

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0265 of 19 May 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete

Bonded fastener for use in concrete

LUSAN FIJACIONES Y ANCLAJES, S.L. C. / Molinos 20 29491 ALGATOCIN, MALAGA SPANIEN

PLANT 1

28 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-21/0265

Page 2 of 28 | 19 May 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0265 English translation prepared by DIBt

Page 3 of 28 | 19 May 2021

Specific Part

1 Technical description of the product

The "RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete" is a bonded anchor consisting of a cartridge with injection mortar VINI or VININ and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod HR-M6 to HR-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1 to C 3, C 5, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C 4, C 6, C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0265

Page 4 of 28 | 19 May 2021

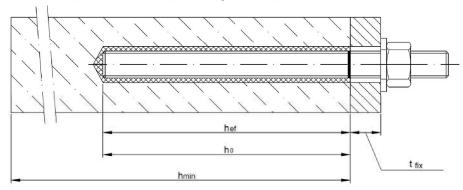
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

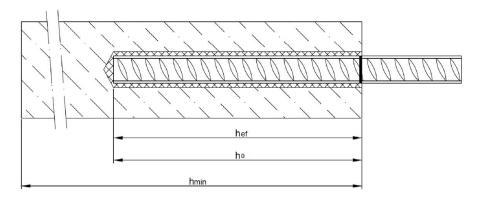
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

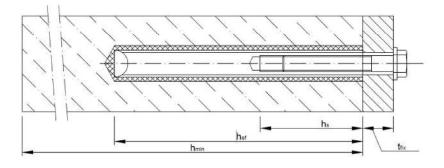
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 19 May 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

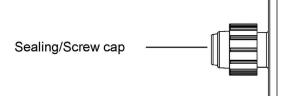
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod HR-M6 up to HR-M20

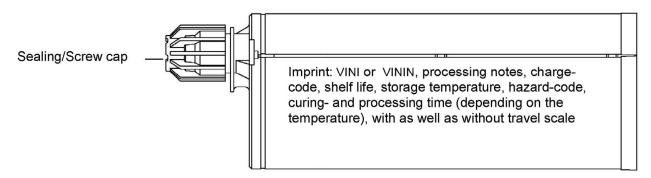
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

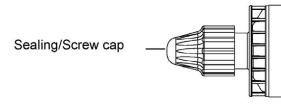
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Product description Installed condition	Annex A 1

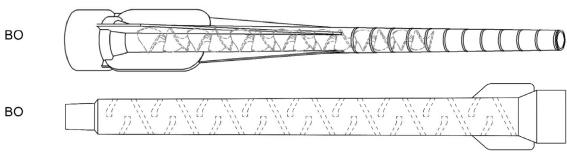

Cartridge: VINI or VININ

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



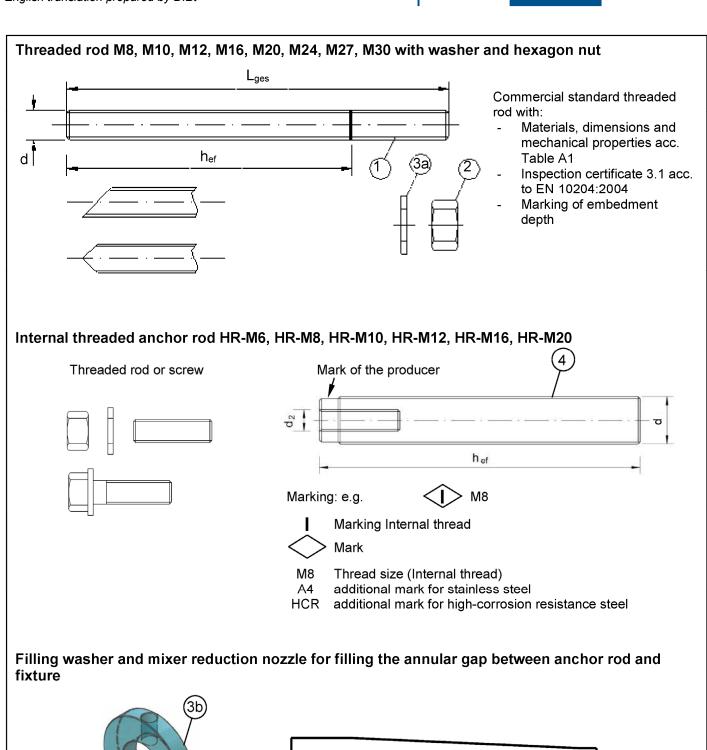
Imprint: VINI or VININ, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: VINI or VININ, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale



