

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0469 of 9 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer injection system FIS EB II

Bonded fastener for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

28 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601 Edition 04/2020

European Technical Assessment ETA-21/0469

Page 2 of 28 | 9 December 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z81214.21 8.06.01-136/21

European Technical Assessment ETA-21/0469

Page 3 of 28 | 9 December 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system FIS EB II is a bonded fastener consisting of a cartridge with injection mortar fischer FIS EB II and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 to C6, B3 to B6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 to C3
Displacements under short-term and long-term loading	See Annex C7 to C8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z81214.21 8.06.01-136/21

European Technical Assessment ETA-21/0469

Page 4 of 28 | 9 December 2021

English translation prepared by DIBt

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

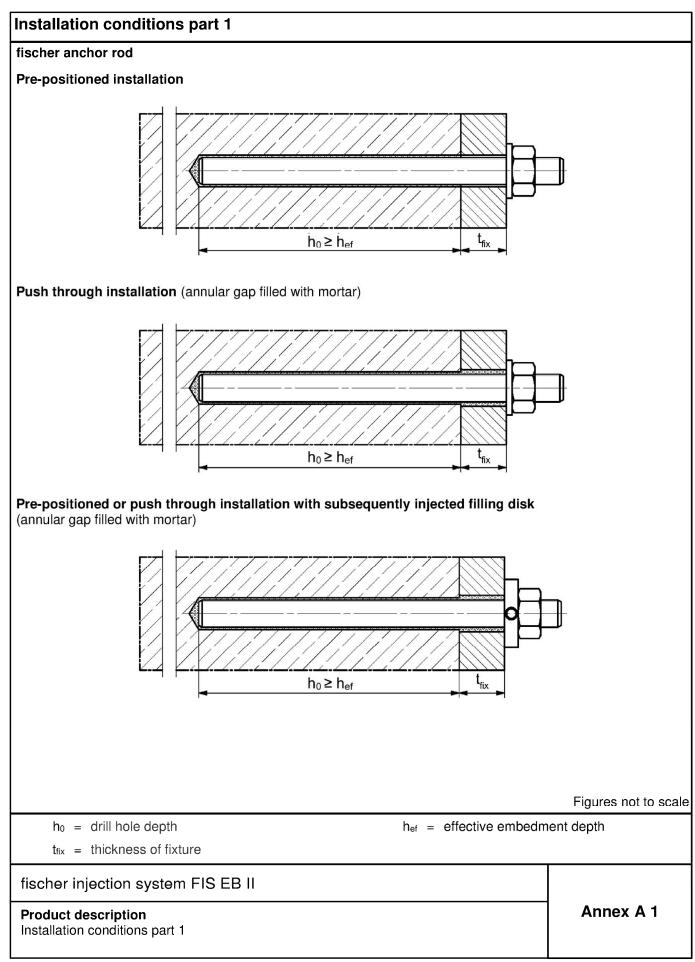
In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

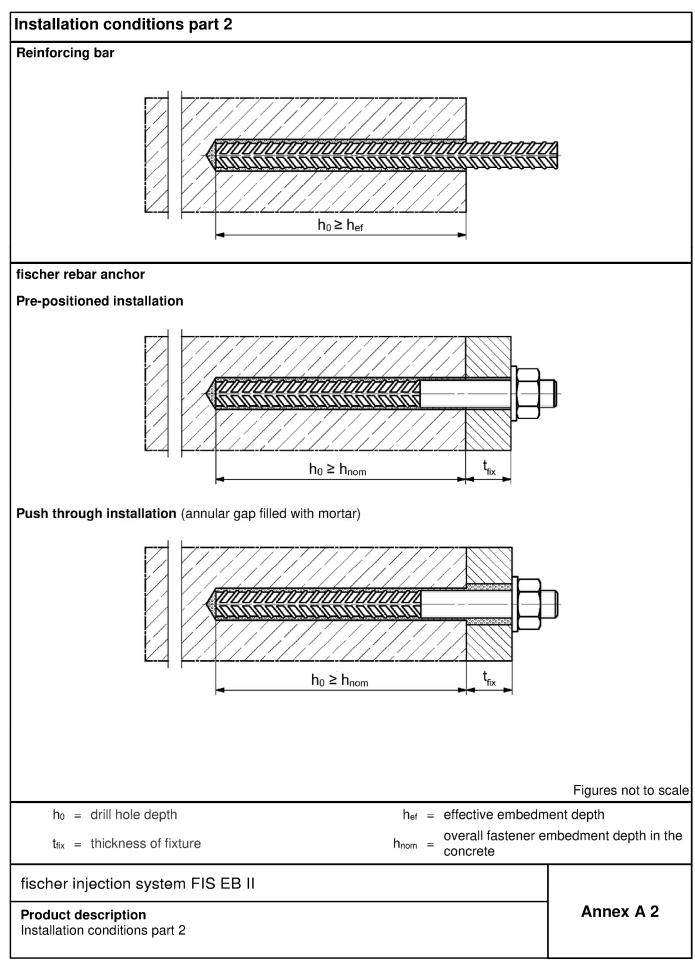
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13. Dezember 2021 by Deutsches Institut für Bautechnik

