

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0370 of 20 May 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

BIEMME SRL Injection system 941 VE for concrete

Bonded fastener for use in concrete

BIEMME SRL Via Tevere 26 LUCREZIA DI CARTOCETO 61030 (PU) ITALIEN

BIEMME SRL IT893 ITALY

28 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-21/0370

Page 2 of 28 | 20 May 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0370

English translation prepared by DIBt

Page 3 of 28 | 20 May 2021

Specific Part

1 Technical description of the product

The "BIEMME SRL Injection system 941 VE for concrete" is a bonded anchor consisting of a cartridge with injection mortar BM 941 VE or BM 941 VE WINTER and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod BF-M6 to BF-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1 to C 3, C 5, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C 4, C 6, C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0370

Page 4 of 28 | 20 May 2021

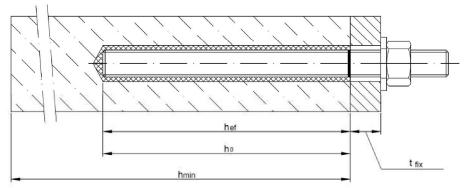
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

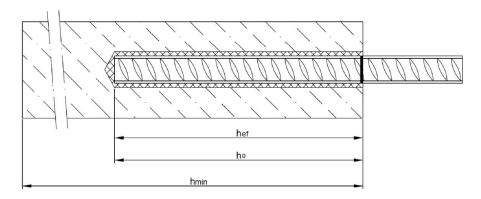
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

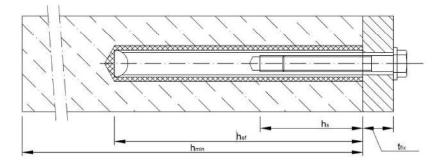
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 20 May 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

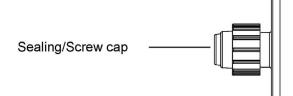
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod BF-M6 up to BF-M20

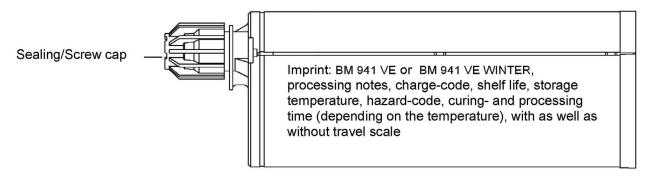
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

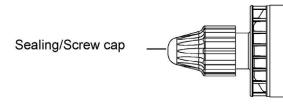
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

BIEMME Injection System 941 VE for concrete	
Product description Installed condition	Annex A 1

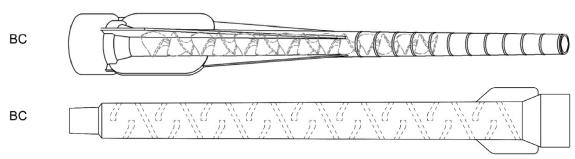

Cartridge: BM 941 VE or BM 941 VE WINTER

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: BM 941 VE or BM 941 VE WINTER, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



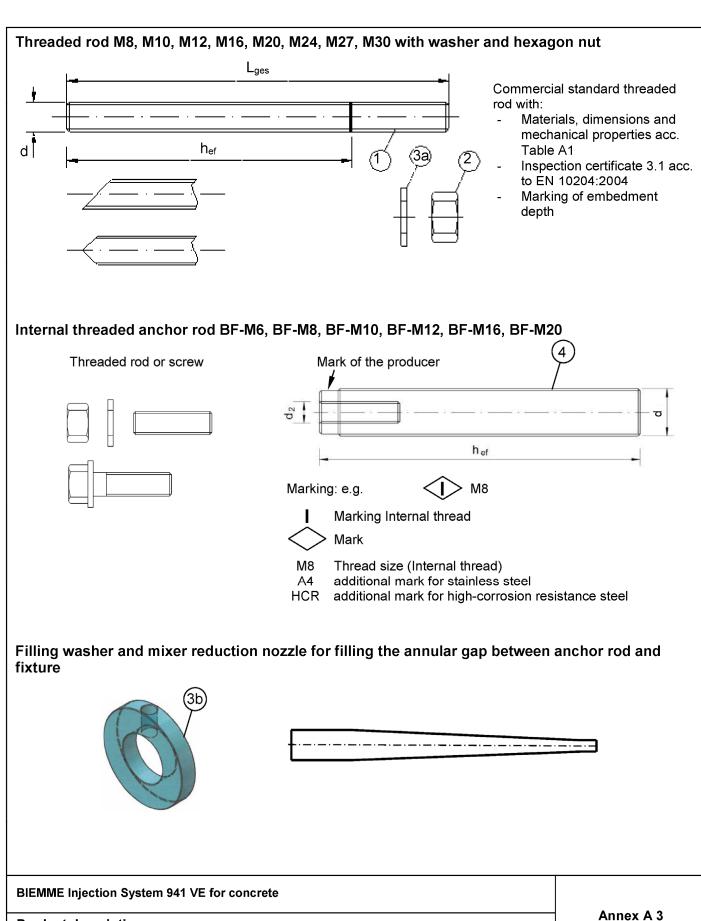
165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: BM 941 VE or BM 941 VE WINTER, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