Product description
Injection system

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete

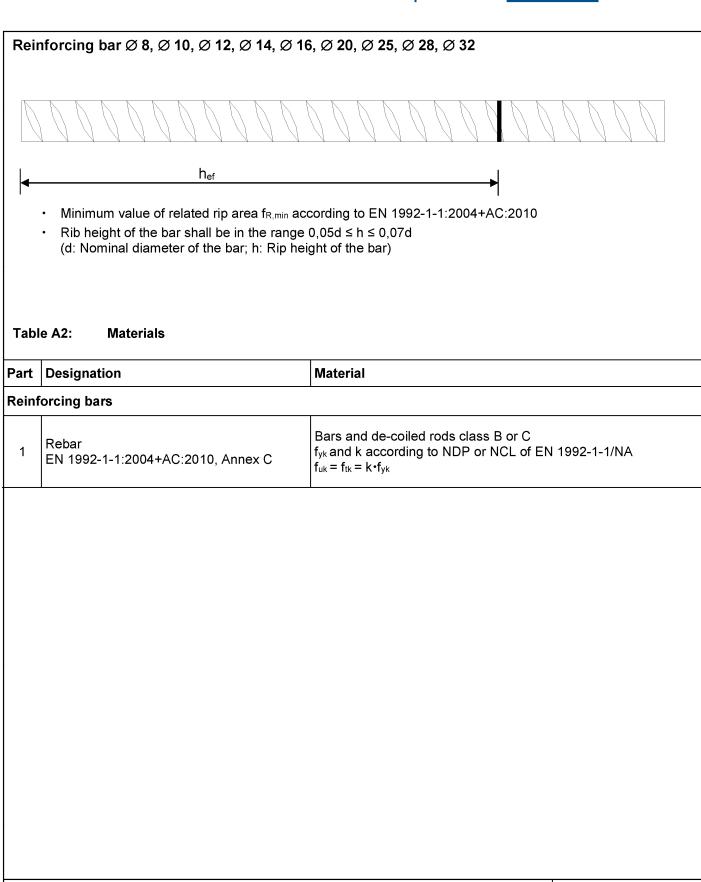
Annex A 2

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete Product description Annex A 3

