

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0957 of 29 November 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

MASON C-RE Injection System for concrete

Bonded fastener for use in concrete

Fasten Enterprises Pte Ltd 3 Ang Mo Kio ST 62#01-50/51 SINGAPORE, 569139 SINGAPUR

PLANT 1

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-21/0957 English translation prepared by DIBt

Page 2 of 24 | 29 November 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0957 English translation prepared by DIBt

Page 3 of 24 | 29 November 2021

Specific Part

1 Technical description of the product

The "MASON C-RE Injection system for concrete" is a bonded anchor consisting of a cartridge with injection MASON C-RE and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

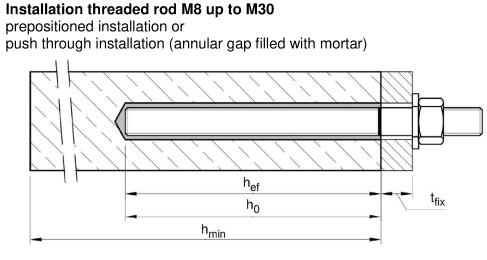
Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0957 English translation prepared by DIBt

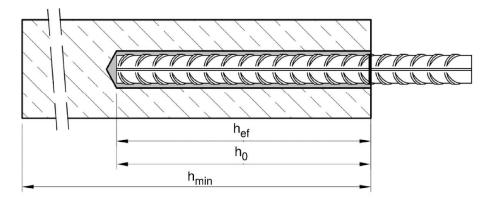
Page 4 of 24 | 29 November 2021

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

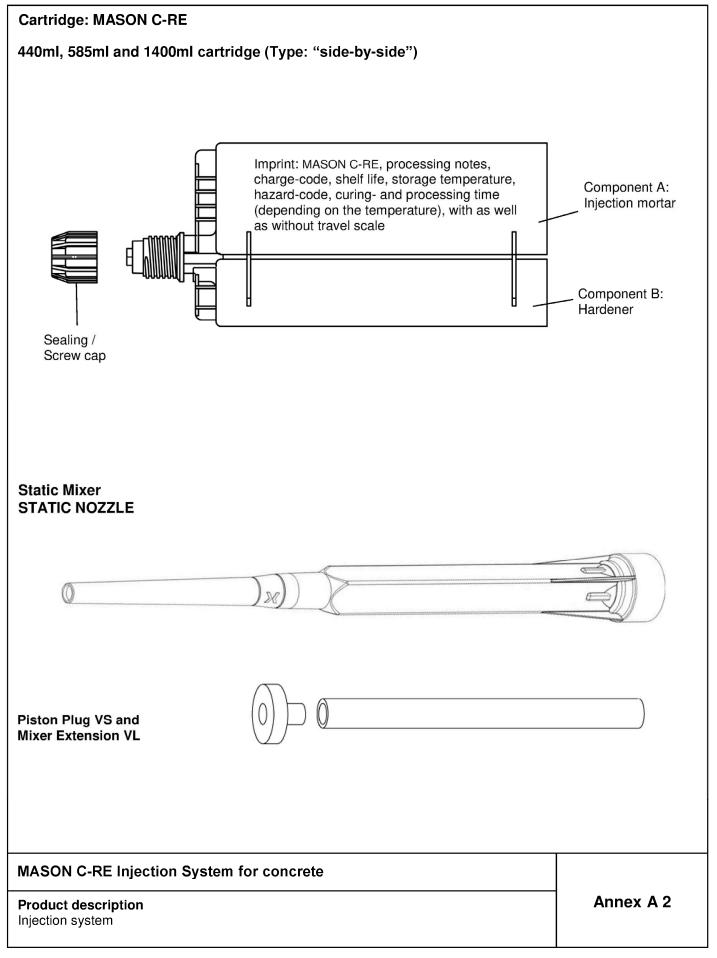
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin 29 November 2021 by Deutsches Institut für Bautechnik