BIEMME Injection System 941 VE for concrete

Product description


Injection system

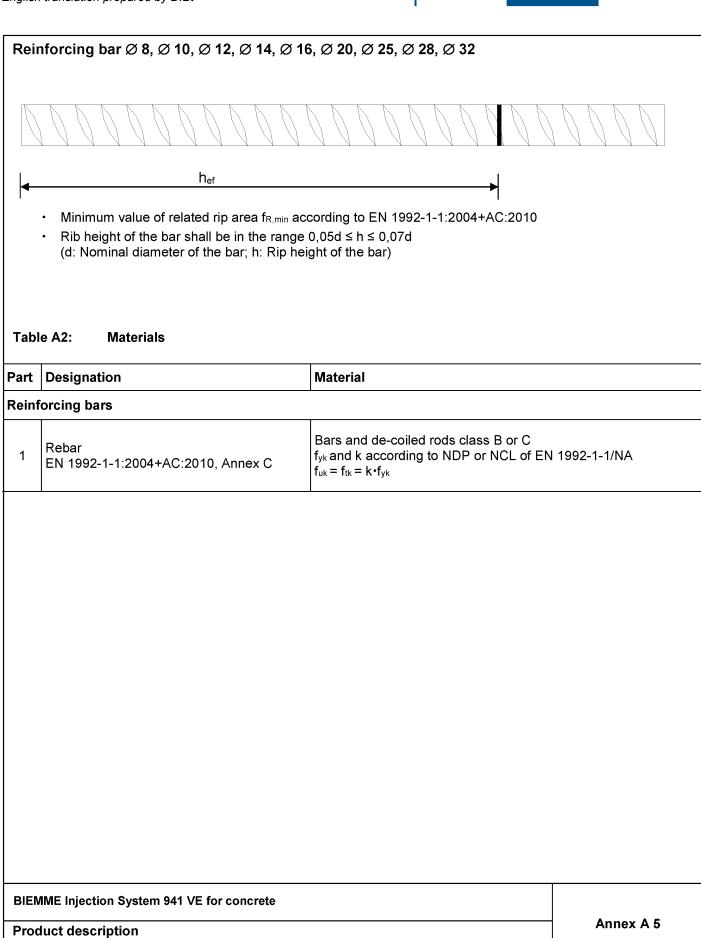
Annex A 2

Product description

Threaded rod, internal threaded rod and filling washer

Page 8 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt



1 Threaded rod 2 Hexagon nut 3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1.4 Material	acc. to EN ISO 4042:2018 acc. to EN ISO 1461:2009 acc. to EN ISO 17668:201 Property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-de	4.6 4.8 5.6 5.8	•	AC:2009 or Characteristic yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$	Elongation at fracture $A_5 > 8\%$ $A_5 > 8\%$	
hot-dip galvanised ≥ 40 μm sherardized ≥ 45 μm 1 Threaded rod 2 Hexagon nut 3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1.4 High corrosion resistance steel A2 (Material 1.4 High corrosion resistance steel A3 (Material 1.4 High corrosion resistance steel A4 (Material 1.4 High corrosion resistance steel A3 (Material 1.4 High corrosion resistance steel A4 (Material 1.4 High cor	acc. to EN ISO 1461:2009 acc. to EN ISO 17668:201 Property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-defined acc. to	4.6 4.8 5.6 5.8 8.8	Characteristic tensile strength f_{uk} = 400 N/mm² f_{uk} = 400 N/mm² f_{uk} = 500 N/mm² f_{uk} = 500 N/mm²	Characteristic yield strength f _{yk} = 240 N/mm ² f _{yk} = 320 N/mm ²	fracture A ₅ > 8%	
sherardized ≥ 45 μm 1 Threaded rod 2 Hexagon nut 3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod¹¹³³ 2 Hexagon nut ¹¹³³ 3b Filling washer 4 Internal threaded anchor rod¹¹²² 1) Property class 70 for threaded²¹ for BF-M20 only property class	acc. to EN ISO 17668:201 Property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-de	4.6 4.8 5.6 5.8 8.8	Characteristic tensile strength f_{uk} = 400 N/mm² f_{uk} = 400 N/mm² f_{uk} = 500 N/mm² f_{uk} = 500 N/mm²	Characteristic yield strength f _{yk} = 240 N/mm ² f _{yk} = 320 N/mm ²	fracture A ₅ > 8%	
1 Threaded rod 2 Hexagon nut 3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-d	4.6 4.8 5.6 5.8 8.8	tensile strength f_{uk} = 400 N/mm ² f_{uk} = 400 N/mm ² f_{uk} = 500 N/mm ² f_{uk} = 500 N/mm ²	yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$	fracture A ₅ > 8%	
2 Hexagon nut 3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1.4 High corrosion resistance steel A4 (Material 1.4 High corrosion resistance	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-d	4.8 5.6 5.8 8.8	f _{uk} = 400 N/mm ² f _{uk} = 400 N/mm ² f _{uk} = 500 N/mm ² f _{uk} = 500 N/mm ²	$f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$		
2 Hexagon nut 3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1.4 High corrosion resistance steel A4 (Material 1.4 High corrosion resistance	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-d	5.6 5.8 8.8	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$		A->8%	
2 Hexagon nut 3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1.4 Stainless steel A4 (Material 1.4 High corrosion resistance steel A4 (Mater	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-d	5.6 5.8 8.8	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$		1, 15 - 0,70	
3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-d	5.8 8.8	f _{uk} = 500 N/mm ²	y \	A ₅ > 8%	
3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	EN ISO 898-2:2012 Steel, zinc plated, hot-d	8.8		f _{vk} = 400 N/mm ²	A ₅ > 8%	
3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	EN ISO 898-2:2012 Steel, zinc plated, hot-d			f _{vk} = 640 N/mm ²	A ₅ ≥ 8%	
3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	EN ISO 898-2:2012 Steel, zinc plated, hot-d		for threaded rod o	1 7	7 15 - 0 70	
3a Washer 3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	Steel, zinc plated, hot-d	5	for threaded rod o			
3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod 1)3) 2 Hexagon nut 1)3) 3a Washer 3b Filling washer 4 Internal threaded anchor rod 1)2) 1) Property class 70 for threaded 2) for BF-M20 only property class		8	for threaded rod o			