Threaded rod, internal threaded rod and filling washer

Page 8 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt



art	Designation	Material				
	I, zinc plated (Steel acc. to E			2001)		
zin		icc. to EN ISO 4042:2018		1100 40004:0004:	A O : 0000	
		acc. to EN ISO 1461:2009 acc. to EN ISO 17668:2016		1150 10684:2004+	AC:2009 or	
31)	Characteristic	Characteristic	Elongation at
		Property class		tensile strength	yield strength	fracture
			4.6	f _{uk} = 400 N/mm²	f _{vk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod			f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
	Till Cadea Tod	acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm²	f _{yk} = 300 N/mm ²	A ₅ > 8%
		EN 130 696-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ ≥ 8%
		,	4	for threaded rod c	lass 4.6 or 4.8	•
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod c	lass 5.6 or 5.8	
		EN 130 696-2.2012	8	for threaded rod c	lass 8.8	
За	Washer	Steel, zinc plated, hot-di (e.g.: EN ISO 887:2006,				N ISO 7094:200
3b	Filling washer	Steel, zinc plated, hot-di	p galva		ed	
	Internal threaded	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
4	anchor rod	acc. to	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
					•	0
	1 1 1 2 (1) 1 1 1 1 1 1 1	EN ISO 898-1:2013		f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%
taiı	nless steel A2 (Material 1.43) nless steel A4 (Material 1.44) corrosion resistance steel	_ 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43	67 or 1 62 or 1	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .10088-1: 20	10088-1:2014) 10088-1:2014) 14)	A ₅ > 8%
taiı	nless steel A4 (Material 1.44)	_ 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43	67 or 1 62 or 1 5, acc.	.4541, acc. to EN .4578, acc.	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength	A ₅ > 8% Elongation at fracture
taiı igh	nless steel A4 (Material 1.44)	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class	67 or 1 62 or 1 5, acc.	.4541, acc. to EN .4578, acc.	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm²	A ₅ > 8%
aiı igh	nless steel A4 (Material 1.44) corrosion resistance steel	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class	67 or 1 62 or 1 5, acc.	.4541, acc. to EN .4578, acc.	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength	A ₅ > 8% Elongation at fracture
taiı igh	nless steel A4 (Material 1.44) corrosion resistance steel	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class	67 or 1 62 or 1 5, acc. 50 70	.4541, acc. to EN .4578, acc.	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
aiı igh	nless steel A4 (Material 1.44) corrosion resistance steel	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2020	67 or 1 62 or 1 5, acc. 50 70	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .7 to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f_{yk} = 210 N/mm ² f_{yk} = 450 N/mm ² f_{yk} = 600 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
taii igh	nless steel A4 (Material 1.44) corrosion resistance steel	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2020 acc. to	67 or 1 62 or 1 5, acc. 50 70 80 50	.4541, acc. to EN $^{\prime}$.4578, acc. to EN $^{\prime}$ to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² f_{uk} = 800 N/mm²	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
taiı igh	Threaded rod ¹⁾³⁾	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2020	67 or 1 62 or 1 5, acc. 50 70 80 50 70	.4541, acc. to EN .4578, acc. to EN . to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² f_{uk} = 800 N/mm² for threaded rod c	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
taii igh 1	Threaded rod ¹⁾³⁾	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2020 acc. to	67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 1 404 / 1 1.456	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod composition for thr	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_0 \ge 8\%$ $A_0 \ge 8\%$
taii igh 1 2	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or	67 or 1 62 or 1 5, acc. 50 70 80 70 80 307 / 1 404 / 1 1.4568 EN ISO	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .5, acc. to EN 10086 D 7089:2000, EN IS	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm² f _{yk} = 600 N/mm² lass 50 lass 70 lass 80 1.4541, acc. to EN lass 1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_0 \ge 8\%$ $A_0 \ge 8\%$
taiı	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	67 or 1 62 or 1 5, acc. 50 70 80 70 80 307 / 1 404 / 1 1.4568 EN ISO	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .5, acc. to EN 10086 D 7089:2000, EN IS	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm² f _{yk} = 600 N/mm² lass 50 lass 70 lass 80 1.4541, acc. to EN lass 1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_0 \ge 8\%$ $A_0 \ge 8\%$
taii igh 1	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High	67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 404 / 1 1.4564 EN ISO corrosi	.4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .5, acc. to EN 10088 0 7089:2000, EN IS on resistance stee Characteristic	10088-1:2014) 10088-1:2014) 14) Characteristic yield strength fyk = 210 N/mm² fyk = 450 N/mm² Identifyk = 600	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 N ISO 7094:200

³⁾ Property class 80 only for stainless steel A4

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Z47429.21 8.06.01-54/21

Annex A 5

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete

Product description
Materials reinforcing bar

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, HR-M6 to HR-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Uncracked concrete: M8 to M30, Rebar Ø8 to Ø32, HR-M6 to HR-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, HR-M6 to HR-M20.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, HR-M6 to HR-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, HR-M6 to HR-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Intended Use Specifications	Annex B 1

Z47429.21 8.06.01-54/21

Electronic copy of the ETA by DIBt: ETA-21/0265

Page 11 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod									
Anchor size		M8	M10	M12	M16	M20	M24	M27	M30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	max T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment denth	h _{ef,min} [mm] =		60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm				!	h _{ef} + 2d ₍)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		HR-M6	HR-M8	HR-M10	HR-M12	HR-M16	HR-M20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35
Effective embedment denth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective embedment depth	h _{ef,max} [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	max T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	h_{ef} + 30 mm ≥ 100 mm					
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Intended Use Installation parameters	Annex B 2