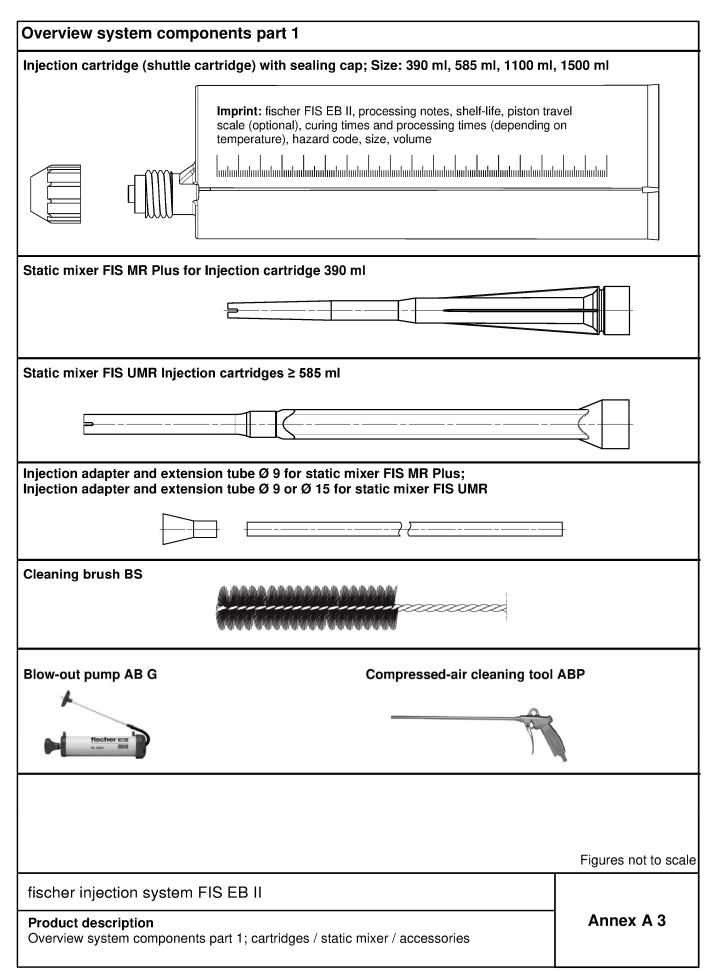
Dipl.-Ing. Beatrix Wittstock


Head of Section

beglaubigt:


Lange

Z81214.21 8.06.01-136/21



English translation prepared by DIBt

Overview system components part 2 fischer anchor rod Size: M8, M10, M12, M16, M20, M24, M27, M30 washer / hexagon nut fischer filling disk with injection adapter Reinforcing bar Nominal diameter: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 25\$, \$\phi 26\$, \$\phi 28\$, \$\phi 30\$, \$\phi 32\$ fischer rebar anchor FRA, FRA HCR Size: M12, M16, M20, M24 Figures not to scale fischer injection system FIS EB II Annex A 4 **Product description** Overview system components part 2; steel components, injection adapter

English translation prepared by DIBt

Part	Designation		Material		
1	Injection cartridge		Mortar, hardener, filler		
	mycenen cannuge	Steel	Stainless steel R		High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	ac Cor	c. to EN 10088-1:2014 rosion resistance class CRC V acc. to 993-1-4: 2006+A1:201
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 electroplated $\geq 5~\mu m$, EN ISO 4042:2018 Zn5/An(A2K) or hot dip galvanised $\geq 40~\mu m$ EN ISO 10684:2004+AC:2009 $f_{uk} \leq 1000~N/mm^2$ $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation	E	roperty class 50 or 80 EN ISO 3506-1:2020 property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation
3	Washer ISO 7089:2000	electroplated ≥ 5 μm, EN ISO 4042:2018 Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014		1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8 acc. EN ISO 898-2:2012 electroplated ≥ 5 μm, EN ISO 4042:2018 Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	E	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014
5	fischer filling disk	electroplated ≥ 5 μm, EN ISO 4042:2018 Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014		1.4565;1.4529; EN 10088-1:2014
6	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or N $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8\%)$		A	
7	fischer rebar anchor	Rebar part: Bars and de-coiled rods class E f_{yk} and k according to NDP or N EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{lk} = k \cdot f_{yk}$	PC 80, EN ISO 1.4401, 1.4404, 1.4362, 1.4062 Corrosion resis acc. to EN 199 1.4565; 1.4529 Corrosion resis	3506- , 1.457 acc. t stance 3-1-4 acc. t	71, 1.4578, 1.4439, to EN 10088-1:2014 e class CRC III :2006+A1:2015 to EN 10088-1:2014
fisc	her injection sys	tem FIS EB II			
	duct description erials				Annex A 5

Specifications of intended use part 1

 Table B1.1:
 Overview use and performance categories

Anchorages subj	ect t	to			FIS I	EB II with						
			Anch	or rod	Reinford	cing bar	fischer reb	ar anchor				
					HARAAAAAAAAA							
Hammer drilling with standard dril bit	II	2-00000000			all s	izes						
Static and quasi		uncracked concrete		Tables: C1.1		Tables: C2.1		Tables: C2.2				
Static and quasi static loading, in		cracked concrete	all sizes	C3.1 C4.1 C7.1	all sizes	C3.1 C5.1 C7.2	all sizes	C3.1 C6.1 C8.1				
Use	l1	dry or wet concrete		all sizes								
category	12	water filled hole	all sizes									
Seismic performance		C1		1)		1)	_1)					
category		C2	-	·,								
Installation direct	ion		D3	(downward a	ınd horizontal	and upwards	(e.g. overhea	ıd))				
Installation temperature				Т	i,min = +5 °C to	$T_{i,max} = +40^{\circ}$	°C					
		Temperature range I	-40 °C	to +43 °C			erature +43 °(rature +24 °C					
Service temperature		Temperature range II	-40 °C	to +60 °C			erature +60 °C rature +43 °C)					
	•	Temperature range III	-40 °C	to +72 °C			erature +72 °C rature +50 °C)					