3b Filling washer 4 Internal threaded anchor rod Stainless steel A2 (Material 1 Stainless steel A4 (Material 1 High corrosion resistance steel 1 Threaded rod (1)3) 2 Hexagon nut (1)3) 3a Washer 3b Filling washer 4 Internal threaded anchor rod (1)2) 1) Property class 70 for threaded (2) for BF-M20 only property class)	and the second s		anised or sherardiz	ed		
Internal threaded anchor rod Stainless steel A2 (Material 1.4 Stainless steel A4 (Material 1.4 High corrosion resistance steel A4 (Mat	(e.g.: EN ISO 887:2006				N ISO 7094:200	
anchor rod Stainless steel A2 (Material 1.4 Stainless steel A4 (Material 1.4 High corrosion resistance steel A2 (Material 1.4 High corrosion resistance steel A2 (Material 1.4 High corrosion resistance steel A4 (Material 1.4 High cor	Steel, zinc plated, hot-d	ip galva			T=-	
anchor rod Stainless steel A2 (Material 1.4 Stainless steel A4 (Material 1.4 High corrosion resistance steel A2 (Material 1.4 High corrosion resistance steel A2 (Material 1.4 High corrosion resistance steel A4 (Material 1.4 High cor	Property class		Characteristic	Characteristic yield strength	Elongation at fracture	
Stainless steel A2 (Material 1.4 Stainless steel A4 (Material 1.4 High corrosion resistance steel A2 (Material 1.4 High corrosion resistance steel A4 (Material 1.4 High corrosion resis		E O	tensile strength $f_{uk} = 500 \text{ N/mm}^2$	f _{vk} = 400 N/mm ²	A ₅ > 8%	
1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threade ²⁾ for BF-M20 only property class	acc. to EN ISO 898-1:2013		f _{IJk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ > 8%	
1 Threaded rod ¹⁾³⁾ 2 Hexagon nut ¹⁾³⁾ 3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threade ²⁾ for BF-M20 only property class			art	J	A5 - 6 70	
2 Hexagon nut 1)3) 3a Washer 3b Filling washer 4 Internal threaded anchor rod 1)2) 1) Property class 70 for threade 2) for BF-M20 only property class	1401 / 1.4404 / 1.4571 / 1.4 <mark>3</mark>	362 or 1	1.4578, acc. to EN	10088-1:2014)		
2 Hexagon nut 1)3) 3a Washer 3b Filling washer 4 Internal threaded anchor rod 1)2) 1) Property class 70 for threade 2) for BF-M20 only property class	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture	
3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threade 2) for BF-M20 only property class		50	f _{uk} = 500 N/mm²	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ ≥ 8%	
3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	acc. to EN ISO 3506-1:2020	70	$f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ ≥ 8%	
3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	211100 0000 1.2020	80	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 600 \text{ N/mm}^2$	A ₅ ≥ 8%	
3a Washer 3b Filling washer 4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threade 2) for BF-M20 only property class	acc. to	50				
3b Filling washer 4 Internal threaded anchor rod¹¹²² ¹¹) Property class 70 for threade² for BF-M20 only property class	EN ISO 3506-1:2020	70				
3b Filling washer 4 Internal threaded anchor rod¹¹²² ¹¹) Property class 70 for threade² for BF-M20 only property class			for threaded rod c		10000 1 0011	
4 Internal threaded anchor rod ¹⁾²⁾ 1) Property class 70 for threaded 2) for BF-M20 only property class	A2: Material 1.4301 / 1.4401 / 1.4401 / 1.4529 o HCR: Material 1.4529 o (e.g.: EN ISO 887:2006	4404 / r 1.456	1.4571 / 1.4362 or 5, acc. to EN 1008	1.4578, acc. to EN 8-1: 2014	10088-1:2014	
anchor rod ¹⁾²⁾ 1) Property class 70 for threads 2) for BF-M20 only property cla	Stainless steel A4, High	corros		<u> </u>		
anchor rod ¹⁾²⁾ 1) Property class 70 for threads 2) for BF-M20 only property cla	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture	
1) Property class 70 for threade 2) for BF-M20 only property cla	acc. to	50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ > 8%	
2) for BF-M20 only property cla	EN ISO 3506-1:2020	70	f _{uk} = 700 N/mm²	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ > 8%	
Froperty class of only for sta	ss 50	l threac	led anchor rods up t	o BF-M16,		
	anness steel / (4					
BIEMME Injection System 941	VE for concrete					