Table B4:	Table B4: Parameter cleaning and setting tools																																			
	cercesconne				**************************************	- Address of the London																														
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d _i Brush		d _{b,min} min. Brush - Ø	Piston Installation direction and use of piston plug																													
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1																										
M8			10	C1-10	12	10,5		•																												
M10	8	HR-M6	12	C1-12	14	12,5		Na nistan n	dua roquira																											
M12	10	HR-M8	14	C1-14	16	14,5		No piston plug required																												
	12		16	C1-16	18	16,5																														
M16	14	HR-M10	18	C1-18	20	18,5	VS18																													
	16		20	C1-20	22	20,5	VS20																													
M20	20	HR-M12	24	C1-24	26	24,5	VS24	h _{ef} > 250 mm 2	h _{ef} >																											
M24		HR-M16	28	C1-28	30	28,5	VS28		250 mm	all																										
M27	25		32	C1-32	34	32,5	VS32		230 111111																											
M30	28	HR-M20	35	C1-35	37	35,5	VS35]]]]]	_]	_	_]]		1	_			_	_	_	-	
	32		40	C1-40	41,5	40,5	VS40																													

MAC - Hand pump (volume 750 ml)
Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h₀): < 10 d_{nom} Only in uncracked concrete

CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

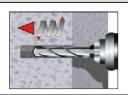
Piston plug for overhead or horizontal installation VS

Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush C1-Drill bit diameter (d₀): all diameters

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete
NEONA VINICEOTER : ON LOTINENO LOGAN IOI CONCIETE

Intended Use

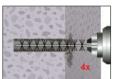

Cleaning and setting tools

Annex B 3

Installation instructions

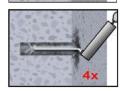
Drilling of the bore hole

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for bore hole diameter d₀ ≤ 20mm and bore hole depth h₀ ≤ 10d_{nom} (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump ¹⁾ (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

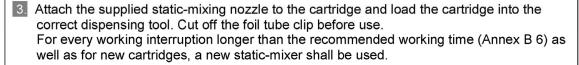
If the bore hole ground is not reached with the brush, a brush extension must be used.

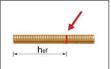
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

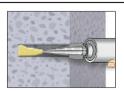
RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete

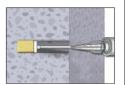
Intended Use

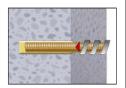

Installation instructions


Annex B 4

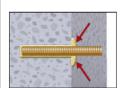
Installation instructions (continuation)



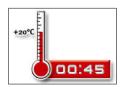

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete Intended Use Installation instructions (continuation) Annex B 5

to

to

to

to

+ 40 °C

Cartridge temperature

+ 10 °C

+ 20 °C

+ 30 °C

+ 35 °C

80 min

45 min

25 min

20 min

15 min

Table B5:	Table B5: Maximum working time and minimum curing time VINI									
Concrete temperature			Gelling- / working time	Minimum curing time in dry concrete ¹⁾						
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾						
-5 °C	to	-1°C	90 min	14 h						
0 °C	to	+4°C	45 min	7 h						
+5 °C	to	+9°C	25 min	2 h						

15 min

6 min

4 min

2 min

1,5 min

+5°C to +40°C

+19°C

+29°C

+34°C

+39°C

²⁾ Cartridge temperature must be at min. +15°C.

Table B6: Maximum working time and minimum curing time VININ

Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 Min
+	10 °C		6 min	60 Min
Cartrido	ge tem	perature	-20°C to	+10°C

¹⁾ In wet concrete the curing time must be doubled.

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Intended Use	Annex B 6
Curing time	

¹⁾ In wet concrete the curing time must be doubled.

Page 16 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt

Т	able C1: Characteristic values for s rods	teel ten	sion re	esistand	e and s	teel sh	ear res	sistand	e of th	readed	I
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
CI	naracteristic tension resistance, Steel failur	e ¹⁾		•				•	•		
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	naracteristic tension resistance, Partial fact	or ²⁾									
St	eel, Property class 4.6 and 5.6	γMs,N	[-]				2,0	כ			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6			
St	Stainless steel A2, A4 and HCR, class 70 Y _{Ms,N} [-] 1,87										
St	Stainless steel A4 and HCR, class 80 Y _{Ms,N} [-] 1,6										
C	naracteristic shear resistance, Steel failure	1)							_		
L	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
. arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	$ V^0_{Rk,s} $	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
With	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk.s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	haracteristic shear resistance, Partial factor	- 2)									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]	1,67							
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	:5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	Y _{Ms,V}	[-]				1,3	3			
4)											