¹⁾ No performance assessed

fischer injection system FIS EB II

Intended use
Specifications part 1

Annex B 1

8.06.01-136/21

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

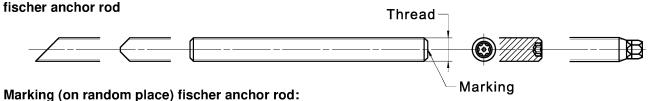
Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

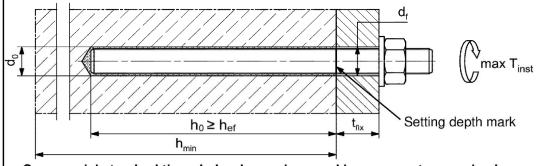
- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Fastening depth should be marked and adhered to installation
- Overhead installation is allowed (necessary equipment see installation instruction)

fischer injection system FIS EB II


Intended use
Specifications part 2

Annex B 2

Table B3.1:	Installation pa	ramete	rs for a	nchor	rods						
Anchor rods			Thread	M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole d	iameter	d_0		10	12	14	18	24	28	30	35
Drill hole depth						h ₀ =	h _{ef}	-			
Effective		h _{ef, min}		60	60	70	80	90	96	108	120
embedment depth	h _{ef, max}		160	200	240	320	400	480	540	600	
Simplified spacing a distance 1)	S = C	[mm]	40	45	55	65	85	105	120	140	
Diameter of the clearance hole of	pre-positioned installation	df		9	12	14	18	22	26	30	33
the fixture	push through installation	df		12	14	16	20	26	30	33	40
Minimum thickness member	of concrete	h _{min}			h _{ef} + 30 (≥ 100)				h _{ef} + 2do)	
Maximum installation	on torque	max T _{inst}	[Nm]	10	20	40	60	120	150	200	300


1) Detailed calculation according to Annex B 6 and B 7

Steel electroplated PC1) 8.8	● or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	-
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		
Alternatively: Colour coding according to DIN 97	6-1: 2016		

¹⁾ PC = property class

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- Materials, dimensions and mechanical properties according to Annex A 5, Table A5.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

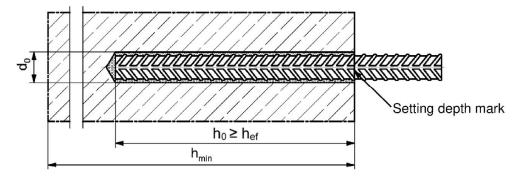
Figures not to scale

fischer injection system FIS EB II

Intended use
Installation parameters anchor rods

Annex B 3

Table B4.1: Installation	n param	eters f	or re	info	orcii	ng k	ars									
Nominal diameter of the bar		ф	8 ¹)	10) 1)	12	21)	14	16	20	25	26	28	30	32
Nominal drill hole diameter	d_0		10	12	12	14	14	16	18	20	25	30	35	35	40	40
Drill hole depth	h ₀								h ₀ =	h _{ef}						
Effective	$h_{\text{ef,min}}$		60)	6	0	7	0	75	80	90	100	104	112	120	128
embedment depth	h _{ef,max}]	16	0	20	00	24	10	280	320	400	500	520	560	600	640
Simplified spacing and edge distance ²⁾	S = C] [mm]	40)	4	5	5	5	60	65	85	120	120	140	140	160
Minimum thickness of concrete member	h _{min}				ef + 3 ≥ 100						h	ef + 20	d ₀			


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

fischer injection system FIS EB II

Intended use
Installation parameters reinforcing bars

Annex B 4

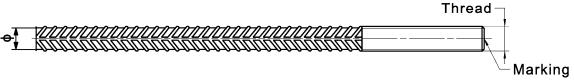
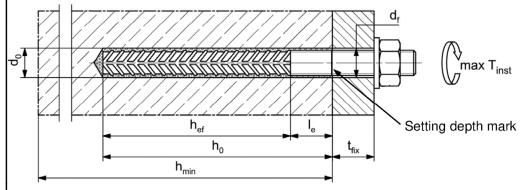

²⁾ Detailed calculation according to Annex B 6 und B 7

Table B5.1: Installation	n parame	eters fo	or fiscl	ner reb	ar anchor						
fischer Rebar anchor	-	Thread	M1	2 ¹⁾	M16	M20	M24				
Nominal diameter of the bar	ф		1	2	16	20	25				
Nominal drill hole diameter	d ₀		14	16	20	25	30				
Drill hole depth	h_0				h _{ef}	+ l _e					
Effective embedment depth	$h_{\text{ef,min}}$		7	0	80	90	96				
Effective embedment depth	h _{ef,max}		14	10	220	300	380				
Distance concrete surface to welded joint	l _e				10	00					
Simplified spacing and edge distance ²⁾	S = C	[mm]	5	5	65	85	105				
Diameter of anchorage	≤ d _f		1	4	18	22	26				
clearance hole in the fixture push through anchorage	≤ d _f		1	8	22	26	32				
Minimum thickness of concrete member	h _{min}		h ₀ + 30 (≥ 100) h ₀ + 2d ₀								
Maximum torque moment for attachment of the fixture	max T _{inst}	[Nm]	4	0	60	120	150				

¹⁾ Both drill hole diameters can be used

fischer rebar anchor



Marking frontal e. g:

FRA (for stainless steel);

✓ FRA HCR (for high corrosion resistant steel)

Installation conditions:

Figures not to scale

fischer injection system FIS EB II

Intended use

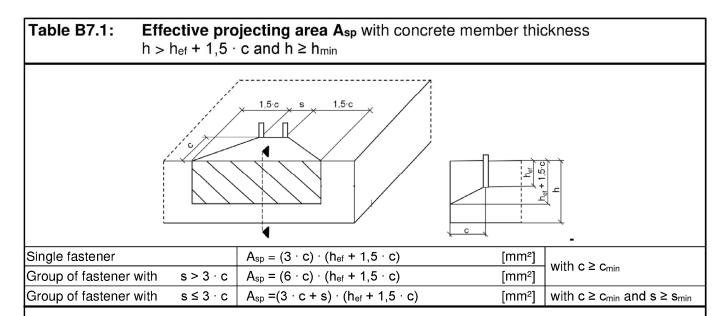
Installation parameters fischer rebar anchor

Annex B 5

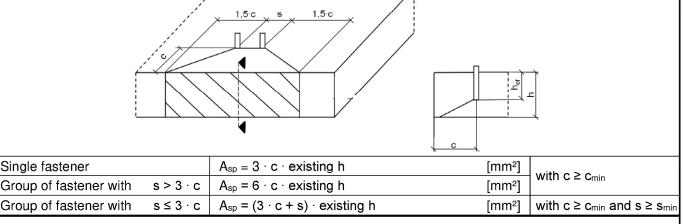
²⁾ Detailed calculation according to Annex B 6 and B 7

Anchor rods		M8	M10	M1	2	-	M16	M20
Reinforcing bars, fischer rebar anchor (nominal diameter)	ф	8	10	12	2	14	16	20
Minimum edge distance	-							
Uncracked / cracked concrete	Cmin [mm]	40	45	45	5	45	50	55
Spacing	s [mm]		•	accord	ing to Aı	nnex B	7	
Minimum spacing								
Uncracked / cracked concrete	Smin [mm]	40	45	55	5	60	65	85
Edge distance	c [mm]			accord	ing to Aı	nnex B	7	
Required projecting area	•							
Uncracked concrete	, [1000	8,0	13,0	22.	0	23,0	24,0	38,5
			, , ,			20,0	, _	,-
Cracked concrete	- A _{sp,req} mm ²]		10,0	16,		17,5	18,5	
							,	
Anchor rods Reinforcing bars, fischer rebar anchor		6,5	10,0	16,	5	17,5	18,5	29,5
Anchor rods Reinforcing bars, fischer rebar anchor nominal diameter)	— Asp,req mm²]	6,5 M24	10,0	-	5 M27	17,5	18,5 M30	29,5
Anchor rods Reinforcing bars, fischer rebar anchor nominal diameter) Minimum edge distance	— Asp,req mm²] ф	6,5 M24	10,0	-	5 M27	17,5	18,5 M30	29,5
Anchor rods Reinforcing bars, fischer rebar anchor nominal diameter) Minimum edge distance Uncracked / cracked concrete	— Asp,req mm²]	6,5 M24	- 25	- 26	M27	17,5 - 28	18,5 M30 30	29,5
Anchor rods Reinforcing bars, fischer rebar anchor (nominal diameter) Minimum edge distance Uncracked / cracked concrete	Ф С _{тіп} [тт]	6,5 M24	- 25	- 26	M27 - 75	17,5 - 28	18,5 M30 30	29,5
Anchor rods Reinforcing bars, fischer rebar anchor (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing	Asp,req mm²] Cmin S [mm]	6,5 M24	- 25	- 26	M27 - 75	17,5 - 28	18,5 M30 30 80	29,5 - 32 120
Anchor rods Reinforcing bars, fischer rebar anchor nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing Uncracked / cracked concrete	Ф С _{тіп} [mm]	6,5 M24 -	- 25	- 26 75 accord	M27 - 75 ing to A	17,5 - 28 80 nnex B 3	18,5 M30 30 80 7	29,5 - 32
Anchor rods Reinforcing bars, fischer rebar anchor (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing	Φ Cmin S [mm]	6,5 M24 -	- 25	- 26 75 accord	5 M27 - 75 ing to Ai	17,5 - 28 80 nnex B 3	18,5 M30 30 80 7	29,5 - 32
Anchor rods Reinforcing bars, fischer rebar anchor (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing Uncracked / cracked concrete Edge distance	Φ Cmin S [mm]	6,5 M24 - 60 105	- 25	- 26 75 accord	5 M27 - 75 ing to Ai	17,5 - 28 80 nnex B 3	18,5 M30 30 80 7	29,5 - 32

Splitting failure for minimum edge distance and spacing in dependence of the effective embedment depth h_{ef} .


For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

 $A_{sp,req} < A_{sp}$


 $A_{sp,req}$ = required projecting area

A_{sp} = A_{sp,ef} = effective projecting area (according to Annex B 7)

fischer injection system FIS EB II	
Intended use Minimum spacing and edge distance for anchor rods, reinforcing bars and fischer rebar anchor	Annex B 6

Table B7.2: Effektive projecting area A_{sp} with concrete member thickness $h \le h_{ef} + 1.5 \cdot c$ and $h \ge h_{min}$

Edge distance and axial spacing shall be rounded up to at least 5 mm

Figures not to scale

Annex B 7

fischer injection system FIS EB II

Intended use

Minimum thickness of concrete member for anchor rods, reinforcing bar, fischer rebar anchor and minimum spacing and edge distance

Z102562.21

Electronic copy of the ETA by DIBt: ETA-21/0469

Table B8.1: Parameters of the **cleaning brush** BS (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

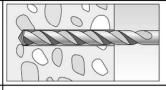
Nominal drill hole diameter	d ₀		10	12	14	16	18	20	24	25	28	30	35	40
Steel brush diameter BS	d _b	[mm]	11	14	16	2	0	25	26	27	30	4	0	42