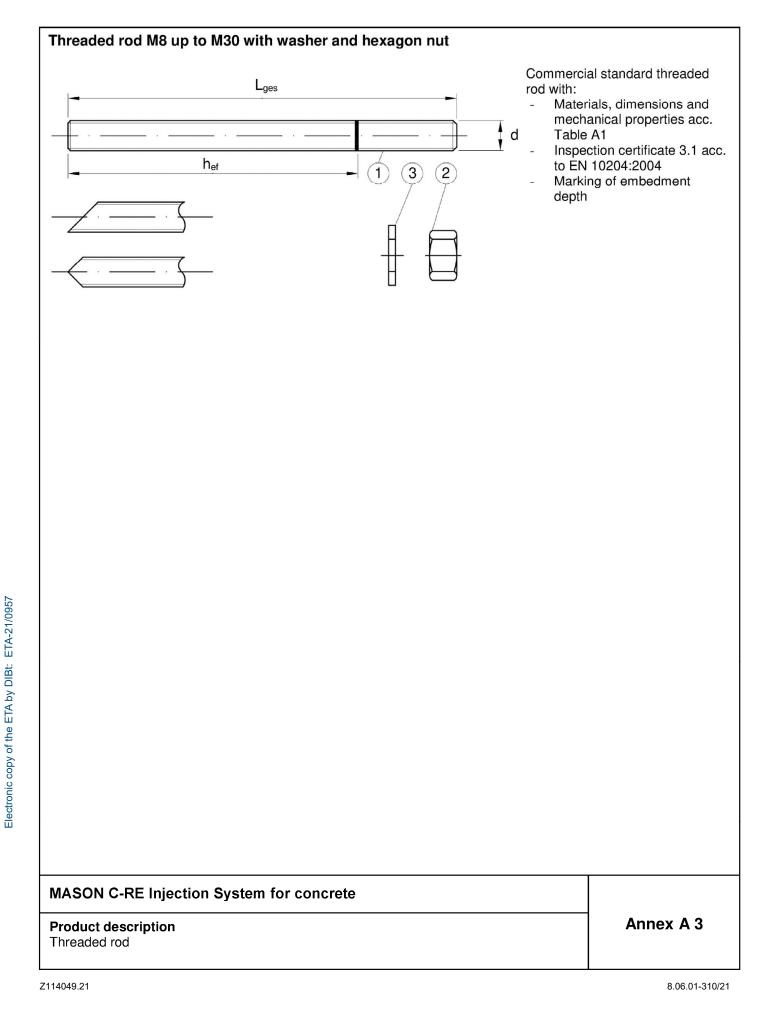
Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Installation reinforcing bar Ø8 up to Ø32

 t_{fix} = thickness of fixture


- h_{ef} = effective anchorage depth
- $h_0 = depth of drill hole$
- h_{min} = minimum thickness of member

MASON C-RE Injection System for concrete


Product description Installed condition

Annex A 1

'arτ	Designation	Material								
Stee	I, zinc plated (Ste	el acc. to EN ISO 683-4:								
		≥ 5 µm acc. to EN ISC			0004 40 0000					
		≥ 40 μm acc. to EN ISC ≥ 45 μm acc. to EN ISC		:2009 and EN ISO 10684:	2004+AC:2009 or					
31		•	71700	Characteristic steel	Characteristic ste	eel Elongation at				
		Property class		ultimate tensile strength	yield strength	fracture				
			4.6	f _{uk} = 400 N/mm ²	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%				
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	$f_{vk} = 320 \text{ N/mm}^2$	A ₅ > 8%				
		acc. to		f _{uk} = 500 N/mm²	$f_{vk} = 300 \text{ N/mm}^2$	A ₅ > 8%				
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	$f_{vk} = 400 \text{ N/mm}^2$	A ₅ > 8%				
				f _{uk} = 800 N/mm ²	$f_{vk} = 640 \text{ N/mm}^2$	A ₅ > 8%				
			4	for anchor rod class 4.6 o						
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 o						
-		EN ISO 898-2:2012	8	for anchor rod class 8.8						
3	Washer			lvanised or sherardized						
				ISO 7089:2000, EN ISO 7		,				
				/ 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to						
				1.4565, acc. to EN 10088-		- <i>t</i>)				
<u> </u>				Characteristic steel	Characteristic ste	eel Elongation at				
		Property class		ultimate tensile strength	yield strength	fracture				
1	Threaded rod ¹⁾²⁾	+-		f _{uk} = 500 N/mm²	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ ≥ 8%				
		acc. to EN ISO 3506-1:2020	70	f _{uk} = 700 N/mm ²	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ > 8%				
			80	f _{uk} = 800 N/mm ²	$f_{yk} = 600 \text{ N/mm}^2$	A ₅ > 8%				
			50	for anchor rod class 50						
2		acc. to EN ISO 3506-1:2020	70	for anchor rod class 70						
				for anchor rod class 80						
				′ / 1.4311 / 1.4567 or 1.454 · / 1.4571 / 1.4362 or 1.457						
3	Washer			565, acc. to EN 10088-1: 2		00-1.2014				
				ISO 7089:2000, EN ISO 7		SO 7094:2000)				
		[•] 80 for anchor s and hexa								
2)	Property class 80 or	nly for stainless steel A4 a	Ind HC	R						
					T					
MA	SON C-RE Inje	ction System for co	oncre	te						
Pro	duct description					Annex A 4				
	duct description erials threaded ro					Annex A 4				

