



#### Zulassungsstelle für Bauprodukte und Bauarten

#### **Bautechnisches Prüfamt**

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts



## **Europäische Technische Bewertung**

## ETA-21/0168 vom 1. Juni 2021

#### **Allgemeiner Teil**

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Verbundanker W-VPZ

Verbunddübel zur Verankerung im Beton

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 1

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601, Edition 04/2020



## Europäische Technische Bewertung ETA-21/0168

Seite 2 von 15 | 1. Juni 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.



Europäische Technische Bewertung ETA-21/0168

Seite 3 von 15 | 1. Juni 2021

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Der Verbundanker W-VPZ ist ein Verbunddübel, der aus einer Glaspatrone W-VPZ und einer Ankerstange W-VD-A gemäß Anhang A besteht.

Die Glaspatrone W-VPZ wird in das Bohrloch gesetzt und die Ankerstange W-VD-A mit einer Maschine, wie in Anhang B4 beschrieben, eingetrieben.

Die Produktbeschreibung ist in Anhang A angegeben.

## 2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                                             | Leistung                   |
|--------------------------------------------------------------------------------------------------|----------------------------|
| Charakteristischer Widerstand für Zugbeanspruchung (statische und quasi-statische Einwirkungen)  | Siehe Anhang C1 bis C2, B2 |
| Charakteristischer Widerstand für Querbeanspruchung (statische und quasi-statische Einwirkungen) | Siehe Anhang C1, C3        |
| Verschiebungen für Kurzzeit- und<br>Langzeiteinwirkungen                                         | Siehe Anhang C4            |
| Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2      | Leistung nicht bewertet    |

#### 3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

| Wesentliches Merkmal                                           | Leistung                |
|----------------------------------------------------------------|-------------------------|
| Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen | Leistung nicht bewertet |



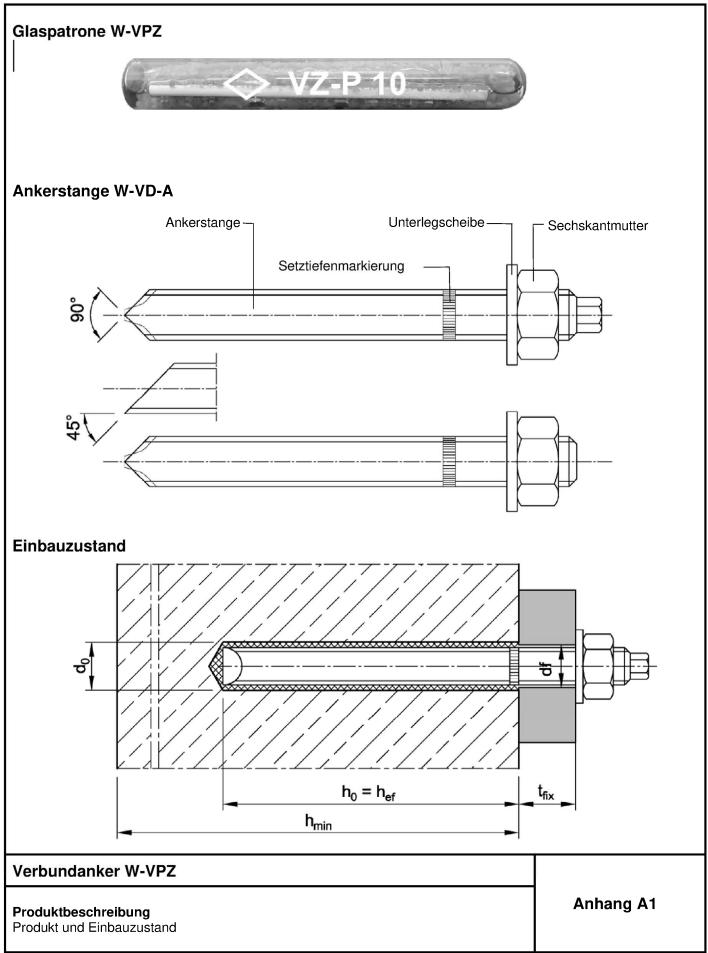


## Europäische Technische Bewertung ETA-21/0168

Seite 4 von 15 | 1. Juni 2021

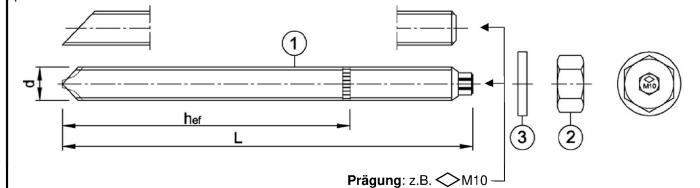
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG]. Folgendes System ist anzuwenden: 1