Electronic copy of the ETA by DIBt: ETA-21/0370

Materials reinforcing bar

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, BF-M6 to BF-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Uncracked concrete: M8 to M30, Rebar Ø8 to Ø32, BF-M6 to BF-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, BF-M6 to BF-M20.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, BF-M6 to BF-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, BF-M6 to BF-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

BIEMME Injection System 941 VE for concrete	
Intended Use Specifications	Annex B 1

Page 11 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod									
Anchor size		M8	M10	M12	M16	M20	M24	M27	M30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	max T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm		00 mm	h _{ef} + 2d ₀			ı	
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment denth	h _{ef,min} [mm] =		60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm				!	ո _{ef} + 2d ₍)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

	BF-M6	BF-M8	BF-M10	BF-M12	BF-M16	BF-M20
d ₂ [mm] =	6	8	10	12	16	20
d _{nom} [mm] =	10	12	16	20	24	30
d ₀ [mm] =	12	14	18	22	28	35
h _{ef,min} [mm] =	60	70	80	90	96	120
h _{ef,max} [mm] =	200	240	320	400	480	600
d _f [mm] =	7	9	12	14	18	22
max T _{inst} [Nm] ≤	10	10	20	40	60	100
I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	· 2d ₀	
s _{min} [mm]	50	60	80	100	120	150
c _{min} [mm]	50	60	80	100	120	150
	$\begin{aligned} & d_{nom} \text{ [mm] =} \\ & d_{0} \text{ [mm] =} \\ & h_{ef,min} \text{ [mm] =} \\ & h_{ef,max} \text{ [mm] =} \\ & d_{f} \text{ [mm] =} \\ & max T_{inst} \text{ [Nm] } \leq \\ & I_{IG} \text{ [mm] =} \\ & h_{min} \text{ [mm]} \end{aligned}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

BIEMME Injection System 941 VE for concrete	
Intended Use Installation parameters	Annex B 2

Table B4:	Param	eter cleanin	g and settin	g tools										
	CONTRACTOR				**************************************	A CONTRACTOR OF THE PARTY OF TH								
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d _i Brush		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu					
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1				
M8			10	SCV10	12	10,5		•						
M10	8	BF-M6	12	SCV12	14	12,5	No piston plug required			۸d				
M12	10	BF-M8	14	SCV14	16	14,5		NO PISION P	nug require	;u				
	12		16	SCV16		16,5								
M16	14	BF-M10	18	SCV18		18,5	PS18							
	16		20	SCV20		20,5	PS20							
M20	20	BF-M12	24	SCV24		24,5	PS24	h _{ef} >	h _{ef} >					
M24		BF-M16	28	SCV28		28,5	PS28	250 mm	250 mm	all				
M27	25		32	SCV32		32,5	PS32	230 111111	230 111111					
M30	28	BF-M20	35	SCV35		35,5	PS35]					
	32		40	SCV40	41,5	40,5	PS40							

MAC - Hand pump (volume 750 ml)
Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h_0): < 10 d_{nom} Only in uncracked concrete

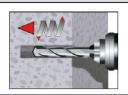
CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation PS