Table B8.2: Conditions for use static mixer without an extension tube

Nominal drill hole diameter	d ₀		10	12	14	16	18	20	24	25	28	30	35	40
Drill hole depth ho	FIS MR Plus	[mm]	≤ (90	≤ 120	≤ 140	≤ 150	≤ 160	≤ 190			≤ 210		
by using	FIS UMR		-	-	≤ 90	≤ 160	≤ 180	≤ 190	≤ 2	20		≤ 2	50	

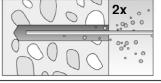
Table B8.3 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

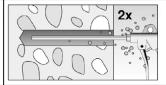
Temperature at anchoring base	Maximum processing time t _{work}	Minimum curing time t _{cure}
[°C]	FIS EB II	FIS EB II
> 5 to 10	180 min	96 h
> 10 to 15	90 min	60 h
> 15 to 20	60 min	36 h
> 20 to 30	30 min	24 h
> 30 to 40	15 min	12 h


fischer injection system FIS EB II	
Intended use	Annex B 8
Intended use Cleaning brush (steel brush)	Annex B 8

Installation instructions part 1

Drilling and cleaning the hole (hammer drilling with standard drill bit)


1


Drill the hole.

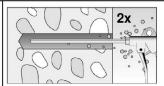
Nominal drill hole diameter d_0 and drill hole depth h_0 see **Tables B3.1**, **B4.1**, **B5.1**

2

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole twice by hand

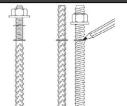

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole twice with oil-free compressed air $(p \ge 6 \text{ bar})$

3

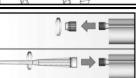


Brush the drill hole twice. For drill hole diameter $d_0 \ge 18$ mm and / or $h_{ef} > 12$ d use a power drill. For deep holes use an extension. Corresponding brushes see **Table B8.1**

4


Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole twice by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole twice with oil-free compressed air $(p \ge 6 \text{ bar})$


Preparing

5

Mark the setting depth of the steel element

6

Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

7

Place the cartridge into the dispenser

8

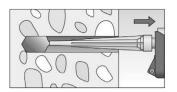
X

Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Go to Step 9

fischer injection system FIS EB II

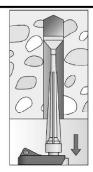
Intended use


Installation instructions part 1

Annex B 9


Installation instructions part 2

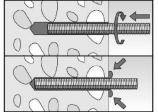
Injection of the mortar


9

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and

The conditions for mortar injection without extension tube can be found in **Table B8.2**

For deeper drill holes, than those mentioned in **Table B8.2**, use a suiTable extension tube

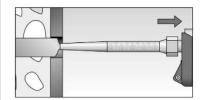


For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 30$ mm) use an injection-adapter

Installation of anchor rods

avoid bubbles

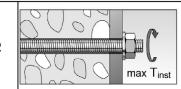
10


Only use clean and oil-free anchor elements.

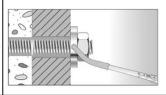
Push the anchor rod with the setting depth mark down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

For overhead installations support the anchor rod with wedges (e. g. fischer centering wedges) or fischer overhead clips.


For push through installation fill the annular gap with mortar

11


Wait for the specified curing time t_{cure} see **Table B8.3**

12

Mounting the fixture max T_{inst} see **Table B3.1**

Option

After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar via the fischer filling disc.

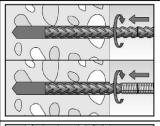
Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS EB II, FIS SB, FIS V Plus, FIS EM Plus)

ATTENTION:

Using fischer filling disk reduces tfix (usable length of the anchor)

fischer injection system FIS EB II

Intended use

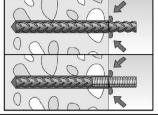

Installation instructions part 2

Annex B 10

Z102562.21

Installation instructions part 3

Installation reinforcing bars and fischer rebar anchor

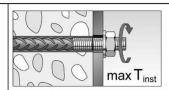


Only use clean and oil-free reinforcing bars or fischer rebar anchor. Push the reinforcement bar or the fischer rebar anchor with the setting depth mark into the filled hole up to the setting depth mark.

Recommendation:

Rotation back and forth of the reinforcement bar or the fischer rebar anchor makes pushing easy

