

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0971 of 2 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Chemofast Drop-in Anchor EA/ EA-B

Mechanical fastener for use in concrete

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

Werk 2, Deutschland

16 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-21/0971

Page 2 of 16 | 2 December 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0971

Page 3 of 16 | 2 December 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Chemofast Drop-in Anchor EA/ EA-B is a fastener made of galvanized steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B2, C1 to C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3 to C4
Displacements	See Annex C5
Characteristic resistance and displacements for seismic performance category C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-21/0971

Page 4 of 16 | 2 December 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 2 December 2021 by Deutsches Institut für Bautechnik

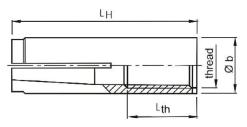
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Anchor sizes and variations											
Drop-in And	chor Anchor EA (with	out shoulder)	Drop-ir	Anchor EA-B (with	shoulder)						
EA M6x30		0	EA-B M6x30		0						
EA M8x30			EA-B M8x30								
EA M8x40			EA-B M8x40								
EA M10x40			EA-B M10x30 (zinc plated)		0						
EA M12x50			EA-B M10x40								
EA M12x80			EA-B M12x50	П							
EA M16x65			EA-B M12x80								
EA M16x80			EA-B M16x65								
EA M20x80			EA-B M16x80								
nstallation si											
	Drop-in Anchor E	A/ EA-B									
Product descri Anchor sizes an	ption d variations / Installati	on situation			Annex A1						

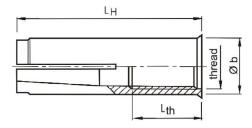
Table A1: Material

Part	Designation	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel HCR				
1	Anchor sleeve	Cold formed or machining steel, galvanized, EN ISO 4042:2018	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, EN ISO 3506:2020	Stainless steel, 1.4529, 1.4565, EN 10088:2014, EN ISO 3506:2020				
2	Cone	Cold formed or machining steel	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014					

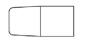
Requirements on the fastening screw or the threaded rod and nut according to the engineering documents:


- Minimum screw-in depth L_{sdmin} see Table B1
- The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum screw-in depth) and the minimum screw-in depth L_{sdmin}.
- A₅ > 8 % Ductility
- Materials
 - Steel, zinc plated, property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
 - Stainless steel A4 or high corrosion resistant steel HCR, property class 70 or 80 according to EN ISO 3506:2020

Chemofast Drop-in Anchor EA/ EA-B	
Product description Materials / Requirements	Annex A2



Anchor sleeve


Anchor version without shoulder (EA)

Anchor version with shoulder (EA-B)

Cone

M6x30 and M10x30

remaining sizes

Marking: see Table A2

identifying mark of manufacturing plant
EA anchor identity (version without shoulder)
EA-B anchor identity (version with shoulder)

M8 size of thread40 anchorage depth

additional marking

A4 stainless steel

HCR high corrosion resistant steel

Table A2: Dimensions and marking

Anchor	And	hor s	leev	е				
size	thread	Øb	L _H	L _{th}	Version EA (without sleeve)	Version EA-B (with sleeve)	alternative	Cone
M6x30	M6	8	30	13	⇒ EA M6x30		<>EA M6	
M8x30	M8	10	30	13	⇒ EA M8x30		<>EA M8	
M8x40	M8	10	40	20	⇒ EA M8x40		⇒EA M8x40	
M10x30	M10	12	30	12	.=.			
M10x40	M10	12	40	15			<>EA M10	
M12x50	M12	15	50	18			⇒EA M12	
M12x80	M12	15	80	45				
M16x65	M16	19,7	65	23	EA M16x65		⇒EA M16	
M16x80	M16	19,7	80	38				
M20x80	M20	24,7	80	34	EA M20x80	-	⇒EA M20	