Drill bit diameter (d₀): 18 mm to 40 mm

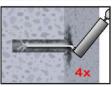
Steel brush SCV


Drill bit diameter (do): all diameters

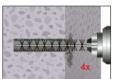
DIFAMAE I direction On the control of the control o	
BIEMME Injection System 941 VE for concrete	
Intended Use	Annex B 3
Cleaning and setting tools	

Installation instructions

Drilling of the bore hole

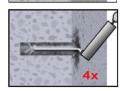


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for bore hole diameter d₀ ≤ 20mm and bore hole depth h₀ ≤ 10d_{nom} (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump ¹⁾ (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

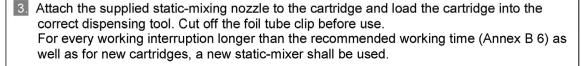
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

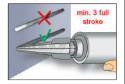
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

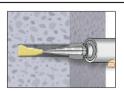
BIEMME Injection System 941 VE for concrete

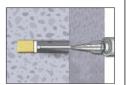
Intended Use

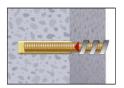

Installation instructions


Annex B 4

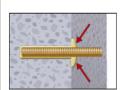

Installation instructions (continuation)




4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6 Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

BIEMME Injection System 941 VE for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Maximum working time and minimum curing time
	RM 941 VF

Concre	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete 1)			
-10 °C	to	-6°C	90 min²)	24 h ²⁾			
-5 °C	5 °C to -1°C		90 min	14 h			
0 °C	0 °C to +4°C		45 min	7 h			
+5 °C	to +9°C		25 min	2 h			
+ 10 °C	to	+19°C	15 min	80 min			
+ 20 °C	to	+29°C	6 min	45 min			
+ 30 °C	to	+34°C	4 min	25 min			
+ 35 °C	to	+39°C	2 min	20 min			
	+ 40 °C		1,5 min	15 min			
Cartridge temperature			+5°C to +40°C				

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Maximum working time and minimum curing time BM 941 VE WINTER Table B6:

Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 Min
+	10 °C		6 min	60 Min
Cartrido	ge tem	perature	-20°C to	+10°C

¹⁾ In wet concrete the curing time must be doubled.

BIEMME Injection System 941 VE for concrete	
Intended Use Curing time	Annex B 6

Page 16 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt

Т	able C1: Characteristic values for s rods	teel ten	sion re	esistand	e and s	teel sh	ear res	sistand	e of th	readed	I
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
CI	naracteristic tension resistance, Steel failur	e ¹⁾	•	•				•	•		
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	naracteristic tension resistance, Partial fact	or ²⁾									
St	eel, Property class 4.6 and 5.6	γMs,N	[-]				2,0	כ			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]	1,87							
St	ainless steel A4 and HCR, class 80	Y _{Ms,N} [-] 1,6									
CI	naracteristic shear resistance, Steel failure	1)							_		
L	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
. arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	$ V^0_{Rk,s} $	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
With	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk.s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	haracteristic shear resistance, Partial factor	- 2)									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	:5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]	2,38							
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]	1,56							
St	ainless steel A4 and HCR, class 80	Y _{Ms,V}	[-]				1,3	3			
4)											

¹⁾ Values are only valid for the given stress area As. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

3) Anchor type not part of the ETA

BIEMME Injection System 941 VE for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: C	Characteristic values	for Concrete	cone failure a	and Splitting with all kind of action
Anchor size				All Anchor types and sizes
Concrete cone fa	ailure			
Uncracked concre	ete	k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		•		
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	'	s _{cr,sp}	[mm]	2 c _{cr,sp}

BIEMME Injection System 941 VE for concrete

Performances
Characteristic values for Concrete cone failure and Splitting with all kind of action