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 1. Juni 2021 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider







#### Ankerstange W-VD-A M8, M10, M12, M16, M20



Werkzeichen M10 Gewindegröße

#### Zusätzliche Kennungen:

-8 Festigkeitsklasse 8.8 A4 nichtrostender Stahl

HC hochkorrosionsbeständiger Stahl

#### **Glaspatrone W-VPZ**



#### Tabelle A1: Abmessungen

| Teil | Dübelgröße         |                 |      | M8     | M10     | M12     | M16     | M20     |
|------|--------------------|-----------------|------|--------|---------|---------|---------|---------|
|      |                    | d               | [mm] | 8      | 10      | 12      | 16      | 20      |
| 1    | Ankerstange        | L≥              | [mm] | 95     | 100     | 120     | 140     | 190     |
|      |                    | h <sub>ef</sub> | [mm] | 80     | 90      | 110     | 125     | 170     |
| 2    | Sechskantmutter    | sw              | [mm] | 13     | 17      | 19      | 24      | 30      |
| 4    | Glaspatrone Aufdru | uck             | [-]  | VZ-P 8 | VZ-P 10 | VZ-P 12 | VZ-P 16 | VZ-P 20 |

| Verbundanker \                         | V-VPZ |           |
|----------------------------------------|-------|-----------|
| Produktbeschreibu<br>Prägung und Abmes |       | Anhang A2 |

Glaspatrone



|                                                                                                                                                                                                             | T                           | A2: Werkstoffe         |                                             |                                                                                |                                       |               |                      |                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|---------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|---------------|----------------------|-------------------------------------|--|
| Teil                                                                                                                                                                                                        | Benennung                   |                        | Werkstoff                                   |                                                                                |                                       |               |                      |                                     |  |
| Stahl, verzinktgalvanisch verzinkt≥ 5 μm gemäß EN ISO 4042:2018feuerverzinkt≥ 40 μm (im Mittel 50 μm) gemäß EN ISO 1461:2009 und EN ISO 10684:2004+AC:2009diffusionsverzinkt≥ 45 μm gemäß EN ISO 17668:2016 |                             |                        |                                             |                                                                                |                                       |               |                      |                                     |  |
|                                                                                                                                                                                                             |                             | Festigkeits-<br>klasse |                                             | arakteristische Charakteristische Bruch-<br>Zugfestigkeit Streckgrenze dehnung |                                       |               |                      | EN 10277:2018,                      |  |
| 1                                                                                                                                                                                                           | Ankerstange                 | 5.8                    | f <sub>uk</sub>                             | 500                                                                            | f <sub>uk</sub>                       | 400           | A <sub>5</sub> > 8 % | EN 10263:2001,<br>EN 10025-2:2019   |  |
|                                                                                                                                                                                                             |                             | 8.8                    | [N/mm²]                                     | 800                                                                            | [N/mm²]                               | 640           | A <sub>5</sub> > 8 % |                                     |  |
| 2                                                                                                                                                                                                           | Sechskantmutter             | 5                      | für Ankers                                  | tangen der                                                                     | EN ISO 898-2:2012                     |               |                      |                                     |  |
|                                                                                                                                                                                                             | Secriskaritmutter           | 8                      | für Ankers                                  | tangen der                                                                     | Klasse 5.8,                           | 8.8           |                      | EN 130 696-2.2012                   |  |
| 3                                                                                                                                                                                                           | Unterlegscheibe             |                        | Stahl, verz                                 | ı'inkt                                                                         |                                       |               |                      |                                     |  |
| Nichtrostender Stahl A2<br>Nichtrostender Stahl A4<br>Hochkorrosionsbeständiger Stahl HCR                                                                                                                   |                             |                        |                                             |                                                                                |                                       |               |                      |                                     |  |
|                                                                                                                                                                                                             |                             |                        | Charakte                                    | eristische                                                                     | Charakteristische<br>Streckgrenze     |               | Bruch-               |                                     |  |
|                                                                                                                                                                                                             |                             | Festigkeits-<br>klasse | Zugfes                                      |                                                                                |                                       |               | dehnung              | EN 10088:2014                       |  |
| 1                                                                                                                                                                                                           | Ankerstange                 |                        |                                             |                                                                                |                                       |               |                      | EN 10088:2014<br>EN ISO 3506-1:2009 |  |
| 1                                                                                                                                                                                                           | Ankerstange                 | klasse                 | Zugfes                                      | stigkeit                                                                       | Streck                                | grenze        | dehnung              |                                     |  |
|                                                                                                                                                                                                             |                             | klasse<br>70           | Zugfes<br>f <sub>uk</sub><br>[N/mm²]        | stigkeit<br>700                                                                | Strecke<br>f <sub>uk</sub><br>[N/mm²] | grenze<br>450 | dehnung $A_5 > 8 \%$ | EN ISO 3506-1:2009<br>EN 10088:2014 |  |
| 1 2                                                                                                                                                                                                         | Ankerstange Sechskantmutter | 70<br>80               | Zugfes  f <sub>uk</sub> [N/mm²]  für Ankers | 700<br>800<br>tangen der                                                       | Strecke<br>f <sub>uk</sub><br>[N/mm²] | 450<br>600    | dehnung $A_5 > 8 \%$ | EN ISO 3506-1:2009                  |  |