9


When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

Wait for the specified curing time tcure see **Table B8.3**

11

Mounting the fixture max T_{inst} see **Table B5.1**

Electronic copy of the ETA by DIBt: ETA-21/0469

fischer injection system FIS EB II

Intended use

Installation instructions part 3

Annex B 11

Ancl	nor rod / standard threa	ded rod	i		M8	M10	M12	M16	M20	M24	M27	M30
Chai	acteristic resistance to	steel fa	ailure	unde	er tensio	n loadin	ıg ³⁾					
S			4.8		15(13)	23(21)	33	63	98	141	184	224
istic N _{RK,s}	Steel zinc plated	>	5.8		19(17)	29(27)	43	79	123	177	230	281
Characteristic esistance N _{RK}		Property class	8.8 50	[kN]	29(27)	47(43)	68	126	196	282	368	449
arac stan	Stainless steel R and	हूं हि		וואואן	19	29	43	79	123	177	230	281
Character esistance	high corrosion	_	_70		26	41	59	110	172	247	322	393
	resistant steel HCR		80		30	47	68	126	196	282	368	449
Parti	al factors 1)			I								
_	0		4.8						50			
actc _	Steel zinc plated	≩ "	5.8						50			
ial fa		Property class	8.8 50	[-]					50 86			
Partial factor	Stainless steel R and high corrosion	Pr S	70						86 / 1,87			
<u>С</u>	resistant steel HCR		80						/ 1,8/ 60			
Chai	acteristic resistance to	steel fa	_	unde	er shear	loading	3)	,	00			
	out lever arm	Jicci ic	inarc	unu	on Gricar	Todding						
			4.8		9(8)	14(13)	20	38	59	85	110	135
ristic V ⁰ Rk,s	Steel zinc plated	_	5.8	1	11(10)	17(16)	25	47	74	106	138	168
Characteristic esistance Volume Stainless steel R and high corrosion resistant steel HCB	ert) SS	8.8		15(13)	23(21)	34	63	98	141	184	225	
	Property class	50	[kN]	9	15	21	39	61	89	115	141	
Sha Sist	high corrosion	<u>a</u>	70		13	20	30	55	86	124	161	197
	resistant steel HCR		80		15	23	34	63	98	141	184	225
	lity factor		k ₇	[-]	1,0							
with	lever arm				Т			T	Г	T	T	ı
istic M ⁰ Rk,s			4.8		15(13)	30(27)	52	133	259	448	665	899
	Steel zinc plated	≩ "	5.8]	19(16)	37(33)	65	166	324	560	833	1123
Character resistance		Property class	8.8 50	[Nm]	30(26)	60(53)	105	266	519	896	1333	1797
stai	Stainless steel R and	Pro S			19	37	65 92	166	324	560	833	1123
Si Ci	high corrosion resistant steel HCR		70 80		26 30	52 60	105	232 266	454 519	784 896	1167 1333	1573 1797
Parti	al factors 1)		- 00		30	_ 00	103	200	519	090	1000	1797
			4.8					1.:	 25			
for	Steel zinc plated	_	5.8						<u></u> 25			
fac	•	erty ss	8.8	.,				·	 25			
Partial factor ™y _{™s.} v	Stainless steel R and	Property class	50	[-]				•	38			
Par	high corrosion	<u>a</u>	70					1,252)	/ 1,56			
	resistant steel HCR		80					1,	33			
2) C	absence of other nationa only admissible for high con alues in brackets are valid	rosion re	ons esista	nt ste	el C, with	n f _{yk} / f _{uk} ≥ lard threa	0,8 and ded rods	A ₅ > 12 °		scher an	chor rods	s)

fischer injection system FIS EB II

Performance

Characteristic resistance to steel failure under tension / shear loading of fischer anchor rods and standard threaded rods

Annex C₁

Characteristic resistance

 $1,2\cdot W_{el}\cdot f_{uk^{2)}}$

Table C2.1:	Characteris reinforcing		stance	e to s	steel	failuı	r e un	der te	ensio	n / sh	ear l	oadin	g of	
Nominal diamete	r of the bar		ф	8	10	12	14	16	20	25	26	28	30	32
Characteristic res	sistance to ste	el failure	unde	r tens	ion lo	ading								
Characterstic resis	stance	N _{Rk,s}	[kN]					/	∖ s · f uk²	2)				
Characteristic res	sistance to ste	el failure	unde	r she	ar load	ding								
Without lever arn	n													
Characterstic resis	stance	V^0 Rk,s	[kN]					k ₆ 1)	· As ·	f uk ²⁾				
Ductility factor		k ₇	[-]						1,0					
With lever arm														

- 1) In accordance with EN 1992-4:2018 section 7.2.2.3.1
 - $k_6 = 0,6$ for fasteners made of carbon steel with $f_{uk} \le 500 \text{ N/mm}^2$
 - =0,5 for fasteners made of carbon steel with 500 < f_{uk} ≤ 1000 N/mm²

M⁰Rk,s [Nm]

- =0,5 for fasteners made of stainless steel
- 2) fuk respectively shall be taken from the specifications of the reinforcing bar

Table C2.2: Characteristic restistance to **steel failure** under tension / shear loading of **fischer rebar anchors**

fischer rebar anchor			M12	M16	M20	M24
Characteristic resistance to	steel failure	unde	r tension loadir	ng	-	-
Characterstic resistance	N _{Rk,s}	[kN]	59	110	172	270
Partial factor ¹⁾						•
Partial factor	γMs,N	[-]		1	,4	
Characteristic resistance to	steel failure	unde	r shear loading			
Without lever arm						
Characterstic resistance	V^0 Rk,s	[kN]	30	55	86	141
Ductility factor	k ₇	[-]		1	,0	
With lever arm						
Characteristic resistance	M^0 _{Rk,s}	[Nm]	92	233	454	898
Partial factor ¹⁾		•		•	•	•
Partial factor	γ̃Ms,V	[-]		1,	.56	

¹⁾ In absence of other national regulations

fischer injection system FIS EB II

Performance
Characteristic resistance to steel failure under tension / shear loading of reinforcing bars and fischer rebar anchors