^{*} Dimensions in mm

Chemofast Drop-in Anchor EA/ EA-B

Product description

Dimensions and marking

Annex A3



Table A3: Dimensions and marking of setting tools

Anchor	Øm	f		Setting tool fo	r ma	rking		Setting tool				
size	וווש			Marking		alternative		Marking	a	alternative		
M6x30	4,9	17	\Diamond	M EA/EA-B M6x30	\Diamond	M EA M6	\Diamond	EA/EA-B M6x30	\Diamond	EA M6		
M8x30	6,4	18	\Diamond	M EA/EA-B M8x30	\Diamond	M EA M8	\Diamond	EA/EA-B M8x30	\Diamond	EA M8		
M8x40	6,4	28	\Diamond	M EA/EA-B M8x40	\Diamond	M EA M8x40	\Diamond	EA/EA-B M8x40	\Diamond	EA M8x40		
M10x30	8,0	18	\Diamond	M EA-B M10x30	\Diamond	M EA M10x30	\Diamond	EA-B M10x30	\Diamond	EA M10x30		
M10x40	8,0	24	\Diamond	M EA/EA-B M10x40	\Diamond	M EA M10	\Diamond	EA/EA-B M10x40	\Diamond	EA M10		
M12x50	10,0	30	\Diamond	M EA/EA-B M12x50	\Diamond	M EA M12	\Diamond	EA/EA-B M12x50	\Diamond	EA M12		
M12x80	10,0	60	\Diamond	M EA/EA-B M12x80	\Diamond	M EA M12x80	\Diamond	EA/EA-B M12x80	\Diamond	EA M12x80		
M16x65	13,5	36	\Diamond	M EA/EA-B M16x65	\Diamond	M EA M16	\Diamond	EA/EA-B M16x65	\Diamond	EA M16		
M16x80	13,5	51	\Diamond	M EA/EA-B M16x80	\Diamond	M EA M16x80	\Diamond	EA/EA-B M16x80	\Diamond	EA M16x80		
M20x80	16,5	50	\Diamond	M EA M20x80	\Diamond	M EA M20	\Diamond	EA M20x80	\Diamond	EA M20		

^{*} Dimensions in mm

Chemofast Drop-in Anchor EA/ EA-B

Product description

Setting tools / Dimensions and marking

Annex A4

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete, without fibres according to EN 206:2013 + A1:2016
- Uncracked concrete
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions applies:
 Use according to EN 1993-1-4:2015 corresponding to corrosion resistance class CRC according to Annex A2, Table A1:
 - Stainless steel A4: CRC III
 - High corrosion resistant steel HCR: CRC V
- Anchor types M6x30 A4 and M8x30 A4 only for dry internal exposure

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Design of fastenings according EN 1992-4:2018 (and TR 055 Edition February 2018, if necessary)
- Anchor sizes M6x30, M8x30 and M10x30 for statically indeterminate structural components only, when in case of failure, the load can be distributed to other fasteners.

Installation:

- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools
- Drill hole by hammer drilling or vacuum drilling

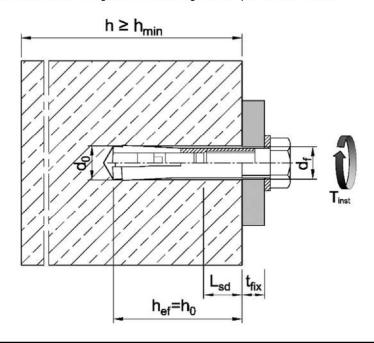

Chemofast Drop-in Anchor EA/ EA-B	
Intended use Specifications	Annex B1

Table B1: Installation parameters

	·					r		Г				
Anchor size	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80		
Depth of drill hole	h ₀ =	[mm]	30	30	40	30	40	50	80	65	80	80
Drill hole diameter	d ₀ =	[mm]	8	10	10	12	12	15	15	20	20	25
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55
Max. installation torque 1)	$T_{inst} \leq$	[Nm]	4	8	8	15	15	35	35	60	60	120
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	9	12	12	14	14	18	18	22
Thread length	L_{th}	[mm]	13	13	20	12	15	18	45	23	38	34
Minimum screw-in depth	L _{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22
Steel, zinc plated	-					-		-				
Minimum thickness of member	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimum spacing	Smin	[mm]	55	60	80	100	100	120	120	150	150	160
Minimum edge distance	C _{min}	[mm]	95	95	95	115	135	165	165	200	200	260
Stainless steel A4, HCR												
Minimum thickness of member	h _{min}	[mm]	100	100	100	-	130	140	140	160	160	250
Minimum spacing	Smin	[mm]	50	60	80	-	100	120	120	150	150	160
Minimum edge distance	Cmin	[mm]	80	95	95	-	135	165	165	200	200	260

¹⁾ If the screw or threaded rod is otherwise secured against unscrewing, the torque can be omitted

Chemofast Drop-in Anchor EA/ EA-B

Intended use Installation parameters **Annex B2**

Installation instructions

installation instructions	
	Drill the hole with a hammer drill (HD) or compressed air drill (CD) perpendicular to the surface of the anchoring surface.
2	If using a hollow drill bit system (HDB) to drill the hole, proceed to step 4.
3	Blow out dust. Alternatively, vacuum clean down to the bottom of the hole.
4	Drive in anchor.
5	Drive in cone by using setting tool.
6 • • !	Shoulder of setting tool must fit on anchor rim.
7 Tinst	Turn in screw or threaded rod with nut, observe minimum screw-in depth (see Annex B2).