| Verbundanker W-VPZ                |           |
|-----------------------------------|-----------|
| Produktbeschreibung<br>Werkstoffe | Anhang A3 |

Glasampulle, Quarzsand, Harz, Härter



#### Spezifizierung des Verwendungszwecks

| Dübelgröße                           | М8                                                                               | M10 | M12 | M16 | M20 |  |  |
|--------------------------------------|----------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|
| Statische und quasi-statische Lasten | <b>✓</b>                                                                         |     |     |     |     |  |  |
|                                      | bewehrter oder unbewehrter Normalbeton ohne Fasern,<br>gemäß EN 206:2013+A1:2016 |     |     |     |     |  |  |
| Verankerungsgrund                    | Festigkeitsklasse C20/25 bis C50/60, gemäß EN 206:2013+A1:2016                   |     |     |     |     |  |  |
|                                      | gerissener oder ungerissener Beton                                               |     |     |     |     |  |  |
| Temperaturbereich I -40°C bis +40°C  | max. Langzeit-Temperatur +24°C; max. Kurzzeit-Temperatur +40°C                   |     |     |     |     |  |  |
| Temperaturbereich II -40°C bis +80°C | max. Langzeit-Temperatur +50°C; max. Kurzzeit-Temperatur +80°C                   |     |     |     |     |  |  |

#### Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Werkstoffe)
- · Für alle anderen Bedingungen:

| Ankerstange | Verwendung gemäß EN 1993-1-4:2015 entsprechend der<br>Korrosionsbeständigkeitsklasse CRC nach Anhang A, Table A.2 |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| W-VD-A/A2   | CRC II                                                                                                            |
| W-VD-A/A4   | CRC III                                                                                                           |
| W-VD-A/HCR  | CRC V                                                                                                             |

#### Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Bemessungsverfahren: EN 1992-4:2018 oder Technical Report TR 055, Fassung Februar 2018

#### Einbau:

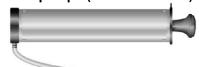
- · Trockener oder feuchter Beton
- Bohrlochherstellung durch Hammer-, Pressluft- oder Saugbohren
- Einbaurichtung D3 Einbau nach unten, horizontal und nach oben (z.B. Überkopfmontage)

| Verbundanker W-VPZ                     |           |
|----------------------------------------|-----------|
| Produktbeschreibung<br>Spezifikationen | Anhang B1 |