Rei	nforcing bar Ø 8 up to Ø 32		
	ANNINNINNIN AAAAAAAAAAAAAA	NNNNNNNNNNN NAAAAAAAAAAA	ANNINI ANNANA
₊	h _{ef}		
	 Minimum value of related rip area f_{R,min} Rib height of the bar shall be in the rang (d: Nominal diameter of the bar; h: Rip h 		
	le A2: Materials		
Part		Material	
Reint	orcing bars		
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	I 1992-1-1/NA
MA	SON C-RE Injection System for concr	rete	
	duct description erials reinforcing bar		Annex A 5

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Uncracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +35 °C and max short term temperature +60 °C)
- III: 40 °C to +70 °C (max long term temperature +43 °C and max short term temperature +70 °C)

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
- Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

MASON C-RE Injection System for concrete

Intended Use Specifications

Table B1: Installation parameters for threaded rod											
Anchor size				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of elemen	t d = d _{nom}		[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter d ₀		[mm]	10	12	14	18	22	28	30	35
Effective embedmer	at dopth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
	h depin h _{ef,m}		[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins	itioned installation $d_{f} \leq$		9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	oment	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀				
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	ince	c _{min}	[mm]	35	40	45	50	60	65	75	80
1) Maximum Torque	moment for M12 w	ith stool Grade	1 6 is 35	Nm							

¹⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

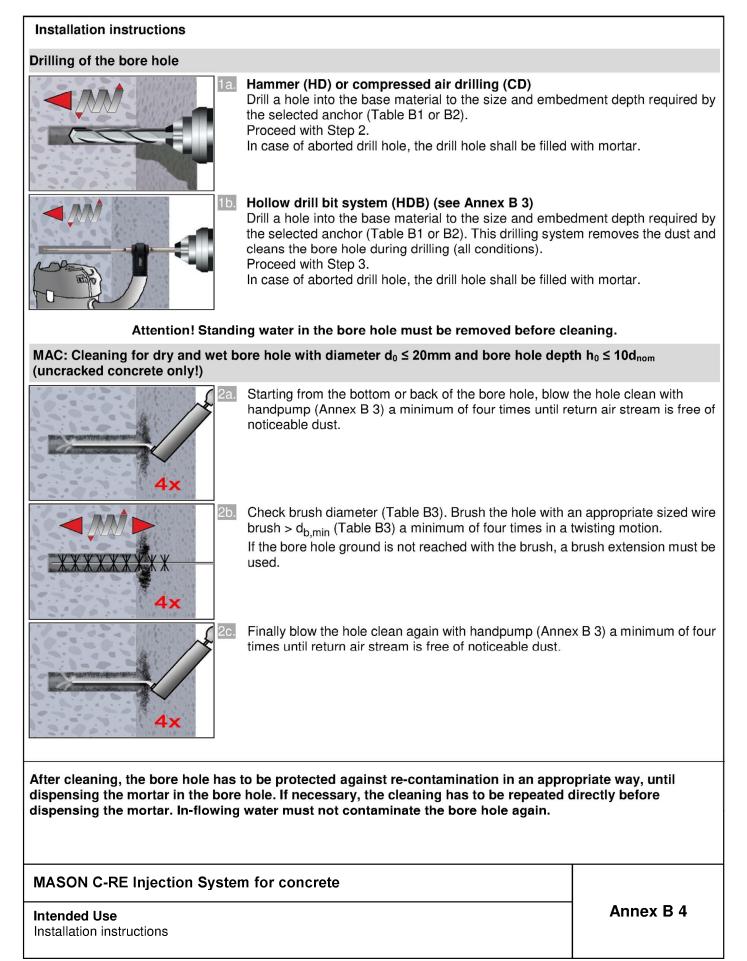
Table B2: Installation parameters for rebar