Z116568.21 8.06.01-332/21

Annex B3

Chemofast Drop-in Anchor EA/ EA-B

Intended use

Installation instructions

Anchor size				M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80	
Installation facto	or	γinst	[-]					1,2					
Steel failure													
	4.6			8,0	14	1,6	23	3,2	33	3,7	62,8	98,0	
	broperty class 2.8			8,0	14	1,6	18,0	20,2	33	3,7	62,8	98,0	
Characteristic resistance	5.6	$N_{Rk,s}$	[kN]	10,0	18	3,3	18,0	20,2	42	2,1	78,3	122,4	
	9 5.8			10,0	17,6	18,3	18,0	20,2	40,2	42,1	67,1	106,4	
	8.8			15,0	17,6	19,9	18,0	20,2	40,2	43,0	67,1	106,4	
	4.6							2,0					
	$\frac{s}{s} = \frac{-1}{5.6}$				2,0		1,	5		2	,0		
Partial factor		$\gamma_{Ms}^{1)}$	[-]										
	5.8 5.8				1,5							1,6	
	8.8												
Pull-out failure													
Characteristic re concrete C20/2		$N_{Rk,p}$	[kN]	8,1	8,1	9,0	8,1	12,4	17,4	17,4	25,8	35,2	
Increasing facto N _{Rk,p} = ψ _c · N _{RI}		ψс	[-]	$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{f_{ck}}{20}\right)^{0,5} \qquad \left(\frac{f_{ck}}{20}\right)^{0,3} \qquad \qquad \left(\frac{f_{ck}}{20}\right)^{0,5}$								
Splitting													
Characteristic reconcrete C20/2		N ⁰ Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})									
Characteristic e distance	dge	C _{cr,sp}	[mm]	95	95	95	115	135	10	35	200	260	
Characteristic s	pacing	S _{cr,sp}	[mm]	2 · C _{cr,sp}									
Concrete cone	failure												
Effective ancho depth	rage	h _{ef}	[mm]	30	30	40	30	40	50	80	65 80 ²⁾	80	
Characteristic e distance	dge	C _{cr,N}	[mm]	1,5 h _{ef}									
Characteristic s	pacing	S _{cr,N}	[mm]	2 · C _{cr,N}									
	ked concrete	k ucr,N	[-]					11,0					
Factor cracked concrete Kucr,N [-]				No performance assessed									

 $^{^{1)}}$ in absence of other national regulations $^{2)}$ for M16x80

Chemofast Drop-in Anchor EA/ EA-B	
Performance Characteristic values for tension loads, zinc plated steel	Annex C1

Table C2: Characteristic values for tension loads, stainless steel A4, HCR

	Anchor size		M6x30	M8x30	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80		
Installation	factor	γinst	1,0								
Steel failur	re										
Characteris (property cl	stic resistance lass 70)	$N_{Rk,s}$	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0	
Characteris (property cl	stic resistance lass 80)	$N_{Rk,s}$	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0	
Partial facto	or	$\gamma {\sf Ms}^{1)}$	[-]				1,87				
Pull-out fa	Pull-out failure										
	Characteristic resistance in concrete C20/25			8,1	8,1	11,0	12,4	17,4	25,8	35,2	
Increasing f N _{Rk,p} = ψ _c	factor · N _{Rk,p} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)$	0,5	$\left(\frac{f_{ck}}{20}\right)^{0,3}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$				
Splitting fa	ailure										
Characteris	stic resistance in 20/25	$N^0_{Rk,sp}$	[kN]			min	(N _{Rk,p} ; N ⁰	⁾ Rk,c)			
Edge distar	nce	C cr,sp	[mm]	80	95	95	135	165	200	260	
Spacing		S cr,sp	[mm]				2 · C _{cr,sp}				
Concrete o	cone failure										
Effective anchorage depth		h _{ef}	[mm]	30	30	40	40	50 80 ²⁾	65 80 ²⁾	80	
Edge distar	nce	[mm]	1,5 h _{ef}								
Spacing s _{cr,N} [mm] 2 · c _{cr,N}											
Factor -	uncracked concrete	k ucr,N	[-]				11,0				
i-acioi -	cracked concrete	k _{cr,N}	[-]			No perfo	rmance a	ssessed			

¹⁾ in absence of other national regulations

Chemofast Drop-in Anchor EA/ EA-B Performance Characteristic values for tension loads, stainless steel A4, HCR Annex C2