Page 18 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt

Table	C3:	Characte	eristic values of	tension load	ds under st	atic ar	nd qua	si-sta	tic acti	ion			
		e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M3
Steel fa				INI				۸ ۶	/	T-L	I- O4\		
		tic tension resi	istance	N _{Rk,s}	[kN]			A _s ·1		ee Tab			
Partial			concrete failure	γMs,N	[-]				see Ta	able C1			
		•	ance in uncracke	d concrete C2	20/25								
	l:	40°C/24°C				10	12	12	12	12	11	10	9
nge		80°C/50°C	Dry, wet			7,5	9	9	9	9	8,5	7,5	6,
Temperature range	 :	120°C/72°C	concrete			5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,
eratu	1:	40°C/24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5				
ய் 80°C/50		80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	\ 	lo Perfo Asse	ormand essed	е
·	III:	120°C/72°C				4,0	5,0	5,0	5,0				
Charac	teris	tic bond resist	ance in cracked o	concrete C20/2	25	I					I	I	
ø)	<u> </u> :	40°C/24°C	Day			4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,
range	<u>II:</u>	80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,
Temperature range		120°C/72°C		^τ Rk,cr	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,
npera	<u>l:</u>	40°C/24°C	flooded bore			4,0	4,0	5,5	5,5		No Performance		
Ten	hole				2,5	3,0	4,0	4,0	 	Assessed			
D 1 - 1 - 1		120°C/72°C			-1- 000/05	2,0	2,5	3,0	3,0				
	lion 1	actor ψ° _{sus} in	cracked and und	racked concre	ete C20/25								
ature e	l: 	40°C/24°C	Dry, wet			0,73							
Temperature range	<u>II:</u>	80°C/50°C	concrete and flooded bore	Ψ^0 sus	[-]	0,65							
ē L	III:	120°C/72°C	hole			0,57							
				C25/30						02			
Increas	sina ·	factors for con-	crete	C30/37 C35/45						04 07			
Ψc	JII 19	1401010 101 0011	0,010	C40/50						07 08			
' C				C45/55						09			
				C50/60						10			
		one failure											
Releva Splittir		arameter							see Ta	able C2			
		arameter							see Ta	able C2			
		n factor											
for dry	and	wet concrete				1,0				1,2			
for floo	ded	bore hole		γinst	[-]		1	,4		N	lo Perfo Asse	ormano essed	:е
Perfor	man	ces	m 941 VE for con								Anne	ex C 3	
Perfor	man	ces	m 941 VE for con		si-static actio	n					Anne	• 2	x C 3

Page 19 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure without lever arm							I						
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)				
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)										
Partial factor $\gamma_{Ms,V}$ [-]				see Table C1									
Ductility factor k ₇ [-]			1,0										
Steel failure with lever arm													
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} ∙ f _{uk}	(or see	Table C	(1)				
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874			
Partial factor	γ _{Ms,V}	[-]				see	Table C	1					
Concrete pry-out failure													
Factor	k ₈	[-]					2,0						
Installation factor	γinst	[-]					1,0						
Concrete edge failure													
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm						300mm)				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Installation factor	tallation factor γ_{inst} [-] 1,0												

BIEMME Injection System 941 VE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Page 20 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt

Anchor size internal threaded	anchor rods			BF-M6	BF-M8	BF-M10	BF-M12	BF-M16	BF-M20			
Steel failure ¹⁾												
Characteristic tension resistance	e, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123			
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196			
Partial factor, strength class 5.8	and 8.8	γMs,N	[-]		l	1	,5	l	<u> </u>			
Characteristic tension resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		N _{Rk,s}	[kN]	14	26	41	59	110	124			
Partial factor		γ _{Ms,N}	[-]			1,87			2,86			
Combined pull-out and concre	ete cone failu											
Characteristic bond resistance in	n uncracked c	oncrete	C20/25									
u l: 40°C/24°C	Dry, wet			12	12	12	12	11	9			
3 II. 60 C/30 C I	concrete			9	9	9	9	8,5	6,5			
120°C/72°C 1 120°C/72°C 1 120°C/72°C 1 1 120°C/72°C 1 1 1 1 1 1 1 1 1	Concrete	<u>_</u>	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0			
င္ဆီ ၽြ ၂: 40°C/24°C	flooded bore hole	KK,ucr	[וא/ווווו]	8,5	8,5	8,5						
စ် II: 80°C/50°C				6,5	6,5	6,5	No Perf	ormance A	ssessed			
III: 120°C/72°C				5,0	5,0	5,0						
Characteristic bond resistance in	n cracked con	crete C2	20/25									
1: 40°C/24°C	December			5,0	5,5	5,5	5,5	5,5	6,5			
amber arm and a series of the	Dry, wet concrete			3,5	4,0	4,0	4,0	4,0	4,5			
		_	FN 1 / 27	2,5	3,0	3,0	3,0	3,0	3,5			
<u>0</u>	flooded bore hole	[⊤] Rk,cr	[N/mm²]	4,0	5,5	5,5	,	•				
□ II: 80°C/50°C				3,0	4,0	4,0	No Performance Assesse					
				2,5	3,0	3,0						
Reduktion factor ψ ⁰ sus in crack	ed and uncrac	ked con	crete C2	0/25								
णू ।: 40°C/24°C	Dry, wet			0,73								
0) C 11: 811-1 /511-1	concrete and flooded bore	ψ ⁰ sus	[-]	0,65								
မြီ III: 120°C/72°C	hole			0,57								
			5/30	1,02								
			0/37	1,04								
Increasing factors for concrete			5/45				07					
$\Psi_{ extsf{c}}$			0/50				08					
			5/55				09					
Concrete cone failure		C5	0/60			Ι,	10					
Relevant parameter						see Ta	able C2					
Splitting failure												
Relevant parameter						see Ta	able C2					
Installation factor												
for dry and wet concrete		γ _{inst}	[-]			1	,2					
for flooded bore hole		'IIIST	[-]		1,4		No Perf	ormance A	ssessed			

 ¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod.
 The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

 2) For BF-M20 strength class 50 is valid

BIEMME Injection System 941 VE for concrete	
Performances	Annex C 5
Characteristic values of tension loads under static and quasi-static action	

Page 21 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt

Table C6: Characteristic values of shear loads under static and quasi-static action										
Anchor size for internal threade	ed anche	or rods		BF-M6	BF-M8	BF-M10	BF-M12	BF-M16	BF-M20	
Steel failure without lever arm ¹⁾						•				
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61	
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98	
Partial factor, strength class 5.8 a	nd 8.8	$\gamma_{Ms,V}$	[-]				1,25			
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40	
Partial factor $\gamma_{Ms,V}$						1,56			2,38	
Ductility factor k			[-]				1,0			
Steel failure with lever arm ¹⁾										
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325	
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519	
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]	1,25						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456	
Partial factor		$\gamma_{Ms,V}$	[-]			1,56			2,38	
Concrete pry-out failure										
Factor		k ₈	[-]	2,0						
Installation factor		γinst	[-]	1,0						
Concrete edge failure										
Effective length of fastener		I _f	[mm]		min(h _{ef} ; 12 • d _{nom}) min (h _{ef} ; 300m					
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30		
Installation factor		γinst	[-]	1,0						

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For BF-M20 strength class 50 is valid

BIEMME Injection System 941 VE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Page 22 of European Technical Assessment ETA-21/0370 of 20 May 2021

English translation prepared by DIBt

Anchor size reinforcing b	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure		T							4)			
Characteristic tension resis	tance	N _{Rk,s}	[kN]					∖ _s • f _{uk}	1)			
Cross section area		A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		$\gamma_{Ms,N}$	[-]					1,4 ²⁾				
Combined pull-out and co												
Characteristic bond resista	nce in uncra	cked concre	te C20/25									
φ <u>I: 40°C/24°C</u>	Dry, wet			10	12	12	12	12	12	11	10	8,5
11: 80°C/50°C	concrete			7,5	9	9	9	9	9	8,0	7,0	6,0
జ 등 III: 120°C//2°C		τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
हूँ हुँ <u>।: 40°C/24°C</u>	flooded	*KK,UCI	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,5	8,5	8,5	8,5	8,5		No Performance		
စ် <u>II: 80°C/50°C</u>	bore hole			5,5	6,5	6,5	6,5	6,5	Assessed			
III: 120°C/72°C				4,0	5,0	5,0	5,0	5,0		7,000		
Characteristic bond resista	nce in crack	ed concrete	C20/25									
υ l: 40°C/24°C	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
3 II: 80 C/30 C I	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
er and		Τ	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
호 l: 40°C/24°C	flooded	^τ Rk,cr	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4,0	4,0	5,5	5,5	5,5	No Performance			
စ် <u>II: 80°C/50°C</u>	bore hole			2,5	3,0	4,0	4,0	4,0	'`	Asse		
III: 120°C/72°C	5010 11010			2,0	2,5	3,0	3,0	3,0		7 (000		
Reduktion factor $\psi^{oldsymbol{0}}_{ extsf{sus}}$ in \mathfrak{c}	cracked and	uncracked o	concrete C	20/25								
한 I: 40°C/24°C	Dry, wet concrete			0,73								
in the second se	and	Ψ ⁰ sus	[-]					0,65				
Б III: 120°С/72°С	flooded bore hole			0,57								
		C25	/30	1,02								
		C30	/37					1,04				
ncreasing factors for concr	rete	C35	/45					1,07				
$\Psi_{\mathbf{c}}$		C40	/50	1,08								
		C45	/55					1,09				
		C50	/60					1,10				
Concrete cone failure												
Relevant parameter							see	Table	C2			
Splitting												
Relevant parameter							see	Table	C2			
nstallation factor		1	1	4.0	1							
for dry and wet concrete				1,2				1	,2	lo Perfo	rmana	
or flooded bore hole		γinst	[-]			1,4				Asse		, c
1) fuk shall be taken from the	specification	ns of reinforc	ing bars									

BIEMME Injection System 941 VE for concrete	
Performances	Annex C 7

Characteristic values of tension loads under static and quasi-static action

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•	•	•		•	•		
Characteristic shear resistance	V ⁰ Rk,s	[kN]	0,50 • A _s • f _{uk} ¹⁾								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,∨	[-]	1,5 ²⁾								
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm	·	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Concrete pry-out failure	·										
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure		•	'								
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 25 28				28	32			
Installation factor	γinst	[-]			· · · · · ·	1.	1,0	'			