Annex C 2

	ristic resis	iaiice	io CC	, i i Ci	- CIC I	anule				ı / SIIE	ai i	Jau	y
Size							Α	ll si	zes				
Tension loading													
Installation factor	γinst	[-]				S	ee anr	nex (C 4 to C	6			
Factors for the compressive	strength o	f conc	rete >	C20)/25								
				Unc	racke	d concre	ete		(Cracked	d cond	crete	!
	C25/30				1,	05				1	,02		
Increasing factor ψ_{c} for	C30/37				1,	10				1	,04		
cracked or uncracked concrete	C35/45] ,			1,	13				1	,06		
$\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	C40/50	[-]			1,	17				1	,07		
$tHK = \psic \; tHK \left(O20/23 \right)$	C45/55				1,	20				1	,09		
	C50/60				1,	23				1	,10		
Splitting failure													
h / h _{ef} ?	≥ 2,0							1,0 ł	lef				
Edge distance $2,0 > h / h_{ef}$:	> 1,3 C _{cr,sp}	[maina]					4,6	h _{ef} -	1,8 h				
h / h _{ef} :		[mm]					2	2,26	h _{ef}				
Spacing	S _{cr,sp}							2 c _{cr}	,sp				
Concrete cone failure													
Uncracked concrete	k _{ucr,N}	гэ						11,0)				
Cracked concrete	K _{cr,N}	[-]						7,7					
Edge distance	C _{cr,N}	[mama]						1,5 h	l ef				
Spacing	S _{cr,N}	[mm]						2 cc	,N				
Factors for sustained tension	n loading												
Temperature range		[-]	24	1 °C	/ 43 °(C	43 °	°C / (30 °C		50 °C	/ 72	°C
Factor	$\Psi^0_{ extsf{sus}}$	[-]	0,68 0,60 0,68										
Shear loading													
Installation factor	γinst	[-]						1,0)				
Concrete pry-out failure	1												
Factor for pry-out failure	k ₈	[-]						2,0)				
Concrete edge failure								,-					
Effective length of fastener for	·			for o	dnom <	24 mm:	min (h _{of} . 1	2 dnom)				
shear loading	lf	[mm]				24 mm:)		
Calculation diameters	·						•				•		
Size			M8	Τ,	M10	M12	M1	6	M20	M24	M2	7	M30
fischer anchor rods and				+									
standard threaded rods	d_{nom}	[mm]	8		10	12	16	;	20	24	2	7	30
fischer rebar anchor	d _{nom}		_1)		_1)	12	16	;	20	25	_1)	_1)
Size (nominal diameter of the	bar)	ф	8	10	12	14	16	20	25	26	28	30	32
Reinforcing bar	d _{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32
1) Anchor type not part of the	e assessme	nt			•				•	· ·			
fischer injection system	FIS EB II												
Performance Characteristic resistance to c	oncrete failu	ire und	er tens	sion .	/ shea	r loadin	g			Δ	nne	х С	3

Table C4.1:	Characteristic resistance to combined pull-out and concrete failure for
	fischer anchor rods and standard threaded rods in hammer drilled holes;
	uncracked or cracked concrete

		uncrack	ed or c	racked o	concre	ete						,
Anchor	rod /	standard threa	ded rod		M8	M10	M12	M16	M20	M24	M27	M30
Combine	ed p	ullout and conc	rete con	e failure								
Calculati	on d	iameter	d	[mm]	8	10	12	16	20	24	27	30
Uncrack	ed c	oncrete										
Characte	erist	ic bond resistar	nce in ur	ncracked	concre	e C20/2	5					
<u>Hammer</u>	-drilli	ng with standard	drill bit (dry or wet	concre	te)						
Tem	l:	24 °C / 43 °C			14	14	14	14	14	13	12	12
perature	II:	43 °C / 60 °C	$ au_{Rk,ucr}$	[N/mm ²]	14	13	13	12	11	10	8,5	8,5
range	III:	50 °C / 72 °C	•		9	9	9	9	9	8,5	8	7,5
Hammer	-drilli	ng with standard	drill bit (water fille	d hole)	•		•	•	•		
Tem	l:	24 °C / 43 °C			14	14	14	14	14	12	12	12
perature	II:	43 °C / 60 °C	$ au_{Rk,ucr}$	[N/mm ²]	12	11	11	10	9,5	8,5	8,5	8,5
range	III:	50 °C / 72 °C	•		9	9	9	8,5	8	7,5	7	6,5
Installati	ion f	actors		1		I	I .	ı	ı	ı		
Dry or we	et co	ncrete		r 1				1	,2			
Water fill	ed h	ole	γinst	[-]				1	,4			
Cracked	con	crete										
Characte	erist	ic bond resistar	nce in cr	acked co	ncrete (C20/25						
<u>Hammer</u>	-drilli	ng with standard	drill bit (dry or wet	concre	<u>te)</u>						
Tem	l:	24 °C / 43 °C			7	7	7	6,5	6	6	5,5	5,5
perature	II:	43 °C / 60 °C	$ au_{Rk,cr}$	[N/mm ²]	6,5	6,5	6,5	6	6	6	5,5	5,5
range	III:	50 °C / 72 °C			6	6	6	5,5	5,5	5,5	5	5
<u>Hammer</u>	-drilli	ng with standard	l drill bit (water fille	d hole)							
Tem-	l:	24 °C / 43 °C			7	7	7	6,5	6	6	5,5	5,5
perature	II:	43 °C / 60 °C	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	5,5	5	4,5	4,5	4	4
range	III:	50 °C / 72 °C	•		5,5	5,5	5,5	5	4	4	4	4
Installati	on f	actors		· · · · · ·								
Dry or we	et co	ncrete	Vi+	[-]				1	,2			
Water fill	ed h	ole	γinst	[-]				1	,4			

fischer injection system FIS EB II
Performance

Annex C 4

Characteristic resistance to combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

28 30 11 11 8,5 8 8 8 7,5 7 6,5 6
11 11 8,5 8 8 8 7 11 11 8,5 7,5 7
8,5 8 8 8 7 11 11 8,5 7,5 7
8,5 8 8 8 7 11 11 8,5 7,5 7
8,5 8 8 8 7 11 11 8,5 7,5 7
8,5 8 8 8 7 11 11 8,5 7,5 7
8 8 7 11 11 8,5 7,5 7
8 8 7 11 11 8,5 7,5 7
11 11 8,5 7,5 7
8,5 7,5 7
8,5 7,5 7