¹⁾ Values are only valid for the given stress area As. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

3) Anchor type not part of the ETA

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: C	haracteristic values	for Concrete	cone failure	and Splitting with all kind of action
Anchor size				All Anchor types and sizes
Concrete cone fa	ailure			
Uncracked concre	Uncracked concrete		[-]	11,0
Cracked concrete	Cracked concrete		[-]	7,7
Edge distance	Edge distance		[mm]	1,5 h _{ef}
Axial distance	Axial distance		[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	·	s _{cr,sp}	[mm]	2 c _{cr,sp}

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Page 18 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt

	or size threaded	rod			M8	M10	M12	M16	M20	M24	M27	M3
	failure cteristic tension re	sistance	N _{Rk,s}	[kN]			A • f.	.ı. (or s	ee Tah	le C1)		
Partial factor			γ _{Ms,N}	[-]	A _s • f _{uk} (or see Table C1) see Table C1							
	pined pull-out and	l concrete failure		[]				000 10	1010 01			
Chara	cteristic bond resi	stance in uncracke	ed concrete C2	20/25								
4)	I: 40°C/24°C				10	12	12	12	12	11	10	9
ange	II: 80°C/50°C	Dry, wet concrete			7,5	9	9	9	9	8,5	7,5	6,
ure	III: 120°C/72°C			[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
Temperature range	I: 40°C/24°C		[⊤] Rk,ucr		7,5	8,5	8,5	8,5		No Performance Assessed		
Tem	II: 80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	N			
·	III: 120°C/72°C				4,0	5,0	5,0	5,0	, 1030330u			
Chara	cteristic bond resi	stance in cracked	concrete C20/	25		ı	I		1	I	I	
4)	l: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range	II: 80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
ure	III: 120°C/72°C	;		[N]/mamm21	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
oerat	l: 40°C/24°C		T _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5				
Temp	II: 80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0	No Performance Assessed			е
•	III: 120°C/72°C				2,0	2,5	3,0	3,0				
Redul	ktion factor ψ ⁰ sus	in cracked and un	cracked concre	ete C20/25								
		Dry wet			0,73							
ratur ge		Dry, wet concrete and		[-]	0,65							
eratu nde			$ \Psi^{U}_{elle} $	-				0,57				
Femperatu range		flooded bore	Ψ^0 sus	[-]				0	57			
Temperature	II: 80°C/50°C	flooded bore		[-]								
	III: 120°C/72°C	flooded bore hole	C25/30 C30/37	[-]				1,	02 04			
Increa		flooded bore hole	C25/30 C30/37 C35/45	[-]				1, 1, 1,	02 04 07			
Increa	III: 120°C/72°C	flooded bore hole	C25/30 C30/37 C35/45 C40/50	[-]				1, 1, 1, 1,	02 04 07 08			
Increa	III: 120°C/72°C	flooded bore hole	C25/30 C30/37 C35/45 C40/50 C45/55	[-]				1, 1, 1, 1,	02 04 07 08 09			
Increa Ψ _C	III: 120°C/72°C	flooded bore hole	C25/30 C30/37 C35/45 C40/50	[-]				1, 1, 1, 1, 1,	02 04 07 08 09			
Increa Ψc Conc Relev	III: 120°C/72°C asing factors for co	flooded bore hole	C25/30 C30/37 C35/45 C40/50 C45/55	[-]				1, 1, 1, 1, 1,	02 04 07 08 09			
Increa Ψc Conc Releva	III: 120°C/72°C asing factors for co	flooded bore hole	C25/30 C30/37 C35/45 C40/50 C45/55	[-]				1, 1, 1, 1, 1, 1,	02 04 07 08 09			
Increa Vc Conci Relevi Splitti Relevi Instal	III: 120°C/72°C asing factors for co rete cone failure ant parameter ing ant parameter lation factor	flooded bore hole	C25/30 C30/37 C35/45 C40/50 C45/55					1, 1, 1, 1, 1, 1,	02 04 07 08 09 10 able C2			
Increa Vc Conc Relev Splitti Relev Instal	III: 120°C/72°C asing factors for co rete cone failure cant parameter ing ant parameter	flooded bore hole	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60		1,0			1, 1, 1, 1, 1, 1,	02 04 07 08 09 10 able C2			
Increa Ψc Conc Relevents Splitti Relevents Instal for dry	III: 120°C/72°C asing factors for co rete cone failure ant parameter ing ant parameter lation factor	flooded bore hole	C25/30 C30/37 C35/45 C40/50 C45/55	[-]	1,0	1		1, 1, 1, 1, 1, 1,	02 04 07 08 09 10 able C2	lo Perf	ormano	e
Conc. Relev. Splitti Relev. Instal for dry	rete cone failure ant parameter ing ant parameter lation factor y and wet concrete	flooded bore hole	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]	1,0	1		1, 1, 1, 1, 1, 1,	02 04 07 08 09 10 able C2	lo Perf		e

