

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0006 of 25 July 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	PEIKKO HPM L Anchor Bolts
Product family to which the construction product belongs	Cast-in anchor bolt of ribbed reinforcing steel
Manufacturer	PEIKKO GROUP CORPORATION Voimakatu 3 15101 Lahti FINNLAND
Manufacturing plant	Peikko Herstellwerke
This European Technical Assessment contains	12 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330924-01-0601, Edition 04/2022
This version replaces	ETA-02/0006 issued on 19 August 2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-02/0006 English translation prepared by DIBt

Page 2 of 12 | 25 July 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 | 25 July 2022

Specific Part

1 Technical description of the product

The PEIKKO HPM L Anchor Bolts consist of ribbed reinforcing steel B500B of the diameters 16, 20, 25, 32 and 40 mm, two hexagon nuts and two washers. One of the ends of the bolt is provided with an anchor head and the other end with a thread of the sizes M16, M20, M24, M30, and M39.

The anchor bolt is embedded in concrete up to the threaded length. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static tension load	See Annex B2 and C1
Characteristic resistance under static and quasi-static shear load	See Annex C2
Combined tension and shear under static and quasi- static shear load	See Annex C2
Displacement under static and quasi-static tension or shear load	See Annex C2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330924-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-02/0006 English translation prepared by DIBt

Page 4 of 12 | 25 July 2022

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 25 July 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller

Page 5 of European Technical Assessment ETA-02/0006 of 25 July 2022

English translation prepared by DIBt

Page 6 of European Technical Assessment ETA-02/0006 of 25 July 2022

English translation prepared by DIBt

Figure 3. Dimensions of HPM[®] L Anchor bolts

Table 1: **Dimensions**

					Anch	or bar	•				Washer			Nut ¹⁾
Anchor bolt	da	dh	d	Itot	\mathbf{h}_{nom}	h₅	I ₁	lth	th	Ah	d 1	d ₂	t _{wh}	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm ²]	[mm]	[mm]	[mm]	[-]
HPM [®] 16 L	16	38	16	280	175	105	140	140	10	933	17	40	6	M16
HPM [®] 20 L	20	46	20	350	235	115	210	140	12	1348	21	44	6	M20
HPM [®] 24 L	25	55	24	430	300	130	260	170	13	1885	26	56	6	M24
HPM [®] 30 L	32	70	30	500	350	150	310	190	15	3044	32	65	8	M30
HPM [®] 39 L	40	90	39	700	520	180	500	200	18	5105	41	90	10	M39
1) Dimensions	accord	ina EN	ISO 40	32:201	2									

Peikko HPM[®] L Anchor Bolts

Product description Dimensions, components and product marking

Annex A2

Page 7 of European Technical Assessment ETA-02/0006 of 25 July 2022

English translation prepared by DIBt

Part	Туре	9	Material	Mechanical properties	
Anchor bolt		HPM [®] ** L	Reinforcing steel B500B, B500C or B450B according to EN 1992-1-1:2004 + AC:2010, Annex C	$f_{uk} ≥ 550 \text{ N/mm}^2$ $f_{yk} ≥ 470 \text{ N/mm}^2$ according to EN 1992-1-1:2004 + AC:2010, Annex C	
bolt	1b	HPM [®] ** L-HDG	Reinforcing steel B500B, B500C or B450B according to EN 1992-1-1:2004 + AC:2010, Annex C, hot dip galvanized according to EN ISO 1461:2009 or EN ISO 10684:2004 + AC:2009	$f_{uk} ≥ 550 \text{ N/mm}^2$ $f_{yk} ≥ 470 \text{ N/mm}^2$ according to EN 1992-1-1:2004 + AC:2010, Annex C	
Hexagonal	1a	HPM [®] ** L	According to EN ISO 4032:2012	Strength class 8 according to EN ISO 898-2:2012	
Hexagonal nut	1b	HPM [®] ** L-HDG	According to EN ISO 4032:2012, hot dip galvanized according to EN ISO 1461:2009 or EN ISO 10684:2004 + AC:2009	Strength class 8 according to EN ISO 898-2:2012	
	1a	HPM [®] ** L	Steel S355J2 according to EN 10025:2004	According to EN 10025:2004	
Washer	1b HPM [®] ** L-HDG		Steel S355J2 according to EN 10025:2004, hot dip galvanized according to EN ISO 1461:2009 or EN ISO 10684:2004 + AC:2009	According to EN 10025:2004	

Peikko HPM[®] L Anchor Bolts

Product description Materials Annex A3

Specifications of intended use

Anchorages subject to:

• Static and quasi-static tension, shear or combination of tension and shear.