Anchor size			Ø 81)	Ø 10 ¹⁾	Ø 121)	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32	
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40	
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128	
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640	
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀						
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150	
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85	

¹⁾ both nominal drill hole diameter can be used

MASON C-RE Injection System for concrete

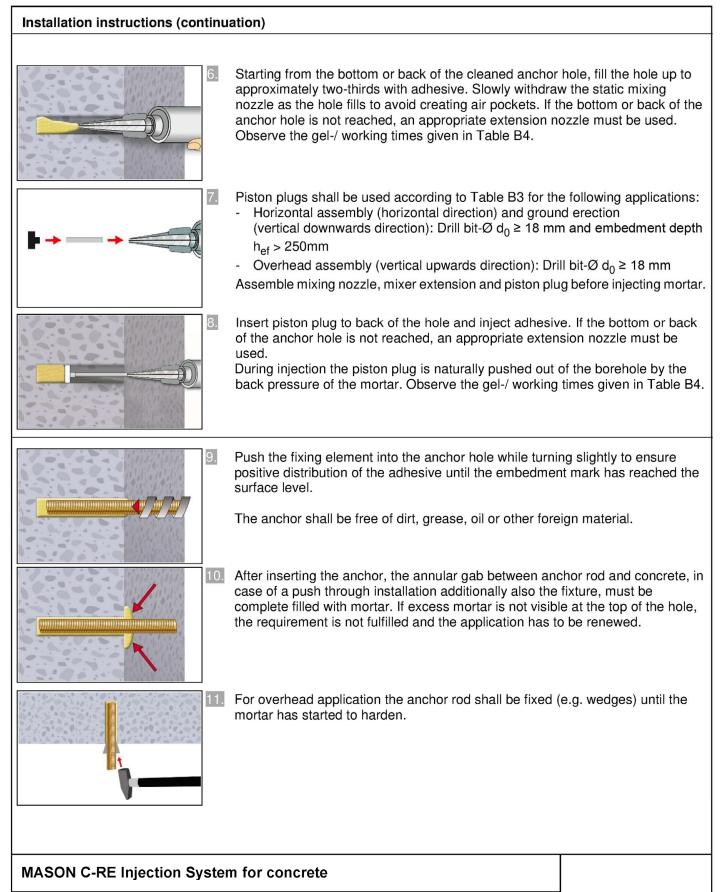
Intended Use Installation parameters



	Parame	ter cleaning		etting	and the second second						
Threaded Rod	Rebar	d ₀ Drill bit - Ø HD, HDB, CD	$ bit - \emptyset $ Brush $-\emptyset$ min. plug					n direction a piston plug			
[mm]	[mm]	[mm]		[mm]	[mm]		I	\rightarrow			
M8	8	10	RB10	11,5	10,5		•				
M10	8 / 10	12	RB12	13,5	12,5	1	N.L				
M12	10 / 12	14	RB14	15,5	14,5	1	No plug	lug required			
	12	16	RB16	17,5	16,5	1					
M16	14	18	RB18	20,0	18,5	VS18					
	16	20	RB20	22,0	20,5	VS20]				
M20		22	RB22	24,0	22,5	VS22	1				
	20	25	RB25	27,0	25,5	VS25]	h >			
M24		28	RB28	30,0	28,5	VS28	- h _{ef} >	h _{ef} >	all		
M27		30	RB30	31,8	30,5	VS30	250 mm	250 mm			
	24 / 25	32	RB32	34,0	32,5	VS32	1				
M30	28	35	RB35	37,0	35,5	VS35	1				
	32	40	RB40	43,5	40,5	VS40	1				
Drill bit di Drill hole	land pump ameter (d ₀): depth (h ₀): < ncracked con	10 d _s	ml)		CAC - Rec Drill bit diam				ar)		