Page 19 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm							I			
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	$\gamma_{Ms,V}$	[-]				see	Table C	:1		
Ductility factor k ₇ [-]			1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} ∙ f _{uk}	(or see	Table C	(1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Concrete pry-out failure										
Factor	k ₈	[-]	2,0							
Installation factor	γinst	[-]	1,0							
Concrete edge failure										
Effective length of fastener	I _f	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	_n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0	'		

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Page 20 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt

Table C5: Characteristic values of tension loads under static and quasi-static action										
Anchor size internal threaded	d anchor rods			HR-M6	HR-M8	HR-M10	HR-M12	HR-M16	HR-M20	
Steel failure ¹⁾						•			•	
Characteristic tension resistanc	e, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength class 5.8	3 and 8.8	γMs,N	[-]			1	,5			
Characteristic tension resistand Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor		γ _{Ms,N}	[-]			1,87			2,86	
Combined pull-out and conci	rete cone failu	re	•	•						
Characteristic bond resistance	in uncracked c	oncrete	C20/25							
υ l: 40°C/24°C	Dry wot			12	12	12	12	11	9	
1: 40°C/24°C	Dry, wet concrete			9	9	9	9	8,5	6,5	
្តែ	concrete	ļ _{τ_} .	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
ညီ ဖြွ ၂: 40°C/24°C	flooded bare	'Rk,ucr	[[[[]	8,5	8,5	8,5				
្តច	flooded bore hole			6,5	6,5	6,5	No Perfe	ormance A	ssessed	
	noie			5,0	5,0	5,0]			
Characteristic bond resistance	in cracked con	crete C2	20/25			•				
1: 40°C/24°C	D			5,0	5,5	5,5	5,5	5,5	6,5	
II: 80°C/50°C	Dry, wet	_		3,5	4,0	4,0	4,0	4,0	4,5	
## 90	concrete		FN 1 / 27	2,5	3,0	3,0	3,0	3,0	3,5	
1: 40°C/50°C 1: 80°C/50°C	<u> </u>	^τ Rk,cr	[N/mm²]	4,0	5,5	5,5		•	•	
_ b	flooded bore				3,0	4,0	4,0	No Perfo	ormance A	ssessed
III: 120°C/72°C	hole			2,5	3,0	3,0				
Reduktion factor ψ ⁰ sus in cracl	ked and uncrac	ked con	crete C2	0/25						
मू ।: 40°C/24°C	Dry, wet					0,	73			
III: 40°C/24°C	concrete and flooded bore	ψ ⁰ sus	[-]	0,65						
р III: 120°С/72°С	hole			0,57						
		C2	5/30			1,	02			
		C3	0/37	1,04						
Increasing factors for concrete		C3	5/45	1,07						
$\Psi_{\mathbf{c}}$		C4	0/50			1,	.08			
			5/55	1,09						
		C5	0/60	1,10						
Concrete cone failure										
Relevant parameter						see Ta	able C2			
Splitting failure										
Relevant parameter						see Ta	able C2			
Installation factor		ı		I						
for dry and wet concrete		γ _{inst}	[-]		4 .	1	,2			
for flooded bore hole		'11131	1 1		1,4		∣ No Perf	ormance A	ssessed	