#### **Tabelle B1: Montagekennwerte**

| Dübelgröße                                 |                     |      | M8     | M10    | M12    | M16    | M20    |
|--------------------------------------------|---------------------|------|--------|--------|--------|--------|--------|
| Durchmesser Ankerstange                    | d=d <sub>nom</sub>  | [mm] | 8      | 10     | 12     | 16     | 20     |
| Bohrernenndurchmesser                      | $d_0$               | [mm] | 10     | 12     | 14     | 18     | 22     |
| Bohrlochtiefe                              | h <sub>0</sub>      | [mm] | 80     | 90     | 110    | 125    | 170    |
| Effektive Verankerungstiefe                | h <sub>ef</sub>     | [mm] | 80     | 90     | 110    | 125    | 170    |
| Durchgangsloch im anzuschließenden Bauteil | df                  | [mm] | 9      | 12     | 14     | 18     | 22     |
| Reinigungsbürste WIT-                      |                     | [-]  | RMB 10 | RMB 12 | RMB 14 | RMB 18 | RMB 22 |
| Bürstendurchmesser                         | d₀≥                 | [mm] | 10,5   | 12,5   | 14,5   | 18,5   | 22,5   |
| Maximales Montagedrehmoment                | T <sub>inst</sub> ≤ | [Nm] | 10     | 20     | 40     | 80     | 150    |


#### Zubehör

#### Saugbohrer



Saugbohrer (Würth Saugbohrer, MKT Saugbohrer SB oder Heller Duster Expert) und einem Klasse M Staubsauger mit einem Unterdruck von mind. 253 hPa und einer Durchflussrate von mind. 42 l/s

#### Ausblaspumpe (Volumen 750ml)



#### Reinigungsbürste WIT-RMB



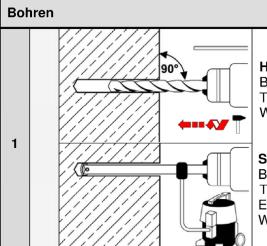
#### Tabelle B2: Mindestbauteildicke, Achs- und Randabstand

| Dübelgröße            |                  |      | M8  | M10 | M12 | M16 | M20 |
|-----------------------|------------------|------|-----|-----|-----|-----|-----|
| Mindestbauteildicke   | h <sub>min</sub> | [mm] | 110 | 120 | 140 | 160 | 220 |
| Minimaler Randabstand | Cmin             | [mm] | 40  | 45  | 45  | 50  | 55  |
| Minimaler Achsabstand | Smin             | [mm] | 40  | 50  | 60  | 75  | 90  |

#### Tabelle B3: Aushärtezeiten

| Temperatur im Bohrloch | minimale Aushärtezeit |
|------------------------|-----------------------|
| -20°C bis -16°C        | 17 h                  |
| -15°C bis -11°C        | 7 h                   |
| -10°C bis -6°C         | 4 h                   |
| -5°C bis -1°C          | 3 h                   |
| 0°C bis +4°C           | 50 min                |
| +5°C bis +9°C          | 25 min                |
| +10°C bis +19°C        | 15 min                |
| +20°C bis +29°C        | 6 min                 |
| +30°C bis +40°C        | 6 min                 |
| Patronentemperatur     | -15°C bis +40°C       |

#### Verbundanker W-VPZ


#### Produktbeschreibung

Montagekennwerte, Zubehör, Mindestbauteildicke, Abstände, Aushärtezeiten

**Anhang B2** 



#### Montageanweisung

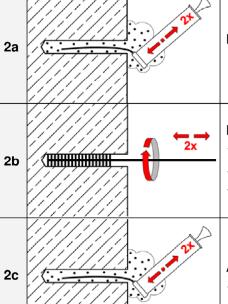


#### Hammer- oder Druckluftbohren:

Bohrloch erstellen (Durchmesser und Bohrlochtiefe entsprechend Tabelle B1).

Weiter bei Schritt 2.

Saugbohrer: siehe Anhang B2


Bohrloch erstellen (Durchmesser und Bohrlochtiefe entsprechend Tabelle B1).

Eine zusätzliche Reinigung ist nicht erforderlich! Weiter bei Schritt 3.