6,5 6
5,5 5,5 5
5,5 5
5 5 4
55 55 5

4 4 3
4 4 3
5,5 5

anchor

Combined pullout and cor			M12	M16	M20	M24
	crete con	e failure				
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond resist						
Hammer-drilling with standa	rd drill bit (dry or wet c	oncrete)			ı
Tem- I: 24 °C / 43 °C	_		14	13	12	11
perature II: 43 °C / 60 °C	$_{ m L}$ $ au_{ m Rk,ucr}$	[N/mm ²]	13	11	10	10
range III: 50 °C / 72 °C			9	9	9	8,5
Hammer-drilling with standa	rd drill bit (water filled I	hole)			
Tem- I: 24 °C / 43 °C			14	12	12	11
perature II: 43 °C / 60 °C	— τ _{Rk,ucr}	[N/mm ²]	10	9,5	9	8,5
range III: 50 °C / 72 °C	`		9	8	7,5	7
nstallation factors			I -		·	1
Dry or wet concrete				1,	2	
Water filled hole	— γinst	[-]		1,	4	
Cracked concrete						
Characteristic bond resist	ance in cr	acked cond	rete C20/25			
Hammer-drilling with standa	rd drill bit (dry or wet c	oncrete)			T
Tem- I: 24 °C / 43 °C			7	6,5	6	6
perature II: 43 °C / 60 °C	$ au_{Rk,cr}$	[N/mm ²]	6,5	6	6	5,5
range III: 50 °C / 72 °C	_		6	5,5	5,5	5,5
Hammer-drilling with standa	rd drill bit (water filled I	hole)	-		
I: 24 °C / 43 °C			7	6,5	6	6
perature II: 43 °C / 60 °C	$ au_{Rk,cr}$	[N/mm ²]	5,5	5	4,5	4
range III: 50 °C / 72 °C			5,5	5	4	4
nstallation factors				_		
Dry or wet concrete				1,	2	
Water filled hole	— γinst	[-]		1,	4	

Z102562.21 8.06.01-136/21

Characteristic resistance for combined pull-out and concrete failure for fischer rebar

od	M8	M10	M12	M16	M20	M24	M27	M30
ment-Factors	for tensior	loading ¹⁾						
ed or cracked	concrete;	Temperatu	re range I,	II, III				
[mm//NI/mm2)]	0,07	0,08	0,09	0,10	0,11	0,12	0,12	0,13
 	0,11	0,12	0,13	0,15	0,16	0,18	0,18	0,19
ment-Factors	for shear l	oading ²⁾		•		·		
ed or cracked	concrete;	Temperatu	re range I,	II, III				
[mana /l c N I]	0,18	0,15	0,12	0,09	0,07	0,06	0,06	0,05
[IIIII/KIN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07
	ed or cracked [mm/(N/mm²)] ement-Factors	ement-Factors for tension ed or cracked concrete; [mm/(N/mm²)] 0,07 0,11 ement-Factors for shear led or cracked concrete; [mm/kN] 0,18	ment-Factors for tension loading ¹⁾ ed or cracked concrete; Temperature [mm/(N/mm ²)]	ement-Factors for tension loading ¹⁾ ed or cracked concrete; Temperature range I, $[mm/(N/mm^2)] = 0.07 0.08 0.09 \\ 0.11 0.12 0.13$ ement-Factors for shear loading ²⁾ ed or cracked concrete; Temperature range I, $[mm/kN] = 0.18 0.15 0.12$	ment-Factors for tension loading ¹⁾ ed or cracked concrete; Temperature range I, II, III mm/(N/mm²) 0,07	ment-Factors for tension loading ¹⁾ ed or cracked concrete; Temperature range I, II, III mm/(N/mm²) 0,07	ment-Factors for tension loading ¹⁾ ed or cracked concrete; Temperature range I, II, III mm/(N/mm²) 0,07	Part Part

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

OV0 = OV0-Factor · V

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau$

Nominal diameter

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

20

 τ = acting bond strength under tension loading

V = acting shear loading

Table C7.2: Displacements for reinforcing bars

of the ba	ır Ψ	8	10	12	14	16	20	25	26	28	30	32
Displacement-Factors for tension loading ¹⁾												
Uncracked or cracked concrete; Temperature range I, II, III												
δ _{N0-Factor}	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,12	0,13	0,13	0,13
δ _{N∞} -Factor		0,11	0,12	0,13	0,14	0,15	0,16	0,18	0,18	0,19	0,19	0,20

16

Displacement-Factors for shear loading²⁾

Uncracked or cracked concrete; Temperature range I, II, III												
δv0-Factor	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,06	0,05	0,05	0,05
δv∞-Factor	[mm/kin]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,08	0,07	0,07

1) Calculation of effective displacement:

2) Calculation of effective displacement:

25

28

30

32

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

fischer injection system FIS EB II

Performance

Displacements for anchor rods and reinforcing bars

Annex C7

Table C8.1: Displacements for fischer rebar anchors							
fischer r	ebar anchor	M12	M16	M20	M24		
Displace	ment-Factors	for tension loading ¹⁾					
Uncrack	ed or cracked	concrete; Temperatu	re range I, II, III				
δ _{N0} -Factor	[mm/(N/mm²)]	0,09	0,10	0,11	0,12		
δN∞-Factor	[[[[[[]]	0,13	0,15	0,16	0,18		
Displace	ment-Factors	for shear loading ²⁾					
Uncracked or cracked concrete; Temperature range I, II, III							
δv0-Factor	[mm/kN]]	0,12	0,09	0,07	0,06		
δv∞-Factor	[mm/kN]	0,18 0,14		0,11	0,09		

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \, \cdot \, \tau$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau$

 τ = acting bond strength under tension loading

2) Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

V = acting shear loading

fischer injection system FIS EB II	
Performance Displacements for fischer rebar anchors	Annex C 8