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

²⁾ For HR-M20 strength class 50 is valid

Page 21 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt

Table C6: Characteristic values of shear loads under static and quasi-static action									
Anchor size for internal threade		HR-M6	HR-M8	HR-M10	HR-M12	HR-M16	HR-M20		
Steel failure without lever arm ¹⁾)				•	•	•		
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	and 8.8	$\gamma_{Ms,V}$	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Partial factor		$\gamma_{Ms,V}$	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		$\gamma_{Ms,V}$	[-]	1,56					2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ_{inst}	[-]				1,0		
Concrete edge failure									
Effective length of fastener		I _f	[mm]					min (h _{ef} ; 300mm)	
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]	1,0					

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For HR-M20 strength class 50 is valid

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Page 22 of European Technical Assessment ETA-21/0265 of 19 May 2021

English translation prepared by DIBt

Anchor size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure		Terr							4)				
Characteristic tension resi	N _{Rk,s}	[kN]				/	۹ _s • f _{uk}	1)					
Cross section area		A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,N}	[-]					1,4 ²⁾						
Combined pull-out and o													
Characteristic bond resista	ance in uncra	cked concre	ete C20/25										
<u>θ</u> <u>I: 40°C/24°C</u> <u>II: 80°C/50°C</u>	Dry, wet			10 7,5	12 9	12 9	12 9	12 9	12 9	11	10	8,5	
ill: 120°C/72°C	concrete			7,5 5,5	6,5	6,5	6,5	6,5	6,5	8,0 6,0	7,0 5,0	6,0 4,5	
1: 40 C/24 C 11: 80°C/50°C 11: 40°C/24°C 1: 40°C/24°C 1: 80°C/50°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5	8,5	,		· · · · · ·		
E	flooded			5,5	6,5	6,5	6,5	6,5			ormano	e	
III: 120°C/72°C	bore hole			4,0	5,0	5,0	5,0	5,0		Asse	ssed		
Characteristic bond resist	ance in crack	ed concrete	C20/25		•								
υ <u>I: 40°C/24°C</u>	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
到 II: 80°C/50°C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
iii: 120°C/72°C	001101010	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
	flooded	*KK,Cr	[]	4,0	4,0	5,5	5,5	5,5	No Performance			:e	
គ្គ <u>II: 80°C/50°C</u>	bore hole			2,5	3,0 2,5	4,0 3,0	4,0 3,0	4,0 3,0		Assessed			
Reduktion factor ψ ⁰ sus in	cracked and	uncracked	concrete C		2,5	3,0	3,0	3,0					
				20,20									
I: 40°C/24°C	Dry, wet concrete							0,73					
II: 40°C/24°C	and	Ψ ⁰ sus	ψ ⁰ sus [-]	0,65									
III: 120°C/72°C	flooded bore hole			0,57									
		C25	5/30					1,02					
		C30						1,04					
Increasing factors for cond	crete	C35						1,07					
Ψc		C40						1,08					
		C45		1,09									
		C50)/60					1,10					
Concrete cone failure								T=-1-					
Relevant parameter							see	Table	C2				
Splitting								T					
Relevant parameter							see	Table	C2				
Installation factor for dry and wet concrete				1,2	1			1	,2				
for flooded bore hole		Yingt	[-]	1,∠				J	<u> </u>	lo Perf	ormano	·e	
		γinst	L J			1,4			'`		ssed		
1) f _{uk} shall be taken from th	o specificatio	as of reinforc	ing bare										

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

Table C8: Characteristic values of shear loads under static and quasi-static action											
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•			•		•		
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 • A _s	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]		•			1,5 ²⁾		•		
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm		•	•								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	·Wel·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•			1,5 ²⁾		•		
Concrete pry-out failure		-1									
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure		-1	•								
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mm)					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 25 28 3				32				
Installation factor	γinst	[-]			'	1.	1,0				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size thread	Anchor size threaded rod M8					M16	M20	M24	M27	M30
Uncracked concrete C20/25 under static and quasi-static action										
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete C	20/25 under	static and quasi-station	caction							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05			0,1	05		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	19			0,1	70		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255				0,2	:45		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219		0,170					
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	45		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances	Annex C 9
Displacements (threaded rods)	