Intended Use

Cleaning and setting tools



Installation instructions (continu	vater-filled bore holes with all diameter in uncracked	and cracked concrete
2a.	Starting from the bottom or back of the bore hole, blow compressed air (min. 6 bar) (Annex B 3) a minimum of stream is free of noticeable dust. If the bore hole ground extension shall be used.	the hole clean with two times until return air
2b.	Check brush diameter (Table B3). Brush the hole with a brush $> d_{b,min}$ (Table B3) a minimum of two times. If the bore hole ground is not reached with the brush, a be used (Table B5).	
2c.	Finally blow the hole clean again with compressed air (a minimum of two times until return air stream is free of bore hole ground is not reached an extension shall be u	noticeable dust. If the
3.	Attach the supplied static-mixing nozzle to the cartridg into the correct dispensing tool. For every working interruption longer than the reco (Table B4) as well as for new cartridges, a new static-m	mmended working time
4. hef →1	Prior to inserting the anchor rod into the filled bore embedment depth shall be marked on the anchor rods.	
5.	Prior to dispensing into the anchor hole, squeeze out a three full strokes and discard non-uniformly mixed adhes mortar shows a consistent grey or red colour.	
MASON C-RE Injection System	m for concrete	

Installation instructions (continuation)

Intended Use Installation instructions (continuation)

Installation instructions (continuation) Image: Second S

Table B4: Maximum working time and minimum curing time

Concrete temperature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+ 5 °C to + 9 °C	80 min	60 h	120 h
+ 10 °C to + 14 °C	60 min	48 h	96 h
+ 15 °C to + 19 °C	40 min	24 h	48 h
+ 20 °C to + 24 °C	30 min	12 h	24 h
+ 25 °C to + 34 °C	12 min	10 h	20 h
+ 35 °C to + 39 °C	8 min	7 h	14 h
+40 °C	8 min	4 h	8 h
Cartridge temperature		+5°C to +40°C	

MASON C-RE Injection System for concrete

Installation instructions (continuation) Curing time

Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cł	naracteristic tension resistance, Steel failu										
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γMs,N	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	γMs,N	[-]				1,8	7			
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]				1,6	3			
Cł	naracteristic shear resistance, Steel failure	; ¹⁾									
_	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	_3)	_3)
3	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
th lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
With	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}		30	59	105	266	519	896	_3)	_3)
Cł	naracteristic shear resistance, Partial facto)r ²⁾									
	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2				
	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3				
	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5				
	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3				

stress area As for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

³⁾ Anchor type not part of the ETA

MASON C-RE Injection System for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Table C2:	Characteristic values for Concrete cone failure and Splitting with all kind of action							
Anchor				All Anchor type and sizes				
Concrete cone	e failure							
Uncracked con	crete	k _{ucr,N}	[-]	11,0				
Cracked concre	ete	k _{cr,N}	[-]	7,7				
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}				
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}				
Splitting								
	h/h _{ef} ≥ 2,0			1,0 h _{ef}				
Edge distance			[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$				
	h/h _{ef} ≤ 1,3			2,4 h _{ef}				
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}				