Base materials:

- Reinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Intended use and environmental conditions:

- Anchor bars made of ribbed reinforcing steel, washer and hexagonal nut are made of steel: Anchor bolts for use in structures subject to dry internal conditions.
- Anchor bars made of ribbed reinforcing steel, washer and hexagonal nut are made of hot dip galvanised steel according to EN ISO 1461:2009 or EN ISO 10684:2004 + AC:2009 with at least 50 µm thickness: Anchor bolts for use in structures subject to internal conditions with usual humidity (exceptional permanently damp conditions and applications under water).
- Anchor bars made of ribbed reinforcing steel, washer and hexagonal nut are made of steel with concrete cover according to EN 1992-1-1:2004 + AC:2010: Anchor bolts for use in structures subject to appropriate exposition relating to the concrete cover.

Design:

- Anchor bolts are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor bars are indicated on the design drawings (e.g. position of the anchor bars relative to the reinforcement or to supports).
- For static and quasi-static loading the anchor bolts are designed in accordance with EN 1992-4:2018.
- The occurring splitting forces are resisted by the reinforcement. The required cross section of the minimum reinforcement is determined according EN 1992-4:2018, section 7.2.1.7.

Peikko HPM[®] L Anchor Bolts

Intended use Specifications

Annex B1

Installation:

Placing anchor bolts into concrete

- The installation of anchor bolts is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the product only as supplied by the manufacturer.
- Installation in accordance with the manufacturers product installation instructions given in Annex B3.
- The anchor bolts are fixed to the formwork, reinforcement or auxiliary construction such that no movement
 of the product will occur during the time of laying the reinforcement and of placing and compacting the
 concrete.
- The anchor bolts are embedded in concrete up to the marking of installation depth.
- The concrete under the anchor bar head is properly compacted.
- The max. installation torque according Table 3 may not be exceeded.

HPM [®]			16 L	20 L	24 L	30 L	39 L
Effective embedment depth	h _{ef}	[mm]	165	223	287	335	502
Minimum spacing	Smin	[mm]	80	100	100	130	150
Minimum edge distance	Cmin	[mm]	50	70	70	100	130
Protrusion height / thread length above concrete member	h⊳	[mm]	105	115	130	150	180
Min. thickness of concrete member	h _{min}	[mm]	$h_{ef} + t_h + c_{nom}^{1)}$				
Max. installation torque General installation, case (a)	Tinst	[Nm]	20	45	75	125	290
Max. installation torque Steel to steel contact, case (b)	Tinst	[Nm]	80	150	270	540	1200

Table 3: Installation parameters of HPM[®] L Anchor bolts

1) Required concrete cover according to EN 1992-1-1:2004 + AC:2010

Peikko HPM[®] L Anchor Bolts

Intended use Installation parameters Annex B2

Page 10 of European Technical Assessment ETA-02/0006 of 25 July 2022

English translation prepared by DIBt

Installation instruction: Install the anchor bolts to the formwork by using a Peikko® installation template according design drawings to ensure the correct position, size and protrusion height (h_b) of the anchor bolts. Pay attention to a strong fixing of the anchor bolts to avoid moving during pouring. Compact concrete properly around and under the anchor bar head. After hardening of the concrete the installation template can be removed. For the installation of a steel column according to figure 1 (general installation) all nuts are removed. For the installation of a precast concrete column or steel column according to figure 2 (steel to steel contact) the lower levelling nuts are adjusted to the correct level. The connection is fixed by tightening the upper nuts. The installation torque T_{inst} acc. to Annex B2 may not be exceeded. The joint between the base structure and the column must be filled properly with non-shrinking mortar.