Table C11: Displacements under tension load ¹⁾ (Internal threaded anchor rod)									
Anchor size Intern	al threaded an	chor rod	HR-M6	HR-M8	HR-M10	HR-M12	HR-M16	HR-M20	
Uncracked concrete C20/25 under static and quasi-static action									
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119	
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172	
Cracked concrete C	20/25 under st	atic and quasi-st	atic action						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,090			0,070			
l: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170			
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255	0,245					
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219	0,170					
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Inte	HR-M6	HR-M8	HR-M10	HR-M12	HR-M16	HR-M20			
Uncracked and cracked concrete C20/25 under static and quasi-static action									
All temperature	δ _{v0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04	
ranges	δ _{∨∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances	Annex C 10
Displacements (Internal threaded anchor rod)	

Table C13: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concre	Uncracked concrete C20/25 under static and quasi-static action											
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic action	1							
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,0	0,090 0,070								
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105							
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170							
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245				
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,2	219				0,170				
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245							

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacement under shear load¹⁾ (rebar) Table C14:

Anchor size reinfo	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Uncracked concrete C20/25 under static and quasi-static action												
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
ranges	δ _{∨∞} - factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
Cracked concrete	Cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06	
ranges	δ _{∨∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

Electronic copy of the ETA by DIBt: ETA-21/0265

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Displacements (rebar)	Annex C 11

Table C15: Characteristic values of tension loads under seismic action (performance category C1)														
Anchor size threaded rod N								M12	M16	M20	M24	M27	M30	
Steel failure														
Characteristic tension resistance $N_{Rk,s,eq,C1}$ [kN] $1,0 \cdot N_{Rk,s}$														
Partial	facto	or		$\gamma_{Ms,N}$	[-]				see Ta	ble C1				
Comb	ined	pull-out and o	concrete failure											
Chara	cteris	tic bond resista	ance in uncracked	d and cracked	concrete C2	20/25			•			•		
	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5	
ange	II:	80°C/50°C	Dry, wet concrete			1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
Temperature range	III:	120°C/72°C		τ	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
)erat	I:	40°C/24°C		^τ Rk,eq,C1	[[N/]]	2,5	2,5	3,7	3,7					
Tem _l	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	No Performance Assessed			е	
	III:	120°C/72°C				1,3	1,6	2,0	2,0					
Increasing factors for concrete ψ_{C} C25/30 to C50/60 1,0														
Install	ation	factor		•										
for dry and wet concrete						1,0 1,2								
for floo	ded	bore hole		γ inst	[-]	1,4					No Performance Assessed			

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod	M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm										
Characteristic shear resistance (Seismic C1) $V_{Rk,s,eq,C1}$ [kN] $0,70 \cdot V_{Rk,s}^0$										
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Factor for annular gap	[-]	0,5 (1,0)1)								

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 12

Table C17: Characteristic values (performance catego		loads u	nder s	eismic	action	า					
Anchor size reinforcing bar									Ø 32		
Steel failure											
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]				1,0	• A _s • f	uk 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,N}	[-]					1,4 ²⁾				
Combined pull-out and concrete failu	ıre										
Characteristic bond resistance in uncra	cked and crac	ked cond	crete C	20/25							
<u>β</u> <u>I: 40°C/24°C</u> Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
120°C/72°C concrete	T	[N/m	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
i do C/24°C flooded	^τ Rk, eq,C1	m²]	2,5	2,5	3,7	3,7	3,7	No Performance			
II: 80°C/50°C bore hole			1,6	1,9	2,7	2,7	2,7] '`	Asse		.
III: 120°C/72°C bote flote			1,3	1,6	2,0	2,0	2,0			33CU	
Increasing factors for concrete $\psi_{\mathbf{C}}$	Increasing factors for concrete $\psi_{\mathbf{C}}$ C25/30 to C50/60 1,0										
Installation factor											
for dry and wet concrete 1,2 1,2											
for flooded bore hole	γinst	[-]	1,4					No Performance Assessed			

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C18: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance V _{Rk,s,eq,C1} [kN]				0,35 • A _s • f _{uk} ²⁾								
Cross section area A _s [mm			50	79	113	154	201	314	491	616	804	
Partial factor	[-]	1,52)										
Factor for annular gap α_{gap} [-]				0,5 (1,0)3)								

¹⁾ fuk shall be taken from the specifications of reinforcing bars

RESINA VINILESTER + SIN ESTIRENO LUSAN for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 13

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required