MASON C-RE Injection System for concrete

Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action

c bond resis 0°C/24°C 0°C/35°C 0°C/43°C c bond resis 0°C/24°C 0°C/24°C 0°C/35°C	concrete failure tance in uncracke Dry, wet concrete and flooded bore hole tance in cracked of Dry, wet concrete and flooded bore hole	^τ Rk,ucr concrete C20/	[N/mm²]	15 10 7,0	15 10 7,0		_{Ik} (or s see Ta 14 9,5 6,5	14 9,5	le C1) 13 9,0	13	13
bull-out and c bond resis 0°C/24°C 0°C/35°C 0°C/43°C c bond resis 0°C/24°C 0°C/24°C 0°C/35°C 0°C/43°C	concrete failure tance in uncracke Dry, wet concrete and flooded bore hole tance in cracked o Dry, wet concrete and flooded bore	^γ Ms,N ed concrete C: ^τ Rk,ucr concrete C20,	[-] 20/25 [N/mm ²]	10	10	15 10	see Ta 14 9,5	14 9,5	13		
oull-out and c bond resis 0°C/24°C 0°C/35°C 0°C/43°C c bond resis 0°C/24°C 0°C/24°C 0°C/35°C 0°C/43°C	tance in uncracke Dry, wet concrete and flooded bore hole tance in cracked of Dry, wet concrete and flooded bore	td concrete C	20/25 [N/mm²]	10	10	15 10	14 9,5	14 9,5			
c bond resis 0°C/24°C 0°C/35°C 0°C/43°C c bond resis 0°C/24°C 0°C/24°C 0°C/35°C	tance in uncracke Dry, wet concrete and flooded bore hole tance in cracked of Dry, wet concrete and flooded bore	td concrete C	[N/mm²]	10	10	10	9,5	9,5			
0°C/24°C 0°C/35°C 0°C/43°C c bond resis 0°C/24°C 0°C/25°C 0°C/43°C	Dry, wet concrete and flooded bore hole tance in cracked of Dry, wet concrete and flooded bore	^τ Rk,ucr concrete C20/	[N/mm²]	10	10	10	9,5	9,5			
0°C/35°C 0°C/43°C <u>c bond resis</u> 0°C/24°C 0°C/35°C 0°C/43°C	concrete and flooded bore hole tance in cracked of Dry, wet concrete and flooded bore	concrete C20,		10	10	10	9,5	9,5			
0°C/43°C c bond resis 0°C/24°C 0°C/35°C 0°C/43°C	flooded bore hole tance in cracked of Dry, wet concrete and flooded bore	concrete C20,							9,0	9,0	9,0
c bond resis 0°C/24°C 0°C/35°C 0°C/43°C	tance in cracked of Dry, wet concrete and flooded bore		/25	7,0	7,0	7,0	65				
0°C/24°C 0°C/35°C 0°C/43°C	Dry, wet concrete and flooded bore		/25				0,0	6,5	6,0	6,0	6,0
0°C/35°C 0°C/43°C	concrete and flooded bore	⁷ Bk.cr									
0°C/43°C	flooded bore	^τ Bk.cr		7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
	hole	^τ Rk,cr	[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5
ctor ψ^0_{sus} in				3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0
	cracked and unc	racked concre	ete C20/25								
0°C/24°C	Dry, wet						0,	60			
0°C/35°C	1	Ψ^0 sus	[-]	0,60							
0°C/43°C	hole			0,60							
		C25/30					1,	02			
		C30/37					1,0	04			
ctors for con	icrete	C35/45		1,07							
		C40/50									
		C50/60					1,	10			
ameter							see Ta	ble C2			
							see Ta	ble C2			
vet concrete	or flooded bore	γinst	[-]				1	,4			
	ctors for con ne failure ameter ameter actor	boec/43°C hole hole hole hole hole hole hole hole	D°C/43°C hole C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 ameter ameter	noticed bore noticed bore p°C/43°C hole C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 ne failure ameter ameter	D°C/43°C hole C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	D°C/43°C hole C25/30 Corr C30/37 C35/45 C40/50 C45/55 C40/50 C45/55 C50/60 C50/60	D°C/43°C hole C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	D°C/43°C Noded bore 0, D°C/43°C hole 0, Ctors for concrete C25/30 1, C30/37 1, C35/45 1, C40/50 1, C45/55 1, C45/55 1, C50/60 1, ameter see Ta ameter see Ta actor see Ta	Induced bore 0.60 0°C/43°C 0.60 ctors for concrete C25/30 C30/37 1,04 C35/45 1,07 C40/50 1,08 C45/55 1,09 C50/60 1,10 ne failure see Table C2 ameter see Table C2 actor see Table C2	D°C/43°C Noded bore 0,60 C25/30 1,02 C30/37 1,04 C35/45 1,07 C40/50 1,08 C45/55 1,09 C50/60 1,10 ne failure see Table C2 ameter see Table C2 actor see Table C2	Incoded bore 0.60 0°C/43°C 0,60 ctors for concrete C25/30 C30/37 1,02 C30/37 1,04 C35/45 1,07 C40/50 1,08 C45/55 1,09 C50/60 1,10 ne failure see Table C2 ameter see Table C2 actor see Table C2

