,5	1,5	0,6	0,75
Hollow brick lightweight concrete Hbl as per EN 771-3:2011+A1:2015 e.g. Sepa Parpaing, FR	≥ 2,5	3)	3)	3)	0,3	3)	3)
	≥ 5,0	0,3	3)	0,3 / 0,4 ²⁾	0,6	3)	0,3 / 0,4 ²⁾
500x200x200 Hammer drilling	≥ 6,9	0,4 / 0,5 ²⁾	3)	0,4 / 0,5 ²⁾	0,75 / 0,9 ²⁾	3)	0,4 / 0,6 ²⁾
Partial safety factor	γ _{Mm} ⁴⁾ [-]				2,5		-

¹⁾ The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.

²⁾ Only valid for temperature range "c" (30/50 °C).

³⁾ No performance assessed.

⁴⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Performances

Characteristic resistance for use in hollow or perforated masonry

Table C12.1: Characteristic resistance F_{Rk} in [kN] for use in hollow or perforated masonry - base material group "c"

Base material	Mean			esistance F _R	
[<i>Supplier Title, country</i>] Geometry, DF or nom. Size	compressive strength	Temperature range 30/50 °C and 50/80 °C			
$(L \times W \times H)$ [mm]	as per EN 771	DuoX	band 8	DuoXp	and 10
and drilling method			h _{nom}	[mm]	
5	[N/mm²]	50	70	50	70
Hollow brick lightweight concrete Hbl as per EN 771-3:2011+A1:2015 e.g. Indelasa, ES	≥ 2,5	0,6	0,5	0,4	0,6
25 133 25 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	≥ 4,8	1,2	0,9	0,75	0,9 / 1,2 ²⁾
Rotary drilling					
Hollow brick lightweight concrete Hbl as per EN 771-3:2011+A1:2015 <i>e.g. Knobel, DE</i>	≥ 2,5	0,9	0,75 / 0,9 ²⁾	0,9	0,6
240	≥ 5,0	1,5 / 2,0 ²⁾	1,5 / 2,0 ²⁾	2,0	1,5
55 500x240x240 Rotary drilling	≥ 6,2	2,0 / 2,5 ²⁾	2,0 / 2,5 ²⁾	2,5	1,5
Partial safety factor	γ _{Mm} ³⁾ [-]		2	2,5	

¹⁾ The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.

²⁾ Only valid for temperature range "c" (30/50 °C).

³⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Performances

Characteristic resistance for use in hollow or perforated masonry

Table C13.1: Characteristic resistance F_{Rk} in [kN] for use in autoclaved aerated concrete base material group "d"

Base material [Supplier Title, country] Geometry, DF or nom. Size (L x W x H) [mm]	Mean compressive strength as per EN 771-4 f _{cm,decl}	Characteristic resistance F _{Rk} [kN] Temperature range 30/50 °C and 50/80 °C		
		DuoXpand 8	DuoXpand 10	
		h _{nom} [mm]		
and drilling method	[N/mm²]	≥ 70		
Autoclaved aerated concrete, AAC as per EN 771-4:2011+A1:2015	2,8	0,3	0,4 / 0,5 ¹⁾	
	4,0	0,75	0,6	
e.g. (500x120x300)	5,0	0,9 / 1,2 ¹⁾	0,75	
e.g. (500x250x300) Hammer drilling	6,9	1,5 / 2,0 ¹⁾	0,9	
Partial safety factor	у маас ²⁾ [-]	2	,0	

¹⁾ Only valid for temperature range "c" (30/50 °C).

²⁾ In absence of other national regulations.

Table C13.2: Characteristic resistance F_{Rk} in [kN] for use in reinforced autoclaved aerated concrete - base material group "d"

[Supplier Title, country]	Compressive strength f _{ck} [N/mm ²] (compressive strength class) as per EN 12602	Characteristic resistance F _{Rk} [kN] Temperature range 30/50 °C and 50/80 °C		
		DuoXpand 8	DuoXpand 10	
		h _{nom} [mm]		
		≥ 70		
Reinforced autoclaved aerated concrete, AAC as per EN 12602:2016 h _{min} = 100 mm ³⁾ Hammer drilling	≥ 2,0 (AAC 2)	2)	²⁾ / 0,3 ¹⁾	
	≥ 2,5 (AAC 2,5)	2)	0,3 / 0,4 ¹⁾	
	≥ 3,0 (AAC 3)	2)	0,4	
	≥ 3,5 (AAC 3,5)	2)	0,4 / 0,5 ¹⁾	
	≥ 4,0 (AAC 4)	2)	0,5 / 0,6 ¹⁾	
	≥ 4,5 (AAC 4,5)	2)	0,6 / 0,75 ¹⁾	
	≥ 5,0 (AAC 5)	2)	0,75	
	≥ 6,0 (AAC 6)	2)	0,9	
Partial safety factor	У маас ⁴⁾ [-]	2,	0	

¹⁾ Only valid for temperature range "c" (30/50 °C).

²⁾ No performance assessed.

³⁾ For anchor groups in AAC 6 h_{min} = 175 mm.

⁴⁾ In absence of other national regulations.

fischer frame fixing DuoXpand

Perfo	rmances
-------	---------

Characteristic resistance for use in autoclaved aerated concrete and in reinforced autoclaved aerated concrete