#### Reinigung

2

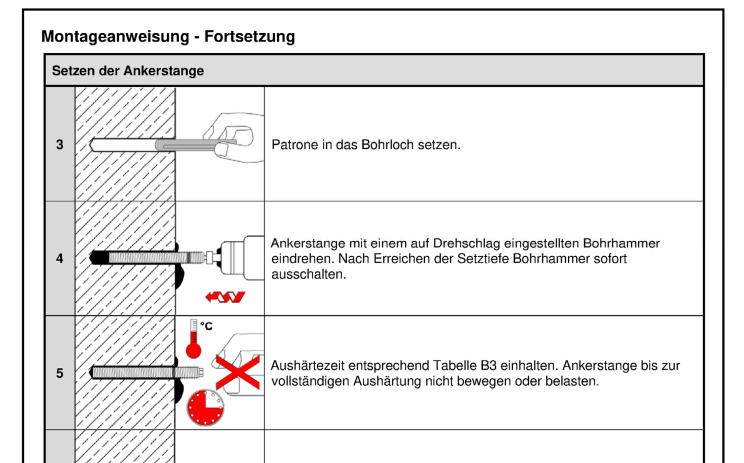
Bohrloch unmittelbar vor der Montage des Dübels reinigen, oder in geeigneter Weise bis zur Montage gegen Verschmutzung schützen.



Bohrloch vom Bohrlochgrund her mit Ausblaspumpe oder Druckluft mindestens **2x** vollständig ausblasen.

Bohrloch mit Reinigungsbürste WIT-RMB (nach Tabelle B1) **2x** ausbürsten. Bürstendurchmesser d<sub>b,min</sub> einhalten und überprüfen, Beim Einführen der Bürste in das Bohrloch muss ein deutlicher Widerstand spürbar sein. Andernfalls neue Reinigungsbürste verwenden.

Anschließend Bohrloch erneut vom Bohrlochgrund her mit Ausblaspumpe oder Druckluft **2x** vollständig ausblasen.


#### Verbundanker W-VPZ

**Produktbeschreibung** Montageanweisung **Anhang B3** 

6

7





Ausgetretenen Mörtel entfernen.

Tinst

٣

Anbauteil montieren und Drehmoment  $T_{\text{inst}}$  nach Tabelle B1 aufbringen.

# Verbundanker W-VPZ Produktbeschreibung Montageanweisung - Fortsetzung Anhang B4



#### Tabelle C1: Charakteristische Stahltragfähigkeit unter Zugbeanspruchung

| Dübelgröße                                                   | М8                      | M10               | M12  | M16  | M20 |     |     |     |  |
|--------------------------------------------------------------|-------------------------|-------------------|------|------|-----|-----|-----|-----|--|
| Stahlversagen                                                |                         |                   |      |      |     |     |     |     |  |
| Charakteristische Widerstär                                  | nde unter Zugbeanspruch | nung              |      |      |     |     |     |     |  |
| Stahl,                                                       | Festigkeitsklasse 5.8   | N <sub>Rk,s</sub> | [kN] | 18   | 29  | 42  | 79  | 123 |  |
| verzinkt                                                     | Festigkeitsklasse 8.8   | N <sub>Rk,s</sub> | [kN] | 29   | 46  | 67  | 126 | 196 |  |
| nichtrostender Stahl /<br>hochkorrosionsbeständiger<br>Stahl | Festigkeitsklasse 70    | N <sub>Rk,s</sub> | [kN] | 26   | 41  | 59  | 110 | 172 |  |
|                                                              | Festigkeitsklasse 80    | N <sub>Rk,s</sub> | [kN] | 29   | 46  | 67  | 126 | 196 |  |
| Teilsicherheitsbeiwerte 1)                                   |                         |                   |      |      |     |     |     |     |  |
| Stahl,                                                       | Festigkeitsklasse 5.8   | γMs,N             | [-]  |      |     | 1,5 |     |     |  |
| verzinkt                                                     | Festigkeitsklasse 8.8   | γMs,N             | [-]  |      |     | 1,5 |     |     |  |
| nichtrostender Stahl /                                       | Festigkeitsklasse 70    | γMs,N             | [-]  | 1,87 |     |     |     |     |  |
| hochkorrosionsbeständiger<br>Stahl                           | Festigkeitsklasse 80    | γMs,N             | [-]  |      |     | 1,6 |     |     |  |