MASON C-RE Injection System for concrete

Performances

Characteristic values of tension loads under static and quasi-static action

ſ

Table C4: Characteristic va	lues of	shear	loads	s unde	er stati	ic and	quas	i-statio	c action	
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm								•		
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ _{Rk,s}	[kN]			0,6 •	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ _{Rk,s}	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k7	[-]					1,0			
Steel failure with lever arm		11								
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • 1	W _{el} ∙f _u ⊧	、(or see	Table C	21)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ_{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	۱ _f	[mm]		rr	nin(h _{ef} ; 1	2 · d _{nor}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

MASON C-RE Injection System for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

Annex C 4

Electronic copy of the ETA by DIBt: ETA-21/0957

Table C5: Chara	acteristic va	lues of te	nsion lo	bads	und	er sta	atic a	nd q	uasi	-stati	c ac	tion	
Anchor size reinforcin	ıg bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension re	esistance	N _{Rk,s}	[kN]					A _s ·	f _{uk} ¹⁾				
Cross section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,	4 ²⁾				
Combined pull-out and													
Characteristic bond resi	istance in uncra	cked concre	te C20/25										
	Dry, wet concrete and			14	14	14	12	12	12	12	11	11	11
II: 60°C/35°C	flooded bore hole	^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
μ ^Φ III: 70°C/43°C	noie			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Characteristic bond resi	istance in cracke	ed concrete	C20/25										
en I: 40°C/24°C	Dry, wet			6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
	concrete and flooded bore	^τ Rk,cr	[N/mm ²]	4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
	hole			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reduction factor ψ^0_{sus} i	in cracked and ι	incracked co	ncrete C2	0/25									
9 I: 40°C/24°C	Dry, wet							0,	60				
	concrete and flooded bore	Ψ^0 sus	[-]					0,	60				
[□] III: 70°C/43°C	hole							0,	60				
		C25/							02				
		C30/						,	04				
Increasing factors for co Ψ_{c}	oncrete	C35/ C40/						,	07 08				
ΨC		C40/ C45/							08				
		C50/							10				
Concrete cone failure													
Relevant parameter							:	see Ta	uble C2	2			
Splitting													
Relevant parameter							:	see Ta	uble C2	2			
Installation factor													
for dry and wet concrete bore hole	e or flooded	γinst	[-]					1	,4				
 ¹⁾ f_{uk} shall be taken from ²⁾ in absence of national 	the specification	is of reinforci	ng bars										
MASON C-RE Inje	ction System	for conci	ete										
Performances Characteristic values of	tension loads un	der static and	d quasi-sta	tic acti	on					A	nnex	c C 5	

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,5	• A _s •	f _{uk} 1)			
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]			•		•	1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm	·											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2	• W _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			•			1,5 ²⁾				
Concrete pry-out failure	·	•										
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure	·		·									
Effective length of fastener	۱ _f	[mm]			min(h _e	_{ef} ; 12 ·	• d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]						1,0				
 ¹⁾ f_{uk} shall be taken from the specifica ²⁾ in absence of national regulation 	tions of reinfo	rcing bars										