²⁾ for M12x80 and M16x80

Table C3: Characteristic values for shear loads, zinc plated steel														
Anchor size				M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80		
Steel failure without lever arm														
	φ 4.6			4,0	4,0 7,3		11,6	9,6	16	6,8	31,3	49,0		
Characteristic resistance	8.8 4.8			4,0	7	7,3	10,1	10,1	16,9		31,3	49,0		
	5.6 E	$V^0_{Rk,s}$	[kN]	5,0	9	9,1	10,1	9,6	21,1		39,2	61,2		
	property class 8.4 8.6 8.7 8			5,0	6	5,9	10,1	7,2	19,4	21,1	33,5	53,2		
	8.8			5,0	6	5,9	10,1	7,2	19,4	21,5	33,5	53,2		
	\$\frac{4.6}{5.6}							1,67						
Dorticl factor		1)			1,67		1,25			1,67	I			
Partial factor	5.8 8.8	4.8 γ _{Ms} ¹⁾ 5.8 8.8	[-]	1,25								33		
Duktilitätsfaktor		k ₇	[-]		1,0									
Steel failure with lever arm														
	4.6	8 6 M ⁰ _{Rk,s}		6,1 15		9	30	52		133	259			
Characteristic	\$\frac{4.8}{5.6}										100			
bending resistance	5.8 8.8		[Nm]	7,6 19		3	37	65		166	324			
				12	(30	59 60		105		266	519		
	broperty class 8.6 4.8 5.8 5.8 5.8			1,67										
Partial factor	[-]	1,25												
Factor of ductili	ty	k ₇	[-]					1,0						
Concrete pry-c	out failure	9												
Pry-out factor		1,0					1,5 2,0							
Concrete edge	failure													
Effective length fastener in shea	ar loading	l _f	[mm]	30	30	40	30	40	50	80	65 80 ²⁾	80		
Outside diamete fastener	8	1	0	12		15		20	25					

¹⁾ in absence of other national regulations

Chemofast Drop-in Anchor EA/ EA-B

Performance

Characteristic values for shear loads, zinc plated steel

Annex C3

²⁾ for M16x80

Table C4: Characteristic values for shear loads, stainless steel A4, HC

Table 04: Onaraciensii	, value	,3 101	Jileai	ioaas,	Stairii	C33 310	JUI AT,	1101			
Anchor size			M6x30	M8x30	M8x40	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80
Steel failure without lever a	rm										
Characteristic resistance (property class 70)	$V^0_{Rk,s}$	[kN]	7,0	10	0,6	13,4	25	5,1	,1 41,9		66,5
Characteristic resistance (property class 80)	V^0 Rk,s	[kN]	8,7	10	0,6	13,4	25	5,1	41	1,9	66,5
Partial factor	$\gamma_{\text{Ms}}^{1)}$	[-]					1,56				
Factor of ductility	k ₇	[-]					1,0				
Steel failure with lever arm	Steel failure with lever arm										
Characteristic bending resistance (property class 70)	M ⁰ Rk,s	[Nm]	11	11 26 52 9:			92 23		33	454	
Partial factor	γMs ¹⁾	[-]				1,	56		1		
Characteristic bending resistance (property class 80)	M ⁰ Rk,s	[Nm]	12	30		60	105		266		519
Partial factor	γ _{Ms} 1)	[-]					1,33				
Factor of ductility	k ₇	[-]					1,0				
Concrete pry-out failure											
Pry-out factor	k ₈	[-]	1,0 1,7 2,0								
Concrete edge failure											
Effective length of fastener in shear loading	lf	[mm]	30	30	40	40	50	80	65	80	80
Outside diameter of fastener	d_{nom}	[mm]	8	1	0	12	1	15	2	20	25

¹⁾ in absence of other national regulations

Chemofast Drop-in Anchor EA/ EA-B	
Performance Characteristic values for shear loads, stainless steel A4, HCR	Annex C4

Table C5: Displacements under tension loads

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80		M20x80			
Steel, zinc plated													
Tension load in uncracked concrete	N	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8			
Displacements	δηο	[mm]	0,24										
Displacements	$\delta_{N\infty}$	[mm]		0,36									
Stainless steel A4 / HCR													
Tension load in uncracked concrete	N	[kN]	4	4	4,3	_ 1)	6,1	8,5	12,6	17,2			
Dianlacemente	δηο	[mm]		0,12									
Displacements	δ _{N∞}	[mm]				0,	24						

¹⁾ Anchor version is not part of the ETA

Table C6: Displacements under shear loads

Anchor size				M8x30	M8x40	M10x30	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Steel, zinc plated										
Shear load in uncracked concrete	V	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Displacements	δ_{V0}	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
	δ∨∞	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Stainless steel A4 / HCR										
Shear load in uncracked concrete	V	[kN]	3,5	5,2	5,2	_ 1)	6,5	11,5	19,2	30,4
Displacements	δνο	[mm]	1,9	1,1	0,7	_ 1)	1,0	1,7	2,4	2,6
Displacements	δν∞	[mm]	2,8	1,6	1,0	_ 1)	1,5	2,6	3,6	3,8

¹⁾ Anchor version is not part of the ETA

Chemofast Drop-in Anchor EA/ EA-B	
Performance Displacements	Annex C5