<sup>1)</sup> sofern andere nationale Regelungen fehlen

#### Tabelle C2: Charakteristische Stahltragfähigkeit unter Querbeanspruchung

| Dübelgröße                         |                        |                     |      |      | M10 | M12  | M16 | M20 |
|------------------------------------|------------------------|---------------------|------|------|-----|------|-----|-----|
| Charakteristische Widerstär        | nde unter Querbeanspru | chung               |      |      |     |      |     |     |
| Stahlversagen <u>ohne</u> Hebelarm |                        |                     |      |      |     |      |     |     |
| Stahl,                             | Festigkeitsklasse 5.8  | V <sup>0</sup> Rk,s | [kN] | 11   | 17  | 25   | 47  | 73  |
| verzinkt                           | Festigkeitsklasse 8.8  | V <sup>0</sup> Rk,s | [kN] | 15   | 23  | 34   | 63  | 98  |
| nichtrostender Stahl /             | Festigkeitsklasse 70   | V <sup>0</sup> Rk,s | [kN] | 13   | 20  | 30   | 55  | 86  |
| hochkorrosionsbeständiger<br>Stahl | Festigkeitsklasse 80   | V <sup>0</sup> Rk,s | [kN] | 15   | 23  | 34   | 63  | 98  |
| Stahlversagen mit Hebelarm         | 1                      |                     |      |      |     |      |     |     |
| Stahl,                             | Festigkeitsklasse 5.8  | M <sup>0</sup> Rk,s | [Nm] | 19   | 37  | 65   | 166 | 325 |
| verzinkt                           | Festigkeitsklasse 8.8  | M <sup>0</sup> Rk,s | [Nm] | 30   | 60  | 105  | 266 | 519 |
| nichtrostender Stahl /             | Festigkeitsklasse 70   | M <sup>0</sup> Rk,s | [Nm] | 26   | 52  | 92   | 233 | 454 |
| hochkorrosionsbeständiger<br>Stahl | Festigkeitsklasse 80   | M <sup>0</sup> Rk,s | [Nm] | 30   | 60  | 105  | 266 | 519 |
| Teilsicherheitsbeiwerte 1)         |                        |                     |      |      |     |      |     |     |
| Stahl,                             | Festigkeitsklasse 5.8  | γMs,V               | [-]  |      |     | 1,25 |     |     |
| verzinkt                           | Festigkeitsklasse 8.8  | γMs,V               | [-]  | 1,25 |     |      |     |     |
| nichtrostender Stahl /             | Festigkeitsklasse 70   | γMs,V               | [-]  |      |     | 1,56 |     |     |
| hochkorrosionsbeständiger<br>Stahl | Festigkeitsklasse 80   | γMs,V               | [-]  |      | -   | 1,33 | -   | -   |

<sup>1)</sup> sofern andere nationale Regelungen fehlen

| Verbundanker W-VPZ                                                               |           |
|----------------------------------------------------------------------------------|-----------|
| Leistungen Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung | Anhang C1 |