Peikko HPM[®] L Anchor Bolts

Intended use Manufacturers product installation instructions (MPII)

Annex B3

HPM [®]			16 L	20 L	24 L	30 L	39 L	
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	86,2	134,6	193,9	308,3	536,7	
Partial factor								
Concrete pull-out failure								
Characteristic resistance In uncracked concrete C20/25	N _{Rk,p}	[kN]	195,9	283,0	395,8	639,3	1072,1	
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	140,0	202,2	282,7	456,6	765,8	
		C25/30	1,25					
	Ψ _c	C30/37	1,50					
ncrease factor for higher concrete grades for N _{Rk,p} N _{Rk,p} = N _{Rk,p} (C20/25) · Ψ _c		C35/45	1,75					
		C40/50	2,00					
		C45/55	2,25					
		C50/60	2,50					
Partial factor	ү мр ¹⁾	[-]			1,5			
Concrete cone failure								
Effective embedment depth	h _{ef}	[mm]	165	223	287	335	502	
Factor for the influence of the load	k _{ucr,N}	[-]			12,7			
transfer mechanism	k _{cr,N}	[-]			8,9			
Characteristic spacing	S _{cr,N} = S _{cr,sp}	[mm]	3 h _{ef}					
Characteristic edge distance	$\mathbf{c}_{cr,N} = \mathbf{c}_{cr,sp}$	[mm]	1,5 h _{ef}					
Partial factor	ү мс ¹⁾	[-]			1,5			
Concrete splitting								

See EN 1992-4:2018, section 7.2.1.7

1) In absence of other national regulations

Peikko HPM[®] L Anchor Bolts

Annex C1

HPM [®]			16 L	20 L	24 L	30 L	39 L
Steel failure without lever arm			-				-
Characteristic resistance	V ⁰ Rk,s	[kN]	43,1	67,3	96,9	154,2	268,3
Factor acc. EN 1992-4:2018,	k 7				1.0		
section 7.2.2.3.1	K 7	[-]			1,0		
Partial factor	ΥMs ²⁾	[-]			1,5		
Steel failure with lever arm							
Characteristic resistance	M ⁰ Rk,s	[Nm]	183	356	616	1236	2837
Partial factor	ΥMs ²⁾	[-]	1,5				
Concrete pry-out failure							
Factor acc. EN 1992-4:2018,	k ₈ 1)				2.0		
section 7.2.2.4	K8"/	[-]			2,0		
Partial factor	Υ Mcp ²⁾	[-]			1,5		
Concrete edge failure							
Effective embedment depth under		[mm]	100	160	100	240	312
shear load	lf	[mm]	128	160	192	240	312
Effective outer diameter	d _{nom} = d	[mm]	16	20	24	30	39
Partial factor	Υ Mc ²⁾	[-]			1,5		

1) If supplementary reinforcement is present, the factor k₈ has to be multiplied by 0,75

2) In absence of national regulations

Combined tension and shear load			
Factor acc. EN 1992-4:2018, section 7.2.3	k 11	[-]	2/3

Table 6: Displacements of HPM[®] L Anchor bolts under tension load

HPM [®]			16 L	20 L	24 L	30 L	39 L
Tension load	N	[kN]	41	64	92	147	256
Short-term displacement	δ _{N0}	[mm]	0,3	0,3	0,4	0,4	0,6
Long-term displacement	$\delta_{N\infty}$	[mm]	0,6	0,6	0,8	0,8	1,2

Table 7: Displacements of HPM® L Anchor bolts under shear load

HPM [®]			16 L	20 L	24 L	30 L	39 L
Shear load	V	[kN]	18	25	41	66	115
Short-term displacement	δνο	[mm]	1,5	1,5	1,5	1,5	1,5
Long-term displacement	δ _{V∞}	[mm]	2,3	2,3	2,3	2,3	2,3

Peikko HPM[®] L Anchor Bolts

Performance

Characteristic resistances under shear load, combined tension and shear load Displacements under tension and/ or shear load

Annex C2