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

BIEMME Injection System 941 VE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Dis	splacement	s under tension load¹) (thread	ded rod)					
Anchor size thread	led rod		M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete	e C20/25 und	der static and quasi-sta	atic actio	on						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III: 120°C/72°C	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete C	20/25 under	static and quasi-stati	c action							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	105			0,1	05		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245		
Temperature range III: 120°C/72°C	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete C20/25 under static and quasi-static action												
All temperature ranges	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
	δ _{∨∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		
Cracked concrete C	Cracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07		
	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

BIEMME Injection System 941 VE for concrete	
Performances	Annex C 9
Displacements (threaded rods)	

Table C11: Dis	placements u	ınder tension lo	ad¹) (Intern	al threade	d anchor r	od)		
Anchor size Intern	al threaded ar	nchor rod	BF-M6	BF-M8	BF-M10	BF-M12	BF-M16	BF-M20
Uncracked concrete	e C20/25 under	static and quasi	-static acti	on				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C	20/25 under st	atic and quasi-st	atic action					
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,090			0,070		
l: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Inte	ernal threaded an	chor rod	BF-M6	BF-M8	BF-M10	BF-M12	BF-M16	BF-M20			
Uncracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{v0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-factor }\cdot V;$

BIEMME Injection System 941 VE for concrete	
Performances	Annex C 10
Displacements (Internal threaded anchor rod)	

Table C13: Di	isplaceme	nts under tensi	on load	¹⁾ (rebar	.)						
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concre	te C20/25 u	ınder static and	quasi-st	atic act	ion						
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range II: 80°C/50°C	$\delta_{N\infty} ext{-}factor$	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III: 120°C/72°C	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic action	1						
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90	0,070						
range I: 40°C/24°C	$\delta_{N\infty} ext{-}factor$	[mm/(N/mm²)]	0,1	05				0,105			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
range II: 80°C/50°C	$\delta_{\text{N}\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacement under shear load¹⁾ (rebar) Table C14:

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ _{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	δ _{∨∞} - factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{∨∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

BIEMME Injection System 941 VE for concrete	
Performances	Annex C 11
Displacements (rebar)	

Table C15: Characteristic values of tension loads under seismic action (performance category C1)														
Ancho	r siz	e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure														
Charac	terist	tic tension resi	stance	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}								
Partial	facto	or		$\gamma_{Ms,N}$	[-]				see Ta	ble C1				
Comb	ined	pull-out and o	concrete failure											
Chara	cteris	tic bond resista	ance in uncracked	d and cracked	concrete C2	20/25			•			•		
	l:	40°C/24°C			[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5	
ange	II:	80°C/50°C	Dry, wet concrete	^{-τ} Rk,eq,C1		1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
Temperature range	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
)erat	I:	40°C/24°C				2,5	2,5	3,7	3,7	No Performance Assessed				
Tem _l	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7					
	III:	120°C/72°C				1,3	1,6	2,0	2,0					
Increasing factors for concrete $\psi_{\mathbf{C}}$				C25/30 to C5	1,0									
Installation factor														
for dry and wet concrete					1,0 1,2									
for flooded bore hole			γ inst	[-]	1,4				No Performance Assessed					

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm											
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}								
Partial factor	$\gamma_{Ms,V}$	[-]	see Table C1								
Factor for annular gap $\alpha_{ m gap}$			0,5 (1,0) ¹⁾								

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

BIEMME Injection System 941 VE for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 12

Table C17: Characteristic values of tension loads under seismic action (performance category C1)												
Anchor size reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure												
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]	1,0 • A _s • f _{uk} ¹⁾									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,N}	[-]					1,4 ²⁾					
Combined pull-out and concrete failure												
Characteristic bond resistance in uncracked and cracked concrete C20/25												
<u>β</u> <u>I: 40°C/24°C</u> Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
= : 80°C/50°C			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
The second reference 120°C/72°C Concrete 120°C/72°C 120°C/72	J	[N/m	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
l: 40°C/24°C flooded	^τ Rk, eq,C1	m²]	2,5	2,5	3,7	3,7	3,7		No Performance Assessed			
II: 80°C/50°C bore hole			1,6	1,9	2,7	2,7	2,7] '`				
III: 120°C/72°C			1,3	1,6	2,0	2,0	2,0					
Increasing factors for concrete $\psi_{\mathbf{C}}$	250/60	1,0										
Installation factor	•											
for dry and wet concrete			1,2	1,2								
for flooded bore hole	γ _{inst}	[-]	1,4 No Perfo						e			

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Characteristic values of shear loads under seismic action Table C18: (performance category C1)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance V _{Rk,s,eq,C1} [kN]			0,35 • A _s • f _{uk} ²⁾								
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor $\gamma_{Ms,V}$ [-]			1,52)								
Factor for annular gap α_{gap} [-]			0,5 (1,0) ³⁾								

¹⁾ fuk shall be taken from the specifications of reinforcing bars

BIEMME Injection System 941 VE for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 13

²⁾ in absence of national regulation

²⁾ in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required