## Tabelle C3: Charakteristische Werte der Zugtragfähigkeit

| Dübelgröße                             |                                 |                       |                      | М8                                               | M10                 | M12                 | M16  | M20  |
|----------------------------------------|---------------------------------|-----------------------|----------------------|--------------------------------------------------|---------------------|---------------------|------|------|
| Stahlversagen                          |                                 |                       |                      |                                                  |                     |                     |      |      |
| Charakteristische Widers               | tände unter Zugbeanspi          | ruchung               | 1                    |                                                  |                     |                     |      |      |
| Charakteristischer Widersta            | and                             | N <sub>Rk,s</sub>     | [kN]                 |                                                  | sieh                | e Tabell            | e C1 |      |
| Teilsicherheitsbeiwert                 | γMs,N                           | [-]                   |                      | siehe Tabelle C1                                 |                     |                     |      |      |
| Kombiniertes Versagen d                | urch Herausziehen und           | Betona                | usbruch              |                                                  |                     |                     |      |      |
| Charakteristische Verbun               | ndtragfähigkeit im <u>unger</u> | issenen               | Beton C2             | 0/25                                             |                     |                     |      |      |
| Temperaturbereich I:                   | +24°C / +40°C                   | τRk,ucr               | [N/mm <sup>2</sup> ] | 10,0                                             | 13,0                | 13,0                | 13,0 | 13,0 |
| Temperaturbereich II:                  | +50°C / +80°C                   | τRk,ucr               | [N/mm <sup>2</sup> ] | 8,5                                              | 11,0                | 11,0                | 11,0 | 11,0 |
| Erhöhungsfaktor für ungeris            | ssenen Beton                    | Ψc                    | [-]                  | $\left(\frac{f_{ck}}{20}\right)^{0,17}$          |                     |                     |      |      |
| Charakteristische Verbun               | ndtragfähigkeit im geriss       | enen B                | eton C20/2           | 5                                                |                     |                     |      |      |
| Temperaturbereich I:                   | +24°C / +40°C                   | τ <sub>Rk,cr</sub>    | [N/mm <sup>2</sup> ] | m²] 5,0 6,5 7,0                                  |                     | 7,5                 | 7,5  |      |
| Temperaturbereich II:                  | +50°C / +80°C                   | τ <sub>Rk,cr</sub>    | [N/mm <sup>2</sup> ] | 4,5                                              | 5,5                 | 6,0                 | 6,0  | 6,0  |
| Erhöhungsfaktor für gerissenen Beton   |                                 |                       | [-]                  | $\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0,14}$ |                     |                     |      |      |
| Reduktionsfaktor ψ <sup>0</sup> sus im | Beton C20/25                    |                       |                      |                                                  |                     |                     |      |      |
| Temperaturbereich I:                   | +24°C / +40°C                   | $\psi^0$ sus          | [-]                  |                                                  |                     | 0,64                |      |      |
| Temperaturbereich II:                  | +50°C / +80°C                   | $\psi^0_{\text{sus}}$ | [-]                  |                                                  |                     | 0,63                |      |      |
| Betonausbruch                          |                                 |                       |                      |                                                  |                     |                     |      |      |
| Calstants                              | ungerissener Beton              | k <sub>ucr,N</sub>    | [-]                  |                                                  |                     | 11,0                |      |      |
| Faktor k <sub>1</sub> —                | gerissener Beton                | k <sub>cr,N</sub>     | [-]                  |                                                  |                     | 7,7                 |      |      |
| Randabstand                            |                                 | Ccr,N                 | [mm]                 |                                                  | 1,5 h <sub>ef</sub> |                     |      |      |
| Achsabstand                            |                                 | Scr,N                 | [mm]                 | 3 h <sub>ef</sub>                                |                     |                     |      |      |
| Spalten                                |                                 |                       |                      |                                                  |                     |                     |      |      |
|                                        | h/h <sub>ef</sub> ≥ 2,0         |                       |                      |                                                  |                     | 1,0 h <sub>ef</sub> |      |      |
| Randabstand                            | $2.0 > h/h_{ef} > 1.3$          | C <sub>cr,sp</sub>    | [mm]                 | 2 • h <sub>ef</sub> (2,5 - h / h <sub>ef</sub> ) |                     |                     |      |      |
|                                        |                                 |                       | 2,4 h <sub>ef</sub>  |                                                  |                     |                     |      |      |
| Achsabstand                            |                                 | S <sub>cr,sp</sub>    | [mm]                 | 2 C <sub>cr,sp</sub>                             |                     |                     |      |      |
| Montagebeiwert                         |                                 | γinst                 | [-]                  |                                                  |                     | 1,2                 |      |      |

| Verbundanker W-VPZ                                         |           |
|------------------------------------------------------------|-----------|
| Leistungen<br>Charakteristische Werte der Zugtragfähigkeit | Anhang C2 |