Performances

Characteristic values of shear loads under static and quasi-static action

Anchor size threaded	rod		M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete	under static an	d quasi-static ac	tion		L	1		1	I	
Temperature range I	δ _{N0} -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,04-
Temperature range II	: δ _{N0} -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
່60°C/35°Cັ	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Temperature range II	: δ _{N0} -factor	[mm/(N/mm ²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077
Cracked concrete un	der static and o	quasi-static actio	n							
Temperature range I	δ _{N0} -factor	[mm/(N/mm ²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperature range II	0 f	[mm/(N/mm ²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Temperature range II	: δ _{N0} -factor	[mm/(N/mm ²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252
¹⁾ Calculation of the $\sigma_{N0} = \delta_{N0}$ -factor $\cdot \tau_{0}$ $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau_{0}$ Table C8: Dis	; τ: a ;	ction bond stress fo		thread	ed roc	I)				
$ δ_{N0} = δ_{N0} - factor + τ $ $ δ_{N∞} = δ_{N∞} - factor + τ $; τ: a ; olacements			thread	ed roc	I) M16	M20	M24	M27	M30
δN0 = δN0-factor · τ $ δN∞ = δN∞-factor · τTable C8: Dis$; τ: a placements rod	under shear	load ²⁾ (M8	M10	M12	, 	M20	M24	M27	M30
δ _{N0} = δ _{N0} -factor · τ δ _{N∞} = δ _{N∞} -factor · τ Table C8: Dis Anchor size threaded Uncracked and crack	; τ: a placements rod	under shear	load ²⁾ (M8	M10	M12	, 	M20	M24	M27	M30 0,03
δN0 = δN0-factor · τ $ δN∞ = δN∞-factor · τTable C8: DisAnchor size threadedUncracked and crackAll temperatureδ $;; τ: a placements rod ed concrete ur	under shear	load ²⁾ (M8 Jasi-stati	M10	M12	M16				
δN0 = δN0-factor · τ $ δN∞ = δN∞-factor · τTable C8: DisAnchor size threadedUncracked and crackAll temperatureδ $	τ: a colacements rod ed concrete ur i_{VO} -factor i_{Vo} -factor i_{Vo} -factor displacement	under shear	load ²⁾ (M8 Jasi-stati 0,06 0,09	M10 ic action 0,06	M12	M16	0,04	0,03	0,03	0,03

Anchor size rein	forcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked conc	rete under st	atic and quasi-s	static a	ction		•						
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,02
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,042	2 0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	2 0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Cracked concret	te under stati	c and quasi-sta	tic actio	on	1	1	1	I	I		I	1
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,092			0,098	0,099	0,102	0,106		0,109	0,11:
range II: 60°C/35°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,154		-	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,101	-	-	0,108	0,109	0,112	0,117	0,117	0,120	0,124
range III: 70°C/43°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,169	-		0,199	0,208	0,228	0,252	0,252	0,266	0,286
¹⁾ Calculation o $\delta_{N0} = \delta_{N0}$ -fact $\delta_{N\infty} = \delta_{N\infty}$ -fact Table C10:	or · τ; tor · τ;	tent τ: action bond				ır)						
$δ_{N0} = δ_{N0}$ -fact $δ_{N∞} = δ_{N∞}$ -fac	or τ; tor τ; Displacen	τ: action bond		load ^{2;}) (reba	-	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
δ _{N0} = δ _{N0} -fact δ _{N∞} = δ _{N∞} -fac Table C10: Anchor size rein	or τ; tor τ; Displacen forcing bar	τ: action bond	shear Ø 8	load ²⁾ Ø 10	Ø (reba	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
	or τ; tor τ; Displacen forcing bar	τ: action bond	shear Ø 8	load ²⁾ Ø 10	Ø (reba	Ø 14	Ø 16 0,04	Ø 20	Ø 24 0,03	Ø 25 0,03	Ø 28 0,03	Ø 32 0,03
$δ_{N0} = δ_{N0}$ -fact $δ_{N\infty} = δ_{N\infty}$ -fac Table C10: Anchor size rein Uncracked and of All temperature ranges ²⁾ Calculation o	or τ ; tor τ ; Displacen forcing bar cracked conc δ_{V0} -factor $\delta_{V\infty}$ -factor f the displacen	t: action bond	Ø 8 Ø 8 c and c 0,06 0,09	load ^{2/} Ø 10 Juasi-sta	Ø (reba Ø 12 atic act	Ø 14			I			
$δ_{N0} = δ_{N0}$ -fact $δ_{N∞} = δ_{N∞}$ -fac Table C10: Anchor size rein Uncracked and of All temperature ranges	or τ ; tor τ ; Displacen forcing bar cracked conc δ_{V0} -factor $\delta_{V\infty}$ -factor f the displacen or V ;	t: action bond	Ø 8 Ø 8 c and c 0,06 0,09	load ² / Ø 10 Juasi-sta	Ø (reba Ø 12 atic act 0,05	Ø 14 ion 0,04	0,04	0,04	0,03	0,03	0,03	0,03