## Tabelle C4: Charakteristische Werte der Quertragfähigkeit

| Dübelgröße                                  |                       |      | М8                                          | M10 | M12 | M16 | M20 |
|---------------------------------------------|-----------------------|------|---------------------------------------------|-----|-----|-----|-----|
| Stahlversagen <u>ohne</u> Hebelarm          |                       |      |                                             |     |     |     |     |
| Charakteristischer Widerstand               | V <sup>0</sup> Rk,s   | [kN] | siehe Tabelle C2                            |     |     |     |     |
| Duktilitätsfaktor                           | <b>k</b> <sub>7</sub> | [-]  |                                             |     | 1,0 |     |     |
| Teilsicherheitsbeiwert                      | γMs,V                 | [-]  | siehe Tabelle C2                            |     |     |     |     |
| Stahlversagen <u>mit</u> Hebelarm           |                       |      |                                             |     |     |     |     |
| Charakteristischer Biegewiderstand          | M <sup>0</sup> Rk,s   | [Nm] | siehe Tabelle C2                            |     |     |     |     |
| Teilsicherheitsbeiwert                      | γMs,V                 | [-]  | siehe Tabelle C2                            |     |     |     |     |
| Betonausbruch auf der lastabgewandten Seite |                       |      |                                             |     |     |     |     |
| Pry-out Faktor                              | <b>k</b> 8            | [-]  | 2,0                                         |     |     |     |     |
| Betonkantenbruch                            |                       |      |                                             |     |     |     |     |
| Effektive Ankerlänge                        | If                    | [mm] | min (h <sub>ef</sub> ;12 d <sub>nom</sub> ) |     |     |     |     |
| Außendurchmesser der Ankerstange            | d <sub>nom</sub>      | [mm] | 8 10 12 16 20                               |     |     | 20  |     |
| Montagebeiwert                              | γinst                 | [-]  | 1,0                                         |     |     |     |     |

| Verbundanker W-VPZ                                          |           |
|-------------------------------------------------------------|-----------|
| Leistungen<br>Charakteristische Werte der Quertragfähigkeit | Anhang C3 |



#### Tabelle C5: Verschiebung unter Zugbeanspruchung

| Dübelgröße                                               |                         | М8           | M10   | M12   | M16   | M20   |       |
|----------------------------------------------------------|-------------------------|--------------|-------|-------|-------|-------|-------|
| Verschiebungsfaktor <sup>1)</sup> für ungerissenen Beton |                         |              |       |       |       |       |       |
| Managhiah was                                            | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)] | 0,015 | 0,031 | 0,035 | 0,015 | 0,046 |
| Verschiebung<br>δ <sub>N∞</sub> -Faktor                  |                         | [mm/(N/mm²)] | 0,085 | 0,067 | 0,067 | 0,067 | 0,067 |
| Verschiebungsfaktor <sup>1)</sup> für gerissenen Beton   |                         |              |       |       |       |       |       |
| Vorachichung                                             | δ <sub>N0</sub> -Faktor | [mm/(N/mm²)] | 0,046 | 0,038 | 0,024 | 0,008 | 0,024 |
| Verschiebung                                             | δ <sub>N∞</sub> -Faktor | [mm/(N/mm²)] | 0,192 | 0,142 | 0,090 | 0,104 | 0,082 |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}\text{- Faktor} \quad \tau; \qquad \qquad \tau\text{: Verbundspannung unter Zugbeanspruchung}$ 

 $\delta_{N\infty} = \delta_{N\infty}\text{- Faktor} \cdot \tau;$ 

#### Tabelle C6: Verschiebung unter Querbeanspruchung

| Dübelgröße                        |                         |           | M8   | M10  | M12  | M16  | M20  |
|-----------------------------------|-------------------------|-----------|------|------|------|------|------|
| Verschiebungsfaktor <sup>1)</sup> |                         |           |      |      |      |      |      |
| Vorachichung                      | δ <sub>v0</sub> -Faktor | [mm/(kN)] | 0,06 | 0,06 | 0,05 | 0,04 | 0,04 |
| Verschiebung                      | δ <sub>∨∞</sub> -Faktor | [mm/(kN)] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 |

<sup>1)</sup> Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ - Faktor  $\cdot$  V;

V: einwirkende Querkraft

 $\delta_{V\infty} = \delta_{V\infty}$ - Faktor · V;

Verbundanker W-VPZ **Anhang C4** Leistungen Verschiebungen